#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include "opcodes.h"
#include "rounding.h"
/* Test "convert to fixed" with rounding mode given in insn (m3 field)
Covers all generally available rounding modes that can be mapped to
IRRoundingMode. As a consequence m3=1 which is "round to nearest with
ties away from 0" is not tested here.
*/
const char *
rtext(unsigned m3_round)
{
switch (m3_round) {
case 0: return "[-> per fpc]";
case 1: return "[-> nearest away]";
case 3: return "[-> prepare short]"; // floating point extension fac needed
case 4: return "[-> nearest even]";
case 5: return "[-> 0]";
case 6: return "[-> +inf]";
case 7: return "[-> -inf]";
}
assert(0);
}
#define convert_to_int(opcode,src_type,dst_type,dst_fmt,round,value) \
do { \
src_type src = value; \
dst_type dst; \
unsigned cc; \
\
__asm__ volatile (opcode " %[dst]," #round ",%[src]\n\t" \
"ipm %[cc]\n\t" \
"srl %[cc],28\n\t" \
: [dst] "=d"(dst), [cc] "=d"(cc) \
: [src] "f"(src) \
: "cc"); \
\
printf("%s %f\t-> %"dst_fmt"\tcc = %u %s\n", \
opcode, src, dst, cc, rtext(round)); \
} while (0)
#define round_to_int(opcode,type,round,value) \
do { \
type src = value; \
type dst; \
\
__asm__ volatile (opcode " %[dst]," #round ",%[src]\n\t" \
: [dst] "=f"(dst) \
: [src] "f"(src)); \
\
printf("%s %.5f\t-> %g %s\n", \
opcode, src, dst, rtext(round)); \
} while (0)
#define cfebr(value, round) \
convert_to_int("cfebr",float,int32_t,PRId32,round,value)
#define cfdbr(value, round) \
convert_to_int("cfdbr",double,int32_t,PRId32,round,value)
#define cgebr(value, round) \
convert_to_int("cgebr",float,int64_t,PRId64,round,value)
#define cgdbr(value, round) \
convert_to_int("cgdbr",double,int64_t,PRId64,round,value)
#define fiebr(value, round) \
round_to_int("fiebr",float,round,value)
#define fidbr(value, round) \
round_to_int("fidbr",double,round,value)
void
set_rounding_mode(unsigned mode)
{
register unsigned r asm("1") = mode;
__asm__ volatile ( SFPC(1) : : "d"(r) );
}
int main(void)
{
int j;
static const float fval[] = {
1.25f, 1.5f, 2.5f, 1.75f, -1.25f, -1.5f, -2.5f, -1.75f, 0.0f,
};
static const double dval[] = {
1.25, 1.5, 2.5, 1.75, -1.25, -1.5, -2.5, -1.75, 0.0,
};
/* Note when testing M3_NEAR need to set the FPC rounding mode
to something else. FPC rounding mode is NEAR by default.
Setting the FPC rounding mode to != NEAR is the only way to make
sure the M3 field is not ignored. */
/* f32 -> i32 */
for (j = 0; j < sizeof fval / sizeof fval[0]; ++j) {
set_rounding_mode(FPC_BFP_ROUND_ZERO);
cfebr(fval[j], M3_BFP_ROUND_NEAREST_EVEN);
set_rounding_mode(FPC_BFP_ROUND_NEAREST_EVEN);
cfebr(fval[j], M3_BFP_ROUND_ZERO);
cfebr(fval[j], M3_BFP_ROUND_POSINF);
cfebr(fval[j], M3_BFP_ROUND_NEGINF);
}
/* f32 -> i64 */
for (j = 0; j < sizeof fval / sizeof fval[0]; ++j) {
set_rounding_mode(FPC_BFP_ROUND_ZERO);
cgebr(fval[j], M3_BFP_ROUND_NEAREST_EVEN);
set_rounding_mode(FPC_BFP_ROUND_NEAREST_EVEN);
cgebr(fval[j], M3_BFP_ROUND_ZERO);
cgebr(fval[j], M3_BFP_ROUND_POSINF);
cgebr(fval[j], M3_BFP_ROUND_NEGINF);
}
/* f64 -> i32 */
for (j = 0; j < sizeof dval / sizeof dval[0]; ++j) {
set_rounding_mode(FPC_BFP_ROUND_ZERO);
cfdbr(dval[j], M3_BFP_ROUND_NEAREST_EVEN);
set_rounding_mode(FPC_BFP_ROUND_NEAREST_EVEN);
cfdbr(dval[j], M3_BFP_ROUND_ZERO);
cfdbr(dval[j], M3_BFP_ROUND_POSINF);
cfdbr(dval[j], M3_BFP_ROUND_NEGINF);
}
/* f64 -> i64 */
for (j = 0; j < sizeof dval / sizeof dval[0]; ++j) {
set_rounding_mode(FPC_BFP_ROUND_ZERO);
cgdbr(dval[j], M3_BFP_ROUND_NEAREST_EVEN);
set_rounding_mode(FPC_BFP_ROUND_NEAREST_EVEN);
cgdbr(dval[j], M3_BFP_ROUND_ZERO);
cgdbr(dval[j], M3_BFP_ROUND_POSINF);
cgdbr(dval[j], M3_BFP_ROUND_NEGINF);
}
/* f32 -> f32, round to int */
for (j = 0; j < sizeof dval / sizeof dval[0]; ++j) {
set_rounding_mode(FPC_BFP_ROUND_ZERO);
fiebr(dval[j], M3_BFP_ROUND_NEAREST_EVEN);
set_rounding_mode(FPC_BFP_ROUND_NEAREST_EVEN);
fiebr(dval[j], M3_BFP_ROUND_ZERO);
fiebr(dval[j], M3_BFP_ROUND_POSINF);
fiebr(dval[j], M3_BFP_ROUND_NEGINF);
}
/* f64 -> f64, round to int */
for (j = 0; j < sizeof dval / sizeof dval[0]; ++j) {
set_rounding_mode(FPC_BFP_ROUND_ZERO);
fidbr(dval[j], M3_BFP_ROUND_NEAREST_EVEN);
set_rounding_mode(FPC_BFP_ROUND_NEAREST_EVEN);
fidbr(dval[j], M3_BFP_ROUND_ZERO);
fidbr(dval[j], M3_BFP_ROUND_POSINF);
fidbr(dval[j], M3_BFP_ROUND_NEGINF);
}
return 0;
}