HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Pie
|
9.0.0_r8
下载
查看原文件
收藏
根目录
external
valgrind
memcheck
tests
vcpu_fbench.c
// This is slightly hacked version of perf/fbench.c. It does some // some basic FP arithmetic (+/-/*/divide) and not a lot else. // This small program does some raytracing. It tests Valgrind's handling of // FP operations. It apparently does a lot of trigonometry operations. // Licensing: This program is closely based on the one of the same name from // http://www.fourmilab.ch/. The front page of that site says: // // "Except for a few clearly-marked exceptions, all the material on this // site is in the public domain and may be used in any manner without // permission, restriction, attribution, or compensation." /* This program can be used in two ways. If INTRIG is undefined, sin, cos, tan, etc, will be used as supplied by
. If it is defined, then the program calculates all this stuff from first principles (so to speak) and does not use the libc facilities. For benchmarking purposes it seems better to avoid the libc stuff, so that the inner loops (sin, sqrt) present a workload independent of libc implementations on different platforms. Hence: */ #define INTRIG 1 /* John Walker's Floating Point Benchmark, derived from... Marinchip Interactive Lens Design System John Walker December 1980 By John Walker http://www.fourmilab.ch/ This program may be used, distributed, and modified freely as long as the origin information is preserved. This is a complete optical design raytracing algorithm, stripped of its user interface and recast into portable C. It not only determines execution speed on an extremely floating point (including trig function) intensive real-world application, it checks accuracy on an algorithm that is exquisitely sensitive to errors. The performance of this program is typically far more sensitive to changes in the efficiency of the trigonometric library routines than the average floating point program. The benchmark may be compiled in two modes. If the symbol INTRIG is defined, built-in trigonometric and square root routines will be used for all calculations. Timings made with INTRIG defined reflect the machine's basic floating point performance for the arithmetic operators. If INTRIG is not defined, the system library
functions are used. Results with INTRIG not defined reflect the system's library performance and/or floating point hardware support for trig functions and square root. Results with INTRIG defined are a good guide to general floating point performance, while results with INTRIG undefined indicate the performance of an application which is math function intensive. Special note regarding errors in accuracy: this program has generated numbers identical to the last digit it formats and checks on the following machines, floating point architectures, and languages: Marinchip 9900 QBASIC IBM 370 double-precision (REAL * 8) format IBM PC / XT / AT Lattice C IEEE 64 bit, 80 bit temporaries High C same, in line 80x87 code BASICA "Double precision" Quick BASIC IEEE double precision, software routines Sun 3 C IEEE 64 bit, 80 bit temporaries, in-line 68881 code, in-line FPA code. MicroVAX II C Vax "G" format floating point Macintosh Plus MPW C SANE floating point, IEEE 64 bit format implemented in ROM. Inaccuracies reported by this program should be taken VERY SERIOUSLY INDEED, as the program has been demonstrated to be invariant under changes in floating point format, as long as the format is a recognised double precision format. If you encounter errors, please remember that they are just as likely to be in the floating point editing library or the trigonometric libraries as in the low level operator code. The benchmark assumes that results are basically reliable, and only tests the last result computed against the reference. If you're running on a suspect system you can compile this program with ACCURACY defined. This will generate a version which executes as an infinite loop, performing the ray trace and checking the results on every pass. All incorrect results will be reported. Representative timings are given below. All have been normalised as if run for 1000 iterations. Time in seconds Computer, Compiler, and notes Normal INTRIG 3466.00 4031.00 Commodore 128, 2 Mhz 8510 with software floating point. Abacus Software/Data-Becker Super-C 128, version 3.00, run in fast (2 Mhz) mode. Note: the results generated by this system differed from the reference results in the 8th to 10th decimal place. 3290.00 IBM PC/AT 6 Mhz, Microsoft/IBM BASICA version A3.00. Run with the "/d" switch, software floating point. 2131.50 IBM PC/AT 6 Mhz, Lattice C version 2.14, small model. This version of Lattice compiles subroutine calls which either do software floating point or use the 80x87. The machine on which I ran this had an 80287, but the results were so bad I wonder if it was being used. 1598.00 Macintosh Plus, MPW C, SANE Software floating point. 1582.13 Marinchip 9900 2 Mhz, QBASIC compiler with software floating point. This was a QBASIC version of the program which contained the identical algorithm. 404.00 IBM PC/AT 6 Mhz, Microsoft QuickBASIC version 2.0. Software floating point. 165.15 IBM PC/AT 6 Mhz, Metaware High C version 1.3, small model. This was compiled to call subroutines for floating point, and the machine contained an 80287 which was used by the subroutines. 143.20 Macintosh II, MPW C, SANE calls. I was unable to determine whether SANE was using the 68881 chip or not. 121.80 Sun 3/160 16 Mhz, Sun C. Compiled with -fsoft switch which executes floating point in software. 78.78 110.11 IBM RT PC (Model 6150). IBM AIX 1.0 C compiler with -O switch. 75.2 254.0 Microsoft Quick C 1.0, in-line 8087 instructions, compiled with 80286 optimisation on. (Switches were -Ol -FPi87-G2 -AS). Small memory model. 69.50 IBM PC/AT 6Mhz, Borland Turbo BASIC 1.0. Compiled in "8087 required" mode to generate in-line code for the math coprocessor. 66.96 IBM PC/AT 6Mhz, Microsoft QuickBASIC 4.0. This release of QuickBASIC compiles code for the 80287 math coprocessor. 66.36 206.35 IBM PC/AT 6Mhz, Metaware High C version 1.3, small model. This was compiled with in-line code for the 80287 math coprocessor. Trig functions still call library routines. 63.07 220.43 IBM PC/AT, 6Mhz, Borland Turbo C, in-line 8087 code, small model, word alignment, no stack checking, 8086 code mode. 17.18 Apollo DN-3000, 12 Mhz 68020 with 68881, compiled with in-line code for the 68881 coprocessor. According to Apollo, the library routines are chosen at runtime based on coprocessor presence. Since the coprocessor was present, the library is supposed to use in-line floating point code. 15.55 27.56 VAXstation II GPX. Compiled and executed under VAX/VMS C. 15.14 37.93 Macintosh II, Unix system V. Green Hills 68020 Unix compiler with in-line code for the 68881 coprocessor (-O -ZI switches). 12.69 Sun 3/160 16 Mhz, Sun C. Compiled with -fswitch, which calls a subroutine to select the fastest floating point processor. This was using the 68881. 11.74 26.73 Compaq Deskpro 386, 16 Mhz 80386 with 16 Mhz 80387. Metaware High C version 1.3, compiled with in-line for the math coprocessor (but not optimised for the 80386/80387). Trig functions still call library routines. 8.43 30.49 Sun 3/160 16 Mhz, Sun C. Compiled with -f68881, generating in-line MC68881 instructions. Trig functions still call library routines. 6.29 25.17 Sun 3/260 25 Mhz, Sun C. Compiled with -f68881, generating in-line MC68881 instructions. Trig functions still call library routines. 4.57 Sun 3/260 25 Mhz, Sun FORTRAN 77. Compiled with -O -f68881, generating in-line MC68881 instructions. Trig functions are compiled in-line. This used the FORTRAN 77 version of the program, FBFORT77.F. 4.00 14.20 Sun386i/25 Mhz model 250, Sun C compiler. 4.00 14.00 Sun386i/25 Mhz model 250, Metaware C. 3.10 12.00 Compaq 386/387 25 Mhz running SCO Xenix 2. Compiled with Metaware HighC 386, optimized for 386. 3.00 12.00 Compaq 386/387 25MHZ optimized for 386/387. 2.96 5.17 Sun 4/260, Sparc RISC processor. Sun C, compiled with the -O2 switch for global optimisation. 2.47 COMPAQ 486/25, secondary cache disabled, High C, 486/387, inline f.p., small memory model. 2.20 3.40 Data General Motorola 88000, 16 Mhz, Gnu C. 1.56 COMPAQ 486/25, 128K secondary cache, High C, 486/387, inline f.p., small memory model. 0.66 1.50 DEC Pmax, Mips processor. 0.63 0.91 Sun SparcStation 2, Sun C (SunOS 4.1.1) with -O4 optimisation and "/usr/lib/libm.il" inline floating point. 0.60 1.07 Intel 860 RISC processor, 33 Mhz, Greenhills C compiler. 0.40 0.90 Dec 3MAX, MIPS 3000 processor, -O4. 0.31 0.90 IBM RS/6000, -O. 0.1129 0.2119 Dell Dimension XPS P133c, Pentium 133 MHz, Windows 95, Microsoft Visual C 5.0. 0.0883 0.2166 Silicon Graphics Indigo, MIPS R4400, 175 Mhz, "-O3". 0.0351 0.0561 Dell Dimension XPS R100, Pentium II 400 MHz, Windows 98, Microsoft Visual C 5.0. 0.0312 0.0542 Sun Ultra 2, UltraSPARC V9, 300 MHz, Solaris 2.5.1. 0.00862 0.01074 Dell Inspiron 9100, Pentium 4, 3.4 GHz, gcc -O3. */ #include
#include
#include
#ifndef INTRIG #include
#endif #define cot(x) (1.0 / tan(x)) #define TRUE 1 #define FALSE 0 #define max_surfaces 10 /* Local variables */ /* static char tbfr[132]; */ static short current_surfaces; static short paraxial; static double clear_aperture; static double aberr_lspher; static double aberr_osc; static double aberr_lchrom; static double max_lspher; static double max_osc; static double max_lchrom; static double radius_of_curvature; static double object_distance; static double ray_height; static double axis_slope_angle; static double from_index; static double to_index; static double spectral_line[9]; static double s[max_surfaces][5]; static double od_sa[2][2]; static char outarr[8][80]; /* Computed output of program goes here */ int itercount; /* The iteration counter for the main loop in the program is made global so that the compiler should not be allowed to optimise out the loop over the ray tracing code. */ #ifndef ITERATIONS #define ITERATIONS /*1000*/ /*500000*/ 100 #endif int niter = ITERATIONS; /* Iteration counter */ static char *refarr[] = { /* Reference results. These happen to be derived from a run on Microsoft Quick BASIC on the IBM PC/AT. */ " Marginal ray 47.09479120920 0.04178472683", " Paraxial ray 47.08372160249 0.04177864821", "Longitudinal spherical aberration: -0.01106960671", " (Maximum permissible): 0.05306749907", "Offense against sine condition (coma): 0.00008954761", " (Maximum permissible): 0.00250000000", "Axial chromatic aberration: 0.00448229032", " (Maximum permissible): 0.05306749907" }; /* The test case used in this program is the design for a 4 inch achromatic telescope objective used as the example in Wyld's classic work on ray tracing by hand, given in Amateur Telescope Making, Volume 3. */ static double testcase[4][4] = { {27.05, 1.5137, 63.6, 0.52}, {-16.68, 1, 0, 0.138}, {-16.68, 1.6164, 36.7, 0.38}, {-78.1, 1, 0, 0} }; /* Internal trig functions (used only if INTRIG is defined). These standard functions may be enabled to obtain timings that reflect the machine's floating point performance rather than the speed of its trig function evaluation. */ #ifdef INTRIG /* The following definitions should keep you from getting intro trouble with compilers which don't let you redefine intrinsic functions. */ #define sin I_sin #define cos I_cos #define tan I_tan #define sqrt I_sqrt #define atan I_atan #define atan2 I_atan2 #define asin I_asin #define fabs(x) ((x < 0.0) ? -x : x) #define pic 3.1415926535897932 /* Commonly used constants */ static double pi = pic, twopi =pic * 2.0, piover4 = pic / 4.0, fouroverpi = 4.0 / pic, piover2 = pic / 2.0; /* Coefficients for ATAN evaluation */ static double atanc[] = { 0.0, 0.4636476090008061165, 0.7853981633974483094, 0.98279372324732906714, 1.1071487177940905022, 1.1902899496825317322, 1.2490457723982544262, 1.2924966677897852673, 1.3258176636680324644 }; /* aint(x) Return integer part of number. Truncates towards 0 */ double aint(x) double x; { long l; /* Note that this routine cannot handle the full floating point number range. This function should be in the machine-dependent floating point library! */ l = x; if ((int)(-0.5) != 0 && l < 0 ) l++; x = l; return x; } /* sin(x) Return sine, x in radians */ static double sin(x) double x; { int sign; double y, r, z; x = (((sign= (x < 0.0)) != 0) ? -x: x); if (x > twopi) x -= (aint(x / twopi) * twopi); if (x > pi) { x -= pi; sign = !sign; } if (x > piover2) x = pi - x; if (x < piover4) { y = x * fouroverpi; z = y * y; r = y * (((((((-0.202253129293E-13 * z + 0.69481520350522E-11) * z - 0.17572474176170806E-8) * z + 0.313361688917325348E-6) * z - 0.365762041821464001E-4) * z + 0.249039457019271628E-2) * z - 0.0807455121882807815) * z + 0.785398163397448310); } else { y = (piover2 - x) * fouroverpi; z = y * y; r = ((((((-0.38577620372E-12 * z + 0.11500497024263E-9) * z - 0.2461136382637005E-7) * z + 0.359086044588581953E-5) * z - 0.325991886926687550E-3) * z + 0.0158543442438154109) * z - 0.308425137534042452) * z + 1.0; } return sign ? -r : r; } /* cos(x) Return cosine, x in radians, by identity */ static double cos(x) double x; { x = (x < 0.0) ? -x : x; if (x > twopi) /* Do range reduction here to limit */ x = x - (aint(x / twopi) * twopi); /* roundoff on add of PI/2 */ return sin(x + piover2); } /* tan(x) Return tangent, x in radians, by identity */ static double tan(x) double x; { return sin(x) / cos(x); } /* sqrt(x) Return square root. Initial guess, then Newton- Raphson refinement */ double sqrt(x) double x; { double c, cl, y; int n; if (x == 0.0) return 0.0; if (x < 0.0) { fprintf(stderr, "\nGood work! You tried to take the square root of %g", x); fprintf(stderr, "\nunfortunately, that is too complex for me to handle.\n"); exit(1); } y = (0.154116 + 1.893872 * x) / (1.0 + 1.047988 * x); c = (y - x / y) / 2.0; cl = 0.0; for (n = 50; c != cl && n--;) { y = y - c; cl = c; c = (y - x / y) / 2.0; } return y; } /* atan(x) Return arctangent in radians, range -pi/2 to pi/2 */ static double atan(x) double x; { int sign, l, y; double a, b, z; x = (((sign = (x < 0.0)) != 0) ? -x : x); l = 0; if (x >= 4.0) { l = -1; x = 1.0 / x; y = 0; goto atl; } else { if (x < 0.25) { y = 0; goto atl; } } y = aint(x / 0.5); z = y * 0.5; x = (x - z) / (x * z + 1); atl: z = x * x; b = ((((893025.0 * z + 49116375.0) * z + 425675250.0) * z + 1277025750.0) * z + 1550674125.0) * z + 654729075.0; a = (((13852575.0 * z + 216602100.0) * z + 891080190.0) * z + 1332431100.0) * z + 654729075.0; a = (a / b) * x + atanc[y]; if (l) a=piover2 - a; return sign ? -a : a; } /* atan2(y,x) Return arctangent in radians of y/x, range -pi to pi */ static double atan2(y, x) double y, x; { double temp; if (x == 0.0) { if (y == 0.0) /* Special case: atan2(0,0) = 0 */ return 0.0; else if (y > 0) return piover2; else return -piover2; } temp = atan(y / x); if (x < 0.0) { if (y >= 0.0) temp += pic; else temp -= pic; } return temp; } /* asin(x) Return arcsine in radians of x */ static double asin(x) double x; { if (fabs(x)>1.0) { fprintf(stderr, "\nInverse trig functions lose much of their gloss when"); fprintf(stderr, "\ntheir arguments are greater than 1, such as the"); fprintf(stderr, "\nvalue %g you passed.\n", x); exit(1); } return atan2(x, sqrt(1 - x * x)); } #endif /* Calculate passage through surface If the variable PARAXIAL is true, the trace through the surface will be done using the paraxial approximations. Otherwise, the normal trigonometric trace will be done. This routine takes the following inputs: RADIUS_OF_CURVATURE Radius of curvature of surface being crossed. If 0, surface is plane. OBJECT_DISTANCE Distance of object focus from lens vertex. If 0, incoming rays are parallel and the following must be specified: RAY_HEIGHT Height of ray from axis. Only relevant if OBJECT.DISTANCE == 0 AXIS_SLOPE_ANGLE Angle incoming ray makes with axis at intercept FROM_INDEX Refractive index of medium being left TO_INDEX Refractive index of medium being entered. The outputs are the following variables: OBJECT_DISTANCE Distance from vertex to object focus after refraction. AXIS_SLOPE_ANGLE Angle incoming ray makes with axis at intercept after refraction. */ static void transit_surface() { double iang, /* Incidence angle */ rang, /* Refraction angle */ iang_sin, /* Incidence angle sin */ rang_sin, /* Refraction angle sin */ old_axis_slope_angle, sagitta; if (paraxial) { if (radius_of_curvature != 0.0) { if (object_distance == 0.0) { axis_slope_angle = 0.0; iang_sin = ray_height / radius_of_curvature; } else iang_sin = ((object_distance - radius_of_curvature) / radius_of_curvature) * axis_slope_angle; rang_sin = (from_index / to_index) * iang_sin; old_axis_slope_angle = axis_slope_angle; axis_slope_angle = axis_slope_angle + iang_sin - rang_sin; if (object_distance != 0.0) ray_height = object_distance * old_axis_slope_angle; object_distance = ray_height / axis_slope_angle; return; } object_distance = object_distance * (to_index / from_index); axis_slope_angle = axis_slope_angle * (from_index / to_index); return; } if (radius_of_curvature != 0.0) { if (object_distance == 0.0) { axis_slope_angle = 0.0; iang_sin = ray_height / radius_of_curvature; } else { iang_sin = ((object_distance - radius_of_curvature) / radius_of_curvature) * sin(axis_slope_angle); } iang = asin(iang_sin); rang_sin = (from_index / to_index) * iang_sin; old_axis_slope_angle = axis_slope_angle; axis_slope_angle = axis_slope_angle + iang - asin(rang_sin); sagitta = sin((old_axis_slope_angle + iang) / 2.0); sagitta = 2.0 * radius_of_curvature*sagitta*sagitta; object_distance = ((radius_of_curvature * sin( old_axis_slope_angle + iang)) * cot(axis_slope_angle)) + sagitta; return; } rang = -asin((from_index / to_index) * sin(axis_slope_angle)); object_distance = object_distance * ((to_index * cos(-rang)) / (from_index * cos(axis_slope_angle))); axis_slope_angle = -rang; } /* Perform ray trace in specific spectral line */ static void trace_line(line, ray_h) int line; double ray_h; { int i; object_distance = 0.0; ray_height = ray_h; from_index = 1.0; for (i = 1; i <= current_surfaces; i++) { radius_of_curvature = s[i][1]; to_index = s[i][2]; if (to_index > 1.0) to_index = to_index + ((spectral_line[4] - spectral_line[line]) / (spectral_line[3] - spectral_line[6])) * ((s[i][2] - 1.0) / s[i][3]); transit_surface(); from_index = to_index; if (i < current_surfaces) object_distance = object_distance - s[i][4]; } } /* Initialise when called the first time */ int main(argc, argv) int argc; char *argv[]; { int i, j, k, errors; double od_fline, od_cline; #ifdef ACCURACY long passes; #endif spectral_line[1] = 7621.0; /* A */ spectral_line[2] = 6869.955; /* B */ spectral_line[3] = 6562.816; /* C */ spectral_line[4] = 5895.944; /* D */ spectral_line[5] = 5269.557; /* E */ spectral_line[6] = 4861.344; /* F */ spectral_line[7] = 4340.477; /* G'*/ spectral_line[8] = 3968.494; /* H */ /* Process the number of iterations argument, if one is supplied. */ if (argc > 1) { niter = atoi(argv[1]); if (*argv[1] == '-' || niter < 1) { printf("This is John Walker's floating point accuracy and\n"); printf("performance benchmark program. You call it with\n"); printf("\nfbench
\n\n"); printf("where
is the number of iterations\n"); printf("to be executed. Archival timings should be made\n"); printf("with the iteration count set so that roughly five\n"); printf("minutes of execution is timed.\n"); exit(0); } } /* Load test case into working array */ clear_aperture = 4.0; current_surfaces = 4; for (i = 0; i < current_surfaces; i++) for (j = 0; j < 4; j++) s[i + 1][j + 1] = testcase[i][j]; #ifdef ACCURACY printf("Beginning execution of floating point accuracy test...\n"); passes = 0; #else printf("Ready to begin John Walker's floating point accuracy\n"); printf("and performance benchmark. %d iterations will be made.\n\n", niter); printf("\nMeasured run time in seconds should be divided by %.f\n", niter / 1000.0); printf("to normalise for reporting results. For archival results,\n"); printf("adjust iteration count so the benchmark runs about five minutes.\n\n"); //printf("Press return to begin benchmark:"); //gets(tbfr); #endif /* Perform ray trace the specified number of times. */ #ifdef ACCURACY while (TRUE) { passes++; if ((passes % 100L) == 0) { printf("Pass %ld.\n", passes); } #else for (itercount = 0; itercount < niter; itercount++) { #endif for (paraxial = 0; paraxial <= 1; paraxial++) { /* Do main trace in D light */ trace_line(4, clear_aperture / 2.0); od_sa[paraxial][0] = object_distance; od_sa[paraxial][1] = axis_slope_angle; } paraxial = FALSE; /* Trace marginal ray in C */ trace_line(3, clear_aperture / 2.0); od_cline = object_distance; /* Trace marginal ray in F */ trace_line(6, clear_aperture / 2.0); od_fline = object_distance; aberr_lspher = od_sa[1][0] - od_sa[0][0]; aberr_osc = 1.0 - (od_sa[1][0] * od_sa[1][1]) / (sin(od_sa[0][1]) * od_sa[0][0]); aberr_lchrom = od_fline - od_cline; max_lspher = sin(od_sa[0][1]); /* D light */ max_lspher = 0.0000926 / (max_lspher * max_lspher); max_osc = 0.0025; max_lchrom = max_lspher; #ifndef ACCURACY } //printf("Stop the timer:\007"); //gets(tbfr); #endif /* Now evaluate the accuracy of the results from the last ray trace */ sprintf(outarr[0], "%15s %21.11f %14.11f", "Marginal ray", od_sa[0][0], od_sa[0][1]); sprintf(outarr[1], "%15s %21.11f %14.11f", "Paraxial ray", od_sa[1][0], od_sa[1][1]); sprintf(outarr[2], "Longitudinal spherical aberration: %16.11f", aberr_lspher); sprintf(outarr[3], " (Maximum permissible): %16.11f", max_lspher); sprintf(outarr[4], "Offense against sine condition (coma): %16.11f", aberr_osc); sprintf(outarr[5], " (Maximum permissible): %16.11f", max_osc); sprintf(outarr[6], "Axial chromatic aberration: %16.11f", aberr_lchrom); sprintf(outarr[7], " (Maximum permissible): %16.11f", max_lchrom); /* Now compare the edited results with the master values from reference executions of this program. */ errors = 0; for (i = 0; i < 8; i++) { if (strcmp(outarr[i], refarr[i]) != 0) { #ifdef ACCURACY printf("\nError in pass %ld for results on line %d...\n", passes, i + 1); #else printf("\nError in results on line %d...\n", i + 1); #endif printf("Expected: \"%s\"\n", refarr[i]); printf("Received: \"%s\"\n", outarr[i]); printf("(Errors) "); k = strlen(refarr[i]); for (j = 0; j < k; j++) { printf("%c", refarr[i][j] == outarr[i][j] ? ' ' : '^'); if (refarr[i][j] != outarr[i][j]) errors++; } printf("\n"); } } #ifdef ACCURACY } #else if (errors > 0) { printf("\n%d error%s in results. This is VERY SERIOUS.\n", errors, errors > 1 ? "s" : ""); } else printf("\nNo errors in results.\n"); #endif return 0; }
C++程序
|
873行
|
25.26 KB
原始内容
高亮显示
复制内容
×
已收藏
收藏成功,您可以在我收藏的代码页面中查看,其地址为:
https://www.androidos.net.cn/my/collect/code
。
登录后可以享受更多权益
您还没有登录,登录后您可以:
收藏Android系统代码
收藏喜欢的文章
多个平台共享账号
去登录
首次使用?从这里
注册