// These #defines attempt to ensure that posix_memalign() is declared, and
// so no spurious warning is given about using it.
// Advertise compliance of the code to the XSI (a POSIX superset that
// defines what a system must be like to be called "UNIX")
#undef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
// Advertise compliance to POSIX
#undef _POSIX_C_SOURCE
#define _POSIX_C_SOURCE 200112L
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include "tests/malloc.h"
#include <errno.h>
int main ( void )
{
# if defined(VGO_darwin)
// Mac OS X has neither memalign() nor posix_memalign(); do nothing.
// Still true for 10.6 / 10.7 ?
# else
// Nb: assuming VG_MIN_MALLOC_SZB is 8 or more...
int* p;
int* piece;
int res;
assert(sizeof(long int) == sizeof(void*));
// Check behaviour of memalign/free for big alignment.
// In particular, the below aims at checking that a
// superblock with a big size is not marked as reclaimable
// if the superblock is used to provide a big aligned block
// (see bug 250101, comment #14).
// Valgrind m_mallocfree.c will allocate a big superblock for the memalign
// call and will split it in two. This split superblock was
// wrongly marked as reclaimable, which was then causing
// assert failures (as reclaimable blocks cannot be split).
p = memalign(1024 * 1024, 4 * 1024 * 1024 + 1); assert(0 == (long)p % (1024 * 1024));
// We allocate (and then free) a piece of memory smaller than
// the hole created in the big superblock.
// If the superblock is marked as reclaimable, the below free(s) will cause
// an assert. Note that the test has to be run with a --free-list-vol
// parameter smaller than the released blocks size to ensure the free is directly
// executed (otherwise memcheck does not really release the memory and so
// the bug is not properly tested).
piece = malloc(1024 * 1000); assert (piece);
free (piece);
free (p);
// Same as above but do the free in the reverse order.
p = memalign(1024 * 1024, 4 * 1024 * 1024 + 1); assert(0 == (long)p % (1024 * 1024));
piece = malloc(1024 * 100); assert (piece);
free (p);
free (piece);
p = memalign(0, 100); assert(0 == (long)p % 8);
p = memalign(1, 100); assert(0 == (long)p % 8);
p = memalign(2, 100); assert(0 == (long)p % 8);
p = memalign(3, 100); assert(0 == (long)p % 8);
p = memalign(4, 100); assert(0 == (long)p % 8);
p = memalign(5, 100); assert(0 == (long)p % 8);
p = memalign(7, 100); assert(0 == (long)p % 8);
p = memalign(8, 100); assert(0 == (long)p % 8);
p = memalign(9, 100); assert(0 == (long)p % 16);
p = memalign(31, 100); assert(0 == (long)p % 32);
p = memalign(32, 100); assert(0 == (long)p % 32);
p = memalign(33, 100); assert(0 == (long)p % 64);
p = memalign(4095, 100); assert(0 == (long)p % 4096);
p = memalign(4096, 100); assert(0 == (long)p % 4096);
p = memalign(4097, 100); assert(0 == (long)p % 8192);
p = memalign(4 * 1024 * 1024, 100); assert(0 == (long)p % (4 * 1024 * 1024));
p = memalign(16 * 1024 * 1024, 100); assert(0 == (long)p % (16 * 1024 * 1024));
# define PM(a,b,c) posix_memalign((void**)a, b, c)
res = PM(&p, -1,100); assert(EINVAL == res);
res = PM(&p, 0, 100); assert(0 == res && 0 == (long)p % 8);
res = PM(&p, 1, 100); assert(EINVAL == res);
res = PM(&p, 2, 100); assert(EINVAL == res);
res = PM(&p, 3, 100); assert(EINVAL == res);
res = PM(&p, sizeof(void*), 100);
assert(0 == res && 0 == (long)p % sizeof(void*));
res = PM(&p, 31, 100); assert(EINVAL == res);
res = PM(&p, 32, 100); assert(0 == res && 0 == (long)p % 32);
res = PM(&p, 33, 100); assert(EINVAL == res);
res = PM(&p, 4095, 100); assert(EINVAL == res);
res = PM(&p, 4096, 100); assert(0 == res && 0 == (long)p % 4096);
res = PM(&p, 4097, 100); assert(EINVAL == res);
res = PM(&p, 4 * 1024 * 1024, 100); assert(0 == res
&& 0 == (long)p % (4 * 1024 * 1024));
res = PM(&p, 16 * 1024 * 1024, 100); assert(0 == res
&& 0 == (long)p % (16 * 1024 * 1024));
# endif
return 0;
}