#define _GNU_SOURCE
#include <errno.h>
#include <string.h>
#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/syscall.h>
#include <sched.h>
#include <signal.h>
static int loops = 15; // each thread+main will do this amount of loop
static int sleepms = 1000; // in each loop, will sleep "sleepms" milliseconds
static int burn = 0; // after each sleep, will burn cpu in a tight 'burn' loop
static void setup_sigusr_handler(void); // sigusr1 and 2 sigaction setup.
static pid_t gettid()
{
#ifdef __NR_gettid
return syscall(__NR_gettid);
#else
return getpid();
#endif
}
// will be invoked from gdb.
static void whoami(char *msg) __attribute__((unused));
static void whoami(char *msg)
{
fprintf(stderr, "pid %ld Thread %ld %s\n", (long) getpid(), (long) gettid(),
msg);
fflush(stderr);
}
static void do_burn ()
{
int i;
int loopnr = 0;
// one single line for the below, to ensure interrupt on this line.
for (i = 0; i < burn; i++) loopnr++;
}
static int thread_ready = 0;
static pthread_cond_t ready = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t ready_mutex = PTHREAD_MUTEX_INITIALIZER;
static void signal_ready (void)
{
int rc;
rc = pthread_mutex_lock(&ready_mutex);
if (rc != 0)
fprintf(stderr, "signal_ready lock error %d_n", rc);
thread_ready = 1;
rc = pthread_cond_signal(&ready);
if (rc != 0)
fprintf(stderr, "signal_ready signal error %d_n", rc);
rc = pthread_mutex_unlock(&ready_mutex);
if (rc != 0)
fprintf(stderr, "signal_ready unlock error %d_n", rc);
}
struct spec {
char *name;
int sleep;
int burn;
int t;
};
static struct timeval t[4];
static int nr_sleeper_or_burner = 0;
static volatile int report_finished = 1;
// set to 0 to have no finish msg (as order is non-deterministic)
static void *sleeper_or_burner(void *v)
{
int i = 0;
struct spec* s = (struct spec*)v;
int ret;
fprintf(stderr, "%s ready to sleep and/or burn\n", s->name);
fflush (stderr);
signal_ready();
nr_sleeper_or_burner++;
for (i = 0; i < loops; i++) {
if (sleepms > 0 && s->sleep) {
t[s->t].tv_sec = sleepms / 1000;
t[s->t].tv_usec = (sleepms % 1000) * 1000;
ret = select (0, NULL, NULL, NULL, &t[s->t]);
/* We only expect a timeout result or EINTR from the above. */
if (ret != 0 && errno != EINTR)
perror("unexpected result from select");
}
if (burn > 0 && s->burn)
do_burn();
}
if (report_finished) {
fprintf(stderr, "%s finished to sleep and/or burn\n", s->name);
fflush (stderr);
}
return NULL;
}
// wait till a thread signals it is ready
static void wait_ready(void)
{
int rc;
rc = pthread_mutex_lock(&ready_mutex);
if (rc != 0)
fprintf(stderr, "wait_ready lock error %d_n", rc);
while (! thread_ready && rc == 0) {
rc = pthread_cond_wait(&ready, &ready_mutex);
if (rc != 0)
fprintf(stderr, "wait_ready wait error %d_n", rc);
}
thread_ready = 0;
rc = pthread_mutex_unlock(&ready_mutex);
if (rc != 0)
fprintf(stderr, "wait_ready unlock error %d_n", rc);
}
// We will lock ourselves on one single cpu.
// This bypasses the unfairness of the Valgrind scheduler
// when a multi-cpu machine has enough cpu to run all the
// threads wanting to burn cpu.
static void setaffinity(void)
{
#ifdef VGO_linux
cpu_set_t single_cpu;
CPU_ZERO(&single_cpu);
CPU_SET(1, &single_cpu);
(void) sched_setaffinity(0, sizeof(single_cpu), &single_cpu);
#endif
// GDBTD: equivalent for Darwin ?
}
int main (int argc, char *argv[])
{
char *threads_spec;
pthread_t ebbr, egll, zzzz;
struct spec b, l, p, m;
char *some_mem __attribute__((unused)) = malloc(100);
if (argc > 5 && atoi(argv[5])) setaffinity();
setup_sigusr_handler();
if (argc > 1)
loops = atoi(argv[1]);
if (argc > 2)
sleepms = atoi(argv[2]);
if (argc > 3)
burn = atoll(argv[3]);
if (argc > 4)
threads_spec = argv[4];
else
threads_spec = "BSBSBSBS";
fprintf(stderr, "loops/sleep_ms/burn/threads_spec/affinity: %d %d %d %s %d\n",
loops, sleepms, burn, threads_spec, argc > 5 && atoi(argv[5]));
fflush(stderr);
b.name = "Brussels";
b.burn = *threads_spec++ == 'B';
b.sleep = *threads_spec++ == 'S';
b.t = -1;
if (b.burn || b.sleep) {
b.t = 1;
pthread_create(&ebbr, NULL, sleeper_or_burner, &b);
wait_ready();
}
l.name = "London";
l.burn = *threads_spec++ == 'B';
l.sleep = *threads_spec++ == 'S';
l.t = -1;
if (l.burn || l.sleep) {
l.t = 2;
pthread_create(&egll, NULL, sleeper_or_burner, &l);
wait_ready();
}
p.name = "Petaouchnok";
p.burn = *threads_spec++ == 'B';
p.sleep = *threads_spec++ == 'S';
p.t = -1;
if (p.burn || p.sleep) {
p.t = 3;
pthread_create(&zzzz, NULL, sleeper_or_burner, &p);
wait_ready();
}
m.name = "main";
m.burn = *threads_spec++ == 'B';
m.sleep = *threads_spec++ == 'S';
m.t = 0;
sleeper_or_burner(&m);
if (b.t != -1) pthread_join(ebbr, NULL);
if (l.t != -1) pthread_join(egll, NULL);
if (p.t != -1) pthread_join(zzzz, NULL);
return 0;
}
static int sigusr1_received = 0;
static void sigusr1_handler(int signr)
{
sigusr1_received++;
}
static void setup_sigusr_handler(void)
{
struct sigaction sa;
sa.sa_handler = sigusr1_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction (SIGUSR1, &sa, NULL) != 0)
perror("sigaction SIGUSR1");
sa.sa_handler = SIG_IGN;
if (sigaction (SIGUSR2, &sa, NULL) != 0)
perror("sigaction SIGUSR2");
}