/*--------------------------------------------------------------------*/
/*--- User-mode execve() for Mach-O executables m_ume_macho.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2005-2017 Apple Inc.
Greg Parker gparker@apple.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGO_darwin)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_aspacemgr.h" // various mapping fns
#include "pub_core_debuglog.h"
#include "pub_core_libcassert.h" // VG_(exit), vg_assert
#include "pub_core_libcbase.h" // VG_(memcmp), etc
#include "pub_core_libcfile.h" // VG_(open) et al
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_machine.h" // VG_ELF_CLASS (XXX: which should be moved)
#include "pub_core_mallocfree.h" // VG_(malloc), VG_(free)
#include "pub_core_syscall.h" // VG_(strerror)
#include "pub_core_ume.h" // self
#include "priv_ume.h"
#include <mach/mach.h>
#include <mach-o/dyld.h>
#include <mach-o/fat.h>
#include <mach-o/loader.h>
#if VG_WORDSIZE == 4
#define MAGIC MH_MAGIC
#define MACH_HEADER mach_header
#define LC_SEGMENT_CMD LC_SEGMENT
#define SEGMENT_COMMAND segment_command
#define SECTION section
#else
#define MAGIC MH_MAGIC_64
#define MACH_HEADER mach_header_64
#define LC_SEGMENT_CMD LC_SEGMENT_64
#define SEGMENT_COMMAND segment_command_64
#define SECTION section_64
#endif
typedef struct load_info_t {
vki_uint8_t *stack_start; // allocated thread stack (hot end)
vki_uint8_t *stack_end; // allocated thread stack (cold end)
vki_uint8_t *text; // start of text segment (i.e. the mach headers)
vki_uint8_t *entry; // static entry point
vki_uint8_t *linker_entry; // dylinker entry point
Addr linker_offset; // dylinker text offset
vki_size_t max_addr; // biggest address reached while loading segments
} load_info_t;
static void print(const HChar *str)
{
VG_(printf)("%s", str);
}
static void check_mmap(SysRes res, Addr base, SizeT len, const HChar* who)
{
if (sr_isError(res)) {
VG_(printf)("valgrind: mmap-FIXED(0x%llx, %lld) failed in UME (%s) "
"with error %lu (%s).\n",
(ULong)base, (Long)len, who,
sr_Err(res), VG_(strerror)(sr_Err(res)) );
VG_(exit)(1);
}
}
#if DARWIN_VERS >= DARWIN_10_8
static void check_mmap_float(SysRes res, SizeT len, const HChar* who)
{
if (sr_isError(res)) {
VG_(printf)("valgrind: mmap-FLOAT(size=%lld) failed in UME (%s) "
"with error %lu (%s).\n",
(Long)len, who,
sr_Err(res), VG_(strerror)(sr_Err(res)) );
VG_(exit)(1);
}
}
#endif
static int
load_thin_file(int fd, vki_off_t offset, vki_off_t size, unsigned long filetype,
const HChar *filename, load_info_t *out_info);
static int
load_fat_file(int fd, vki_off_t offset, vki_off_t size, unsigned long filetype,
const HChar *filename, load_info_t *out_info);
static int
load_mach_file(int fd, vki_off_t offset, vki_off_t size, unsigned long filetype,
const HChar *filename, load_info_t *out_info);
/* Open and map a dylinker file.
Returns 0 on success, -1 on any failure.
filename must be an absolute path.
The dylinker's entry point is returned in out_info->linker_entry.
*/
static int
open_dylinker(const HChar *filename, load_info_t *out_info)
{
struct vg_stat sb;
vki_size_t filesize;
SysRes res;
int fd;
int err;
if (filename[0] != '/') {
print("bad executable (dylinker name is not an absolute path)\n");
return -1;
}
res = VG_(open)(filename, VKI_O_RDONLY, 0);
fd = sr_Res(res);
if (sr_isError(res)) {
VG_(printf)("couldn't open dylinker: %s\n", filename);
return -1;
}
err = VG_(fstat)(fd, &sb);
if (err) {
VG_(printf)("couldn't stat dylinker: %s\n", filename);
VG_(close)(fd);
return -1;
}
filesize = sb.size;
err = load_mach_file(fd, 0, filesize, MH_DYLINKER, filename, out_info);
if (err) {
VG_(printf)("...while loading dylinker: %s\n", filename);
}
VG_(close)(fd);
return err;
}
/*
Process an LC_SEGMENT command, mapping it into memory if appropriate.
fd[offset..size) is a Mach-O thin file.
Returns 0 on success, -1 on any failure.
If this segment contains the executable's Mach headers, their
loaded address is returned in out_info->text.
If this segment is a __UNIXSTACK, its start address is returned in
out_info->stack_start.
*/
static int
load_segment(int fd, vki_off_t offset, vki_off_t size,
struct SEGMENT_COMMAND *segcmd, const HChar *filename,
load_info_t *out_info)
{
SysRes res;
Addr addr;
vki_size_t filesize; // page-aligned
vki_size_t vmsize; // page-aligned
vki_size_t vmend; // page-aligned
unsigned int prot;
Addr slided_addr = segcmd->vmaddr + out_info->linker_offset;
// GrP fixme mark __UNIXSTACK as SF_STACK
// Don't honour the client's request to map PAGEZERO. Why not?
// Because when the kernel loaded the valgrind tool executable,
// it will have mapped pagezero itself. So further attempts
// to map it when loading the client are guaranteed to fail.
#if VG_WORDSIZE == 4
if (segcmd->vmaddr == 0 && 0 == VG_(strcmp)(segcmd->segname, SEG_PAGEZERO)) {
if (segcmd->vmsize != 0x1000) {
print("bad executable (__PAGEZERO is not 4 KB)\n");
return -1;
}
return 0;
}
#endif
#if VG_WORDSIZE == 8
if (segcmd->vmaddr == 0 && 0 == VG_(strcmp)(segcmd->segname, SEG_PAGEZERO)) {
if (segcmd->vmsize != 0x100000000) {
print("bad executable (__PAGEZERO is not 4 GB)\n");
return -1;
}
return 0;
}
#endif
// Record the segment containing the Mach headers themselves
if (segcmd->fileoff == 0 && segcmd->filesize != 0) {
out_info->text = (vki_uint8_t *)slided_addr;
}
// Record the __UNIXSTACK start
if (0 == VG_(strcmp)(segcmd->segname, SEG_UNIXSTACK)) {
out_info->stack_start = (vki_uint8_t *)slided_addr;
}
// Sanity-check the segment
if (segcmd->fileoff + segcmd->filesize > size) {
print("bad executable (invalid segment command)\n");
return -1;
}
vmend = VG_PGROUNDUP(slided_addr + segcmd->vmsize);
if (vmend > out_info->max_addr) {
out_info->max_addr = vmend;
}
if (segcmd->vmsize == 0) {
return 0; // nothing to map - ok
}
// Get desired memory protection
// GrP fixme need maxprot too
prot = (((segcmd->initprot & VM_PROT_READ) ? VKI_PROT_READ : 0) |
((segcmd->initprot & VM_PROT_WRITE) ? VKI_PROT_WRITE : 0) |
((segcmd->initprot & VM_PROT_EXECUTE) ? VKI_PROT_EXEC : 0));
// Map the segment
filesize = VG_PGROUNDUP(segcmd->filesize);
vmsize = VG_PGROUNDUP(segcmd->vmsize);
if (filesize > 0) {
addr = slided_addr;
VG_(debugLog)(2, "ume", "mmap fixed (file) (%#lx, %lu)\n", addr, filesize);
res = VG_(am_mmap_named_file_fixed_client)(addr, filesize, prot, fd,
offset + segcmd->fileoff,
filename);
check_mmap(res, addr, filesize, "load_segment1");
}
// Zero-fill the remainder of the segment, if any
if (segcmd->filesize != filesize) {
// non-page-aligned part
// GrP fixme kernel doesn't do this?
//bzero(segcmd->filesize+(vki_uint8_t *)addr, filesize-segcmd->filesize);
}
if (filesize != vmsize) {
// page-aligned part
SizeT length = vmsize - filesize;
addr = (Addr)(filesize + slided_addr);
VG_(debugLog)(2, "ume", "mmap fixed (anon) (%#lx, %lu)\n", addr, length);
res = VG_(am_mmap_anon_fixed_client)(addr, length, prot);
check_mmap(res, addr, length, "load_segment2");
}
return 0;
}
/*
Parse a LC_THREAD or LC_UNIXTHREAD command.
Return 0 on success, -1 on any failure.
If the thread is a LC_UNIXTHREAD, the stack address is returned in out_info->stack_end.
If the executable requested a non-default stack address,
*customstack is set to TRUE. The thread's entry point is returned in out_info->entry.
The stack itself (if any) is not mapped.
Other custom register settings are silently ignored (GrP fixme).
*/
static int
load_genericthread(struct thread_command *threadcmd, int type,
int *customstack, load_info_t *out_info)
{
unsigned int flavor;
unsigned int count;
unsigned int *p;
unsigned int left;
p = (unsigned int *)(threadcmd + 1);
left = (threadcmd->cmdsize - sizeof(struct thread_command)) / sizeof(*p);
while (left > 0) {
if (left < 2) {
print("bad executable (invalid thread command)\n");
return -1;
}
flavor = *p++; left--;
count = *p++; left--;
if (left < count) {
print("bad executable (invalid thread command 2)\n");
return -1;
}
#if defined(VGA_x86)
if (flavor == i386_THREAD_STATE && count == i386_THREAD_STATE_COUNT) {
i386_thread_state_t *state = (i386_thread_state_t *)p;
out_info->entry = (vki_uint8_t *)state->__eip;
if (type == LC_UNIXTHREAD) {
out_info->stack_end =
(vki_uint8_t *)(state->__esp ? state->__esp : VKI_USRSTACK);
vg_assert(VG_IS_PAGE_ALIGNED(out_info->stack_end));
out_info->stack_end--;
}
if (customstack) *customstack = state->__esp;
return 0;
}
#elif defined(VGA_amd64)
if (flavor == x86_THREAD_STATE64 && count == x86_THREAD_STATE64_COUNT){
x86_thread_state64_t *state = (x86_thread_state64_t *)p;
out_info->entry = (vki_uint8_t *)state->__rip;
if (type == LC_UNIXTHREAD) {
out_info->stack_end =
(vki_uint8_t *)(state->__rsp ? state->__rsp : VKI_USRSTACK64);
vg_assert(VG_IS_PAGE_ALIGNED(out_info->stack_end));
out_info->stack_end--;
}
if (customstack) *customstack = state->__rsp;
return 0;
}
#else
# error unknown platform
#endif
p += count;
left -= count;
}
print("bad executable (no arch-compatible thread state)\n");
return -1;
}
/* Returns the main stack size on this platform,
using getrlimit or a fixed size.
GrP fixme 64-bit? */
static vki_size_t default_stack_size(void)
{
struct vki_rlimit lim;
int err = VG_(getrlimit)(VKI_RLIMIT_STACK, &lim);
if (err) return 8*1024*1024; // 8 MB
else return lim.rlim_cur;
}
/*
Processes a LC_UNIXTHREAD command.
Returns 0 on success, -1 on any failure.
The stack is mapped in and returned in out_info->stack_start and out_info->stack_end.
The thread's entry point is returned in out_info->entry.
*/
static int
load_unixthread(struct thread_command *threadcmd, load_info_t *out_info)
{
int err;
int customstack;
err = load_genericthread(threadcmd, LC_UNIXTHREAD, &customstack, out_info);
if (err) return -1;
if (!out_info->stack_end) {
print("bad executable (no thread stack)\n");
return -1;
}
if (!customstack) {
// Map the stack
vki_size_t stacksize = VG_PGROUNDUP(default_stack_size());
vm_address_t stackbase = VG_PGROUNDDN(out_info->stack_end+1-stacksize);
SysRes res;
res = VG_(am_mmap_anon_fixed_client)(stackbase, stacksize, VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC);
check_mmap(res, stackbase, stacksize, "load_unixthread1");
out_info->stack_start = (vki_uint8_t *)stackbase;
} else {
// custom stack - mapped via __UNIXTHREAD segment
}
return 0;
}
/* Allocates a stack mapping at a V-chosen address. Pertains to
LC_MAIN commands, which seem to have appeared in OSX 10.8.
This is a really nasty hack -- allocates 64M+stack size, then
deallocates the 64M, to guarantee that the stack is at least 64M
above zero. */
#if DARWIN_VERS >= DARWIN_10_8
static int
handle_lcmain ( vki_size_t requested_size,
load_info_t *out_info )
{
if (requested_size == 0) {
requested_size = default_stack_size();
}
requested_size = VG_PGROUNDUP(requested_size);
const vki_size_t HACK = 64 * 1024 * 1024;
requested_size += HACK;
SysRes res = VG_(am_mmap_anon_float_client)(requested_size,
VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC);
check_mmap_float(res, requested_size, "handle_lcmain");
vg_assert(!sr_isError(res));
out_info->stack_start = (vki_uint8_t*)sr_Res(res);
out_info->stack_end = out_info->stack_start + requested_size - 1;
Bool need_discard = False;
res = VG_(am_munmap_client)(&need_discard, (Addr)out_info->stack_start, HACK);
if (sr_isError(res)) return -1;
vg_assert(!need_discard); // True == wtf?
out_info->stack_start += HACK;
return 0;
}
#endif /* DARWIN_VERS >= DARWIN_10_8 */
/*
Processes an LC_LOAD_DYLINKER command.
Returns 0 on success, -1 on any error.
The linker itself is mapped into memory.
The linker's entry point is returned in out_info->linker_entry.
*/
static int
load_dylinker(struct dylinker_command *dycmd, load_info_t *out_info)
{
const HChar *name;
int ret;
load_info_t linker_info;
linker_info.stack_start = NULL;
linker_info.stack_end = NULL;
linker_info.text = NULL;
linker_info.entry = NULL;
linker_info.linker_entry = NULL;
linker_info.linker_offset = 0;
linker_info.max_addr = out_info->max_addr;
if (dycmd->name.offset >= dycmd->cmdsize) {
print("bad executable (invalid dylinker command)\n");
return -1;
}
name = dycmd->name.offset + (HChar *)dycmd;
// GrP fixme assumes name is terminated somewhere
ret = open_dylinker(name, &linker_info);
if (linker_info.entry) {
out_info->linker_entry = linker_info.entry + linker_info.linker_offset;
}
out_info->max_addr = linker_info.max_addr;
return ret;
}
/*
Process an LC_THREAD command.
Returns 0 on success, -1 on any failure.
The thread's entry point is returned in out_info->entry.
*/
static int
load_thread(struct thread_command *threadcmd, load_info_t *out_info)
{
int customstack;
int err;
err = load_genericthread(threadcmd, LC_THREAD, &customstack, out_info);
if (err) return -1;
if (customstack) {
print("bad executable (stackless thread has stack)\n");
return -1;
}
return 0;
}
/*
Loads a Mach-O executable into memory, along with any threads,
stacks, and dylinker.
Returns 0 on success, -1 on any failure.
fd[offset..offset+size) is a Mach-O thin file.
filetype is MH_EXECUTE or MH_DYLINKER.
The mapped but empty stack is returned in out_info->stack_start.
The executable's Mach headers are returned in out_info->text.
The executable's entry point is returned in out_info->entry.
The dylinker's entry point (if any) is returned in out_info->linker_entry.
The dylinker's offset (macOS 10.12) is returned in out_info->linker_offset.
GrP fixme need to return whether dylinker was found - stack layout is different
*/
static int
load_thin_file(int fd, vki_off_t offset, vki_off_t size, unsigned long filetype,
const HChar *filename, load_info_t *out_info)
{
VG_(debugLog)(1, "ume", "load_thin_file: begin: %s\n", filename);
struct MACH_HEADER mh;
vki_uint8_t *headers;
vki_uint8_t *headers_end;
struct load_command *lc;
struct load_command *lcend;
struct SEGMENT_COMMAND *segcmd;
struct thread_command *threadcmd;
struct dylinker_command *dycmd;
int err;
SysRes res;
vki_size_t len;
// Read Mach-O header
if (sizeof(mh) > size) {
print("bad executable (no Mach-O header)\n");
}
res = VG_(pread)(fd, &mh, sizeof(mh), offset);
if (sr_isError(res) || sr_Res(res) != sizeof(mh)) {
print("bad executable (no Mach-O header)\n");
return -1;
}
// Sanity-check the header itself
if (mh.magic != MAGIC) {
print("bad executable (no Mach-O magic)\n");
return -1;
}
if (mh.filetype != filetype) {
// expecting MH_EXECUTE or MH_DYLINKER
print("bad executable (wrong file type)\n");
return -1;
}
// Map all headers into memory
len = sizeof(mh) + mh.sizeofcmds;
if (len > size) {
print("bad executable (missing load commands)\n");
return -1;
}
headers = VG_(malloc)("ume.macho.headers", len);
res = VG_(pread)(fd, headers, len, offset);
if (sr_isError(res)) {
print("couldn't read load commands from executable\n");
return -1;
}
headers_end = headers + len;
// Map some segments into client memory:
// LC_SEGMENT (text, data, etc)
// UNIXSTACK (stack)
// LOAD_DYLINKER (dyld)
lcend = (struct load_command *)(headers + mh.sizeofcmds + sizeof(mh));
for (lc = (struct load_command *)(headers + sizeof(mh));
lc < lcend;
lc = (struct load_command *)(lc->cmdsize + (vki_uint8_t *)lc))
{
if ((vki_uint8_t *)lc < headers ||
lc->cmdsize+(vki_uint8_t *)lc > headers_end) {
print("bad executable (invalid load commands)\n");
return -1;
}
switch (lc->cmd) {
#if DARWIN_VERS >= DARWIN_10_8
case LC_MAIN: { /* New in 10.8 */
struct entry_point_command* epcmd
= (struct entry_point_command*)lc;
if (out_info->stack_start || out_info->stack_end) {
print("bad executable (multiple indications of stack)");
return -1;
}
err = handle_lcmain(epcmd->stacksize, out_info);
if (err) return -1;
VG_(debugLog)(2, "ume", "lc_main: created stack %p-%p\n",
out_info->stack_start, out_info->stack_end);
break;
}
# endif
case LC_SEGMENT_CMD:
if (lc->cmdsize < sizeof(struct SEGMENT_COMMAND)) {
print("bad executable (invalid load commands)\n");
return -1;
}
segcmd = (struct SEGMENT_COMMAND *)lc;
#if DARWIN_VERS >= DARWIN_10_12
/* dyld text address is relative instead of absolute in 10.12 */
if (filetype == MH_DYLINKER && segcmd->vmaddr == 0 && segcmd->fileoff == 0) {
out_info->linker_offset = out_info->max_addr;
}
# endif
err = load_segment(fd, offset, size, segcmd, filename, out_info);
if (err) return -1;
break;
case LC_UNIXTHREAD:
if (out_info->stack_end || out_info->entry) {
print("bad executable (multiple thread commands)\n");
return -1;
}
if (lc->cmdsize < sizeof(struct thread_command)) {
print("bad executable (invalid load commands)\n");
return -1;
}
threadcmd = (struct thread_command *)lc;
err = load_unixthread(threadcmd, out_info);
if (err) return -1;
break;
case LC_LOAD_DYLINKER:
if (filetype == MH_DYLINKER) {
print("bad executable (dylinker needs a dylinker)\n");
return -1;
}
if (out_info->linker_entry) {
print("bad executable (multiple dylinker commands)\n");
}
if (lc->cmdsize < sizeof(struct dylinker_command)) {
print("bad executable (invalid load commands)\n");
return -1;
}
dycmd = (struct dylinker_command *)lc;
err = load_dylinker(dycmd, out_info);
if (err) return -1;
break;
case LC_THREAD:
if (filetype == MH_EXECUTE) {
print("bad executable (stackless thread)\n");
return -1;
}
if (out_info->stack_end || out_info->entry) {
print("bad executable (multiple thread commands)\n");
return -1;
}
if (lc->cmdsize < sizeof(struct thread_command)) {
print("bad executable (invalid load commands)\n");
return -1;
}
threadcmd = (struct thread_command *)lc;
err = load_thread(threadcmd, out_info);
if (err) return -1;
break;
default:
break;
}
}
// Done with the headers
VG_(free)(headers);
if (filetype == MH_EXECUTE) {
// Verify the necessary pieces for an executable:
// a stack
// a text segment
// an entry point (static or linker)
if (!out_info->stack_end || !out_info->stack_start) {
VG_(printf)("bad executable %s (no stack)\n", filename);
return -1;
}
if (!out_info->text) {
print("bad executable (no text segment)\n");
return -1;
}
if (!out_info->entry && !out_info->linker_entry) {
print("bad executable (no entry point)\n");
return -1;
}
}
else if (filetype == MH_DYLINKER) {
// Verify the necessary pieces for a dylinker:
// an entry point
if (!out_info->entry) {
print("bad executable (no entry point)\n");
return -1;
}
}
VG_(debugLog)(1, "ume", "load_thin_file: success: %s\n", filename);
return 0;
}
/*
Load a fat Mach-O executable.
*/
static int
load_fat_file(int fd, vki_off_t offset, vki_off_t size, unsigned long filetype,
const HChar *filename, load_info_t *out_info)
{
struct fat_header fh;
vki_off_t arch_offset;
int i;
cpu_type_t good_arch;
SysRes res;
#if defined(VGA_ppc32)
good_arch = CPU_TYPE_POWERPC;
#elif defined(VGA_ppc64be)
good_arch = CPU_TYPE_POWERPC64BE;
#elif defined(VGA_ppc64le)
good_arch = CPU_TYPE_POWERPC64LE;
#elif defined(VGA_x86)
good_arch = CPU_TYPE_I386;
#elif defined(VGA_amd64)
good_arch = CPU_TYPE_X86_64;
#else
# error unknown architecture
#endif
// Read fat header
// All fat contents are BIG-ENDIAN
if (size < sizeof(fh)) {
print("bad executable (bad fat header)\n");
return -1;
}
res = VG_(pread)(fd, &fh, sizeof(fh), offset);
if (sr_isError(res) || sr_Res(res) != sizeof(fh)) {
print("bad executable (bad fat header)\n");
return -1;
}
// Scan arch headers looking for a good one
arch_offset = offset + sizeof(fh);
fh.nfat_arch = VG_(ntohl)(fh.nfat_arch);
for (i = 0; i < fh.nfat_arch; i++) {
struct fat_arch arch;
if (arch_offset + sizeof(arch) > size) {
print("bad executable (corrupt fat archs)\n");
return -1;
}
res = VG_(pread)(fd, &arch, sizeof(arch), arch_offset);
arch_offset += sizeof(arch);
if (sr_isError(res) || sr_Res(res) != sizeof(arch)) {
VG_(printf)("bad executable (corrupt fat arch) %x %llu\n",
arch.cputype, (ULong)arch_offset);
return -1;
}
arch.cputype = VG_(ntohl)(arch.cputype);
arch.cpusubtype = VG_(ntohl)(arch.cpusubtype);
arch.offset = VG_(ntohl)(arch.offset);
arch.size = VG_(ntohl)(arch.size);
arch.align = VG_(ntohl)(arch.align);
if (arch.cputype == good_arch) {
// use this arch
if (arch.offset > size || arch.offset + arch.size > size) {
print("bad executable (corrupt fat arch 2)\n");
return -1;
}
return load_mach_file(fd, offset+arch.offset, arch.size, filetype, filename, out_info);
}
}
print("bad executable (can't run on this machine)\n");
return -1;
}
/*
Load a Mach-O executable or dylinker.
The file may be fat or thin.
*/
static int
load_mach_file(int fd, vki_off_t offset, vki_off_t size, unsigned long filetype,
const HChar *filename, load_info_t *out_info)
{
vki_uint32_t magic;
SysRes res;
if (size < sizeof(magic)) {
print("bad executable (no Mach-O magic)\n");
return -1;
}
res = VG_(pread)(fd, &magic, sizeof(magic), offset);
if (sr_isError(res) || sr_Res(res) != sizeof(magic)) {
print("bad executable (no Mach-O magic)\n");
return -1;
}
if (magic == MAGIC) {
// thin
return load_thin_file(fd, offset, size, filetype, filename, out_info);
} else if (magic == VG_(htonl)(FAT_MAGIC)) {
// fat
return load_fat_file(fd, offset, size, filetype, filename, out_info);
} else {
// huh?
print("bad executable (bad Mach-O magic)\n");
return -1;
}
}
Bool VG_(match_macho)(const void *hdr, SizeT len)
{
const vki_uint32_t *magic = hdr;
// GrP fixme check more carefully for matching fat arch?
return (len >= VKI_PAGE_SIZE &&
(*magic == MAGIC || *magic == VG_(ntohl)(FAT_MAGIC)))
? True : False;
}
Int VG_(load_macho)(Int fd, const HChar *name, ExeInfo *info)
{
int err;
struct vg_stat sb;
load_info_t load_info;
load_info.stack_start = NULL;
load_info.stack_end = NULL;
load_info.text = NULL;
load_info.entry = NULL;
load_info.linker_entry = NULL;
load_info.linker_offset = 0;
load_info.max_addr = 0;
err = VG_(fstat)(fd, &sb);
if (err) {
print("couldn't stat executable\n");
return VKI_ENOEXEC;
}
err = load_mach_file(fd, 0, sb.size, MH_EXECUTE, name, &load_info);
if (err) return VKI_ENOEXEC;
// GrP fixme exe_base
// GrP fixme exe_end
info->entry = (Addr) load_info.entry;
info->init_ip = (Addr)(load_info.linker_entry ? load_info.linker_entry : load_info.entry);
info->brkbase = 0xffffffff; // GrP fixme hack
info->init_toc = 0; // GrP fixme unused
info->stack_start = (Addr) load_info.stack_start;
info->stack_end = (Addr) load_info.stack_end;
info->text = (Addr) load_info.text;
info->dynamic = load_info.linker_entry ? True : False;
info->executable_path = VG_(strdup)("ume.macho.executable_path", name);
return 0;
}
#endif // defined(VGO_darwin)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/