/*--------------------------------------------------------------------*/
/*--- User-mode execve() for ELF executables m_ume_elf.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2017 Julian Seward
jseward@acm.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGO_linux) || defined(VGO_solaris)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_aspacemgr.h" // various mapping fns
#include "pub_core_debuglog.h"
#include "pub_core_libcassert.h" // VG_(exit), vg_assert
#include "pub_core_libcbase.h" // VG_(memcmp), etc
#include "pub_core_libcprint.h"
#include "pub_core_libcfile.h" // VG_(open) et al
#include "pub_core_machine.h" // VG_ELF_CLASS (XXX: which should be moved)
#include "pub_core_mallocfree.h" // VG_(malloc), VG_(free)
#include "pub_core_syscall.h" // VG_(strerror)
#include "pub_core_ume.h" // self
#include "priv_ume.h"
/* --- !!! --- EXTERNAL HEADERS start --- !!! --- */
#if defined(VGO_linux)
# define _GNU_SOURCE
# define _FILE_OFFSET_BITS 64
#endif
/* This is for ELF types etc, and also the AT_ constants. */
#include <elf.h>
#if defined(VGO_solaris)
# include <sys/fasttrap.h> // PT_SUNWDTRACE_SIZE
# if defined(SOLARIS_PT_SUNDWTRACE_THRP)
# define PT_SUNWDTRACE_PROTECTION (PF_R)
# else
# define PT_SUNWDTRACE_PROTECTION (PF_R | PF_W | PF_X)
# endif
#endif
/* --- !!! --- EXTERNAL HEADERS end --- !!! --- */
#if VG_WORDSIZE == 8
#define ESZ(x) Elf64_##x
#elif VG_WORDSIZE == 4
#define ESZ(x) Elf32_##x
#else
#error VG_WORDSIZE needs to ==4 or ==8
#endif
struct elfinfo
{
ESZ(Ehdr) e;
ESZ(Phdr) *p;
Int fd;
};
#if defined(VGO_linux)
/*
arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
@ehdr: The main ELF header
@phdr: The program header to check
@fd: The ELF file filedescriptor
@is_interpreter: True if the phdr is from the interpreter of the ELF
being loaded, else false.
@state: Architecture-specific state preserved throughout the process
of loading the ELF.
Inspects the program header phdr to validate its correctness and/or
suitability for the system. Called once per ELF program header in the
range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
interpreter.
Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
with that return code.
arch_check_elf()
@ehdr: The main ELF header
@has_interpreter: True if the ELF has an interpreter, else false.
@state: Architecture-specific state preserved throughout the process
of loading the ELF.
Provides a final opportunity for architecture code to reject the loading
of the ELF. This is called after all program headers to be checked by
arch_elf_pt_proc have been.
Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
with that return code.
Ref: linux/fs/binfmt_elf.c
*/
# if defined(VGP_mips32_linux)
/* Ref: linux/arch/mips/kernel/elf.c */
static inline Int arch_elf_pt_proc(ESZ(Ehdr) *ehdr,
ESZ(Phdr) *phdr,
Int fd, Bool is_interpreter,
struct vki_arch_elf_state *state)
{
struct vki_mips_elf_abiflags_v0 abiflags;
SysRes sres;
if ( (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
(ehdr->e_flags & VKI_EF_MIPS_FP64) ) {
/*
* Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
* later if needed
*/
if (is_interpreter)
state->interp_fp_abi = VKI_MIPS_ABI_FP_OLD_64;
else
state->fp_abi = VKI_MIPS_ABI_FP_OLD_64;
}
if (phdr->p_type != VKI_PT_MIPS_ABIFLAGS)
return 0;
if (phdr->p_filesz < sizeof(abiflags))
return VKI_EINVAL;
sres = VG_(pread)(fd, &abiflags, sizeof(abiflags), phdr->p_offset);
if (sr_isError(sres))
return sr_Err(sres);
if (sr_Res(sres) != sizeof(abiflags))
return VKI_EIO;
/* Record the required FP ABIs for use by arch_check_elf */
if (is_interpreter)
state->interp_fp_abi = abiflags.fp_abi;
else
state->fp_abi = abiflags.fp_abi;
return 0;
}
/* Ref: linux/arch/mips/kernel/elf.c */
static inline Int arch_check_elf(ESZ(Ehdr) *ehdr,
Bool has_interpreter,
struct vki_arch_elf_state *state)
{
struct mode_req {
Bool single;
Bool soft;
Bool fr1;
Bool frdefault;
Bool fre;
};
struct mode_req fpu_reqs[] = {
[VKI_MIPS_ABI_FP_ANY] = { True, True, True, True, True },
[VKI_MIPS_ABI_FP_DOUBLE] = { False, False, False, True, True },
[VKI_MIPS_ABI_FP_SINGLE] = { True, False, False, False, False },
[VKI_MIPS_ABI_FP_SOFT] = { False, True, False, False, False },
[VKI_MIPS_ABI_FP_OLD_64] = { False, False, False, False, False },
[VKI_MIPS_ABI_FP_XX] = { False, False, True, True, True },
[VKI_MIPS_ABI_FP_64] = { False, False, True, False, False },
[VKI_MIPS_ABI_FP_64A] = { False, False, True, False, True }
};
/* Mode requirements when .MIPS.abiflags is not present in the ELF.
Not present means that everything is acceptable except FR1. */
struct mode_req none_req = { True, True, False, True, True };
struct mode_req prog_req, interp_req;
Int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
Bool is_mips64;
VexArchInfo vai;
VG_(machine_get_VexArchInfo)(NULL, &vai);
fp_abi = state->fp_abi;
if (has_interpreter) {
interp_fp_abi = state->interp_fp_abi;
abi0 = VG_MIN(fp_abi, interp_fp_abi);
abi1 = VG_MAX(fp_abi, interp_fp_abi);
} else {
abi0 = abi1 = fp_abi;
}
is_mips64 = (ehdr->e_ident[EI_CLASS] == ELFCLASS64) ||
(ehdr->e_flags & EF_MIPS_ABI2);
if (is_mips64) {
/* MIPS64 code always uses FR=1, thus the default is easy */
state->overall_fp_mode = VKI_FP_FR1;
/* Disallow access to the various FPXX & FP64 ABIs */
max_abi = VKI_MIPS_ABI_FP_SOFT;
} else {
/* Default to a mode capable of running code expecting FR=0 */
/* TODO: Should be changed during implementation of MIPS-R6 support.
state->overall_fp_mode = cpu_has_mips_r6 ? VKI_FP_FRE : VKI_FP_FR0; */
state->overall_fp_mode = VKI_FP_FR0;
/* Allow all ABIs we know about */
max_abi = VKI_MIPS_ABI_FP_64A;
}
if ((abi0 > max_abi && abi0 != VKI_MIPS_ABI_FP_UNKNOWN) ||
(abi1 > max_abi && abi1 != VKI_MIPS_ABI_FP_UNKNOWN))
return VKI_ELIBBAD;
/* It's time to determine the FPU mode requirements */
prog_req = (abi0 == VKI_MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
interp_req = (abi1 == VKI_MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
/* Check whether the program's and interp's ABIs have a matching FPU
mode requirement. */
prog_req.single = interp_req.single && prog_req.single;
prog_req.soft = interp_req.soft && prog_req.soft;
prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
prog_req.fre = interp_req.fre && prog_req.fre;
/* Determine the desired FPU mode
Decision making:
- We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
means that we have a combination of program and interpreter
that inherently require the hybrid FP mode.
- If FR1 and FRDEFAULT is true, that means we hit the any-abi or
fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
instructions so we don't care about the mode. We will simply use
the one preferred by the hardware. In fpxx case, that ABI can
handle both FR=1 and FR=0, so, again, we simply choose the one
preferred by the hardware. Next, if we only use single-precision
FPU instructions, and the default ABI FPU mode is not good
(ie single + any ABI combination), we set again the FPU mode to the
one is preferred by the hardware. Next, if we know that the code
will only use single-precision instructions, shown by single being
true but frdefault being false, then we again set the FPU mode to
the one that is preferred by the hardware.
- We want FP_FR1 if that's the only matching mode and the default one
is not good.
- Return with ELIBADD if we can't find a matching FPU mode. */
if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
state->overall_fp_mode = VKI_FP_FRE;
else if ((prog_req.fr1 && prog_req.frdefault) ||
(prog_req.single && !prog_req.frdefault))
state->overall_fp_mode = VEX_MIPS_HOST_FP_MODE(vai.hwcaps) ?
VKI_FP_FR1 : VKI_FP_FR0;
else if (prog_req.fr1)
state->overall_fp_mode = VKI_FP_FR1;
else if (!prog_req.fre && !prog_req.frdefault &&
!prog_req.fr1 && !prog_req.single && !prog_req.soft)
return VKI_ELIBBAD;
/* TODO: Currently, Valgrind doesn't support FRE and doesn't support FR1
emulation on FR0 system, so in those cases we are forced to
reject the ELF. */
if ((state->overall_fp_mode == VKI_FP_FRE) ||
((state->overall_fp_mode == VKI_FP_FR1) &&
!VEX_MIPS_HOST_FP_MODE(vai.hwcaps)))
return VKI_ELIBBAD;
return 0;
}
# else
static inline Int arch_elf_pt_proc(ESZ(Ehdr) *ehdr,
ESZ(Phdr) *phdr,
Int fd, Bool is_interpreter,
struct vki_arch_elf_state *state)
{
/* Dummy implementation, always proceed */
return 0;
}
static inline Int arch_check_elf(ESZ(Ehdr) *ehdr,
Bool has_interpreter,
struct vki_arch_elf_state *state)
{
/* Dummy implementation, always proceed */
return 0;
}
# endif
#endif
static void check_mmap(SysRes res, Addr base, SizeT len)
{
if (sr_isError(res)) {
VG_(printf)("valgrind: mmap(0x%llx, %lld) failed in UME "
"with error %lu (%s).\n",
(ULong)base, (Long)len,
sr_Err(res), VG_(strerror)(sr_Err(res)) );
if (sr_Err(res) == VKI_EINVAL) {
VG_(printf)("valgrind: this can be caused by executables with "
"very large text, data or bss segments.\n");
}
VG_(exit)(1);
}
}
/*------------------------------------------------------------*/
/*--- Loading ELF files ---*/
/*------------------------------------------------------------*/
static
struct elfinfo *readelf(Int fd, const HChar *filename)
{
SysRes sres;
struct elfinfo *e = VG_(malloc)("ume.re.1", sizeof(*e));
Int phsz;
e->fd = fd;
sres = VG_(pread)(fd, &e->e, sizeof(e->e), 0);
if (sr_isError(sres) || sr_Res(sres) != sizeof(e->e)) {
VG_(printf)("valgrind: %s: can't read ELF header: %s\n",
filename, VG_(strerror)(sr_Err(sres)));
goto bad;
}
if (VG_(memcmp)(&e->e.e_ident[0], ELFMAG, SELFMAG) != 0) {
VG_(printf)("valgrind: %s: bad ELF magic number\n", filename);
goto bad;
}
if (e->e.e_ident[EI_CLASS] != VG_ELF_CLASS) {
VG_(printf)("valgrind: wrong ELF executable class "
"(eg. 32-bit instead of 64-bit)\n");
goto bad;
}
if (e->e.e_ident[EI_DATA] != VG_ELF_DATA2XXX) {
VG_(printf)("valgrind: executable has wrong endian-ness\n");
goto bad;
}
if (!(e->e.e_type == ET_EXEC || e->e.e_type == ET_DYN)) {
VG_(printf)("valgrind: this is not an executable\n");
goto bad;
}
if (e->e.e_machine != VG_ELF_MACHINE) {
VG_(printf)("valgrind: executable is not for "
"this architecture\n");
goto bad;
}
if (e->e.e_phentsize != sizeof(ESZ(Phdr))) {
VG_(printf)("valgrind: sizeof ELF Phdr wrong\n");
goto bad;
}
phsz = sizeof(ESZ(Phdr)) * e->e.e_phnum;
e->p = VG_(malloc)("ume.re.2", phsz);
sres = VG_(pread)(fd, e->p, phsz, e->e.e_phoff);
if (sr_isError(sres) || sr_Res(sres) != phsz) {
VG_(printf)("valgrind: can't read phdr: %s\n",
VG_(strerror)(sr_Err(sres)));
VG_(free)(e->p);
goto bad;
}
return e;
bad:
VG_(free)(e);
return NULL;
}
/* Map an ELF file. Returns the brk address. */
static
ESZ(Addr) mapelf(struct elfinfo *e, ESZ(Addr) base)
{
Int i;
SysRes res;
ESZ(Addr) elfbrk = 0;
for (i = 0; i < e->e.e_phnum; i++) {
ESZ(Phdr) *ph = &e->p[i];
ESZ(Addr) addr, brkaddr;
ESZ(Word) memsz;
if (ph->p_type != PT_LOAD)
continue;
addr = ph->p_vaddr+base;
memsz = ph->p_memsz;
brkaddr = addr+memsz;
if (brkaddr > elfbrk)
elfbrk = brkaddr;
}
for (i = 0; i < e->e.e_phnum; i++) {
ESZ(Phdr) *ph = &e->p[i];
ESZ(Addr) addr, bss, brkaddr;
ESZ(Off) off;
ESZ(Word) filesz;
ESZ(Word) memsz;
unsigned prot = 0;
if (ph->p_type != PT_LOAD)
continue;
if (ph->p_flags & PF_X) prot |= VKI_PROT_EXEC;
if (ph->p_flags & PF_W) prot |= VKI_PROT_WRITE;
if (ph->p_flags & PF_R) prot |= VKI_PROT_READ;
addr = ph->p_vaddr+base;
off = ph->p_offset;
filesz = ph->p_filesz;
bss = addr+filesz;
memsz = ph->p_memsz;
brkaddr = addr+memsz;
// Tom says: In the following, do what the Linux kernel does and only
// map the pages that are required instead of rounding everything to
// the specified alignment (ph->p_align). (AMD64 doesn't work if you
// use ph->p_align -- part of stage2's memory gets trashed somehow.)
//
// The condition handles the case of a zero-length segment.
if (VG_PGROUNDUP(bss)-VG_PGROUNDDN(addr) > 0) {
if (0) VG_(debugLog)(0,"ume","mmap_file_fixed_client #1\n");
res = VG_(am_mmap_file_fixed_client)(
VG_PGROUNDDN(addr),
VG_PGROUNDUP(bss)-VG_PGROUNDDN(addr),
prot, /*VKI_MAP_FIXED|VKI_MAP_PRIVATE, */
e->fd, VG_PGROUNDDN(off)
);
if (0) VG_(am_show_nsegments)(0,"after #1");
check_mmap(res, VG_PGROUNDDN(addr),
VG_PGROUNDUP(bss)-VG_PGROUNDDN(addr));
}
// if memsz > filesz, fill the remainder with zeroed pages
if (memsz > filesz) {
UInt bytes;
bytes = VG_PGROUNDUP(brkaddr)-VG_PGROUNDUP(bss);
if (bytes > 0) {
if (0) VG_(debugLog)(0,"ume","mmap_anon_fixed_client #2\n");
res = VG_(am_mmap_anon_fixed_client)(
VG_PGROUNDUP(bss), bytes,
prot
);
if (0) VG_(am_show_nsegments)(0,"after #2");
check_mmap(res, VG_PGROUNDUP(bss), bytes);
}
bytes = bss & (VKI_PAGE_SIZE - 1);
// The 'prot' condition allows for a read-only bss
if ((prot & VKI_PROT_WRITE) && (bytes > 0)) {
bytes = VKI_PAGE_SIZE - bytes;
VG_(memset)((void *)bss, 0, bytes);
}
}
}
return elfbrk;
}
Bool VG_(match_ELF)(const void *hdr, SizeT len)
{
const ESZ(Ehdr) *e = hdr;
return (len > sizeof(*e)) && VG_(memcmp)(&e->e_ident[0], ELFMAG, SELFMAG) == 0;
}
/* load_ELF pulls an ELF executable into the address space, prepares
it for execution, and writes info about it into INFO. In
particular it fills in .init_eip, which is the starting point.
Returns zero on success, non-zero (a VKI_E.. value) on failure.
The sequence of activities is roughly as follows:
- use readelf() to extract program header info from the exe file.
- scan the program header, collecting info (not sure what all those
info-> fields are, or whether they are used, but still) and in
particular looking out fo the PT_INTERP header, which describes
the interpreter. If such a field is found, the space needed to
hold the interpreter is computed into interp_size.
- map the executable in, by calling mapelf(). This maps in all
loadable sections, and I _think_ also creates any .bss areas
required. mapelf() returns the address just beyond the end of
the furthest-along mapping it creates. The executable is mapped
starting at EBASE, which is usually read from it (eg, 0x8048000
etc) except if it's a PIE, in which case I'm not sure what
happens.
The returned address is recorded in info->brkbase as the start
point of the brk (data) segment, as it is traditional to place
the data segment just after the executable. Neither load_ELF nor
mapelf creates the brk segment, though: that is for the caller of
load_ELF to attend to.
- If the initial phdr scan didn't find any mention of an
interpreter (interp == NULL), this must be a statically linked
executable, and we're pretty much done.
- Otherwise, we need to use mapelf() a second time to load the
interpreter. The interpreter can go anywhere, but mapelf() wants
to be told a specific address to put it at. So an advisory query
is passed to aspacem, asking where it would put an anonymous
client mapping of size INTERP_SIZE. That address is then used
as the mapping address for the interpreter.
- The entry point in INFO is set to the interpreter's entry point,
and we're done. */
Int VG_(load_ELF)(Int fd, const HChar* name, /*MOD*/ExeInfo* info)
{
SysRes sres;
struct elfinfo *e;
struct elfinfo *interp = NULL;
ESZ(Addr) minaddr = ~0; /* lowest mapped address */
ESZ(Addr) maxaddr = 0; /* highest mapped address */
ESZ(Addr) interp_addr = 0; /* interpreter (ld.so) address */
ESZ(Word) interp_size = 0; /* interpreter size */
/* ESZ(Word) interp_align = VKI_PAGE_SIZE; */ /* UNUSED */
Int i;
void *entry;
ESZ(Addr) ebase = 0;
# if defined(VGO_solaris)
ESZ(Addr) thrptr_addr = 0;
# endif
# if defined(VGO_linux)
Int retval;
# endif
# if defined(HAVE_PIE)
ebase = info->exe_base;
# endif
e = readelf(fd, name);
if (e == NULL)
return VKI_ENOEXEC;
/* The kernel maps position-independent executables at TASK_SIZE*2/3;
duplicate this behavior as close as we can. */
if (e->e.e_type == ET_DYN && ebase == 0) {
ebase = VG_PGROUNDDN(info->exe_base
+ (info->exe_end - info->exe_base) * 2 / 3);
/* We really don't want to load PIEs at zero or too close. It
works, but it's unrobust (NULL pointer reads and writes
become legit, which is really bad) and causes problems for
exp-ptrcheck, which assumes all numbers below 1MB are
nonpointers. So, hackily, move it above 1MB. */
/* Later .. it appears ppc32-linux tries to put [vdso] at 1MB,
which totally screws things up, because nothing else can go
there. The size of [vdso] is around 2 or 3 pages, so bump
the hacky load address along by 8 * VKI_PAGE_SIZE to be safe. */
/* Later .. on mips64 we can't use 0x108000, because mapelf will
fail. */
# if defined(VGP_mips64_linux)
if (ebase < 0x100000)
ebase = 0x100000;
# else
vg_assert(VKI_PAGE_SIZE >= 4096); /* stay sane */
ESZ(Addr) hacky_load_address = 0x100000 + 8 * VKI_PAGE_SIZE;
if (ebase < hacky_load_address)
ebase = hacky_load_address;
# endif
# if defined(VGO_solaris)
/* Record for later use in AT_BASE. */
info->interp_offset = ebase;
# endif
}
info->phnum = e->e.e_phnum;
info->entry = e->e.e_entry + ebase;
info->phdr = 0;
info->stack_prot = VKI_PROT_READ|VKI_PROT_WRITE|VKI_PROT_EXEC;
for (i = 0; i < e->e.e_phnum; i++) {
ESZ(Phdr) *ph = &e->p[i];
switch(ph->p_type) {
case PT_PHDR:
info->phdr = ph->p_vaddr + ebase;
# if defined(VGO_solaris)
info->real_phdr_present = True;
# endif
break;
case PT_LOAD:
if (ph->p_vaddr < minaddr)
minaddr = ph->p_vaddr;
if (ph->p_vaddr+ph->p_memsz > maxaddr)
maxaddr = ph->p_vaddr+ph->p_memsz;
break;
# if defined(VGO_solaris)
case PT_SUNWDTRACE:
if (ph->p_memsz < PT_SUNWDTRACE_SIZE) {
VG_(printf)("valgrind: m_ume.c: too small SUNWDTRACE size\n");
return VKI_ENOEXEC;
}
if ((ph->p_flags & (PF_R | PF_W | PF_X)) != PT_SUNWDTRACE_PROTECTION) {
VG_(printf)("valgrind: m_ume.c: SUNWDTRACE protection mismatch\n");
return VKI_ENOEXEC;
}
info->init_thrptr = ph->p_vaddr + ebase;
break;
# endif
case PT_INTERP: {
HChar *buf = VG_(malloc)("ume.LE.1", ph->p_filesz+1);
Int j;
Int intfd;
Int baseaddr_set;
VG_(pread)(fd, buf, ph->p_filesz, ph->p_offset);
buf[ph->p_filesz] = '\0';
sres = VG_(open)(buf, VKI_O_RDONLY, 0);
if (sr_isError(sres)) {
VG_(printf)("valgrind: m_ume.c: can't open interpreter\n");
VG_(exit)(1);
}
intfd = sr_Res(sres);
interp = readelf(intfd, buf);
if (interp == NULL) {
VG_(printf)("valgrind: m_ume.c: can't read interpreter\n");
return 1;
}
VG_(free)(buf);
baseaddr_set = 0;
for (j = 0; j < interp->e.e_phnum; j++) {
ESZ(Phdr) *iph = &interp->p[j];
ESZ(Addr) end;
# if defined(VGO_solaris)
if (iph->p_type == PT_SUNWDTRACE) {
if (iph->p_memsz < PT_SUNWDTRACE_SIZE) {
VG_(printf)("valgrind: m_ume.c: too small SUNWDTRACE size\n");
return VKI_ENOEXEC;
}
if ((iph->p_flags & (PF_R | PF_W | PF_X))
!= PT_SUNWDTRACE_PROTECTION) {
VG_(printf)("valgrind: m_ume.c: SUNWDTRACE protection "
"mismatch\n");
return VKI_ENOEXEC;
}
/* Store the thrptr value into a temporary because we do not
know yet where the interpreter is mapped. */
thrptr_addr = iph->p_vaddr;
}
# endif
# if defined(VGO_linux)
if ((iph->p_type >= PT_LOPROC) && (iph->p_type <= PT_HIPROC)) {
retval = arch_elf_pt_proc(&interp->e, iph, intfd, True,
info->arch_elf_state);
if (retval)
return retval;
}
# endif
if (iph->p_type != PT_LOAD || iph->p_memsz == 0)
continue;
if (!baseaddr_set) {
interp_addr = iph->p_vaddr;
/* interp_align = iph->p_align; */ /* UNUSED */
baseaddr_set = 1;
}
/* assumes that all segments in the interp are close */
end = (iph->p_vaddr - interp_addr) + iph->p_memsz;
if (end > interp_size)
interp_size = end;
}
break;
}
# if defined(PT_GNU_STACK) || defined(PT_SUNWSTACK)
# if defined(PT_GNU_STACK)
/* Android's elf.h doesn't appear to have PT_GNU_STACK. */
case PT_GNU_STACK:
# endif
# if defined(PT_SUNWSTACK)
/* Solaris-specific program header. */
case PT_SUNWSTACK:
# endif
if ((ph->p_flags & PF_X) == 0) info->stack_prot &= ~VKI_PROT_EXEC;
if ((ph->p_flags & PF_W) == 0) info->stack_prot &= ~VKI_PROT_WRITE;
if ((ph->p_flags & PF_R) == 0) info->stack_prot &= ~VKI_PROT_READ;
break;
# endif
# if defined(PT_SUNW_SYSSTAT)
/* Solaris-specific program header which requires link-time support. */
case PT_SUNW_SYSSTAT:
VG_(unimplemented)("Support for program header PT_SUNW_SYSSTAT.");
break;
# endif
# if defined(PT_SUNW_SYSSTAT_ZONE)
/* Solaris-specific program header which requires link-time support. */
case PT_SUNW_SYSSTAT_ZONE:
VG_(unimplemented)("Support for program header PT_SUNW_SYSSTAT_ZONE.");
break;
# endif
# if defined(VGO_linux)
case PT_LOPROC ... PT_HIPROC:
retval = arch_elf_pt_proc(&e->e, ph, fd, False, info->arch_elf_state);
if (retval)
return retval;
break;
# endif
default:
// do nothing
break;
}
}
# if defined(VGO_linux)
retval = arch_check_elf(&e->e,
interp != NULL,
info->arch_elf_state);
if (retval)
return retval;
# endif
if (info->phdr == 0)
info->phdr = minaddr + ebase + e->e.e_phoff;
if (info->exe_base != info->exe_end) {
if (minaddr >= maxaddr ||
(minaddr + ebase < info->exe_base ||
maxaddr + ebase > info->exe_end)) {
VG_(printf)("Executable range %p-%p is outside the\n"
"acceptable range %p-%p\n",
(char *)minaddr + ebase, (char *)maxaddr + ebase,
(char *)info->exe_base, (char *)info->exe_end);
return VKI_ENOMEM;
}
}
info->brkbase = mapelf(e, ebase); /* map the executable */
if (info->brkbase == 0)
return VKI_ENOMEM;
if (interp != NULL) {
/* reserve a chunk of address space for interpreter */
MapRequest mreq;
Addr advised;
Bool ok;
/* Don't actually reserve the space. Just get an advisory
indicating where it would be allocated, and pass that to
mapelf(), which in turn asks aspacem to do some fixed maps at
the specified address. This is a bit of hack, but it should
work because there should be no intervening transactions with
aspacem which could cause those fixed maps to fail.
Placement policy is:
if the interpreter asks to be loaded at zero
ignore that and put it wherever we like (mappings at zero
are bad news)
else
try and put it where it asks for, but if that doesn't work,
just put it anywhere.
*/
if (interp_addr == 0) {
mreq.rkind = MAny;
mreq.start = 0;
mreq.len = interp_size;
} else {
mreq.rkind = MHint;
mreq.start = interp_addr;
mreq.len = interp_size;
}
advised = VG_(am_get_advisory)( &mreq, True/*client*/, &ok );
if (!ok) {
/* bomb out */
SysRes res = VG_(mk_SysRes_Error)(VKI_EINVAL);
if (0) VG_(printf)("reserve for interp: failed\n");
check_mmap(res, (Addr)interp_addr, interp_size);
/*NOTREACHED*/
}
(void)mapelf(interp, (ESZ(Addr))advised - interp_addr);
VG_(close)(interp->fd);
entry = (void *)(advised - interp_addr + interp->e.e_entry);
info->interp_offset = advised - interp_addr;
# if defined(VGO_solaris)
if (thrptr_addr)
info->init_thrptr = thrptr_addr + info->interp_offset;
# endif
VG_(free)(interp->p);
VG_(free)(interp);
} else {
entry = (void *)(ebase + e->e.e_entry);
# if defined(VGO_solaris)
if (e->e.e_type == ET_DYN)
info->ldsoexec = True;
# endif
}
info->exe_base = minaddr + ebase;
info->exe_end = maxaddr + ebase;
#if defined(VGP_ppc64be_linux)
/* On PPC64BE, ELF ver 1, a func ptr is represented by a TOC entry ptr.
This TOC entry contains three words; the first word is the function
address, the second word is the TOC ptr (r2), and the third word
is the static chain value. */
info->init_ip = ((ULong*)entry)[0];
info->init_toc = ((ULong*)entry)[1];
info->init_ip += info->interp_offset;
info->init_toc += info->interp_offset;
#elif defined(VGP_ppc64le_linux)
/* On PPC64LE, ELF ver 2. API doesn't use a func ptr */
info->init_ip = (Addr)entry;
info->init_toc = 0; /* meaningless on this platform */
#else
info->init_ip = (Addr)entry;
info->init_toc = 0; /* meaningless on this platform */
#endif
VG_(free)(e->p);
VG_(free)(e);
return 0;
}
#endif // defined(VGO_linux) || defined(VGO_solaris)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/