/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-x86-solaris.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2011-2017 Petr Pavlu
setup@dagobah.cz
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGP_x86_solaris)
#include "libvex_guest_offsets.h"
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_xarray.h"
#include "pub_core_clientstate.h"
#include "pub_core_debuglog.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcfile.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcsignal.h"
#include "pub_core_machine.h" // VG_(get_SP)
#include "pub_core_mallocfree.h"
#include "pub_core_options.h"
#include "pub_core_tooliface.h"
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h"
#include "priv_syswrap-solaris.h"
/* Call f(arg1), but first switch stacks, using 'stack' as the new stack, and
use 'retaddr' as f's return-to address. Also, clear all the integer
registers before entering f. */
__attribute__((noreturn))
void ML_(call_on_new_stack_0_1)(Addr stack, /* 4(%esp) */
Addr retaddr, /* 8(%esp) */
void (*f)(Word), /* 12(%esp) */
Word arg1); /* 16(%esp) */
__asm__ (
".text\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" movl %esp, %esi\n" /* remember old stack pointer */
" movl 4(%esi), %esp\n" /* set stack */
" pushl $0\n" /* align stack */
" pushl $0\n" /* align stack */
" pushl $0\n" /* align stack */
" pushl 16(%esi)\n" /* arg1 to stack */
" pushl 8(%esi)\n" /* retaddr to stack */
" pushl 12(%esi)\n" /* f to stack */
" movl $0, %eax\n" /* zero all GP regs */
" movl $0, %ebx\n"
" movl $0, %ecx\n"
" movl $0, %edx\n"
" movl $0, %esi\n"
" movl $0, %edi\n"
" movl $0, %ebp\n"
" ret\n" /* jump to f */
" ud2\n" /* should never get here */
".previous\n"
);
/* This function is called to setup a context of a new Valgrind thread (which
will run the client code). */
void ML_(setup_start_thread_context)(ThreadId tid, vki_ucontext_t *uc)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
UWord *stack = (UWord*)tst->os_state.valgrind_stack_init_SP;
UShort cs, ds, ss, es, fs, gs;
VG_(memset)(uc, 0, sizeof(*uc));
uc->uc_flags = VKI_UC_CPU | VKI_UC_SIGMASK;
/* Start the thread with everything blocked. */
VG_(sigfillset)(&uc->uc_sigmask);
/* Set up the stack, it should be always 16-byte aligned before doing
a function call, i.e. the first parameter is also 16-byte aligned. */
vg_assert(VG_IS_16_ALIGNED(stack));
stack -= 1;
stack[0] = 0; /* bogus return value */
stack[1] = (UWord)tst; /* the parameter */
/* Set up the registers. */
uc->uc_mcontext.gregs[VKI_EIP] = (UWord)ML_(start_thread_NORETURN);
uc->uc_mcontext.gregs[VKI_UESP] = (UWord)stack;
/* Copy segment registers. */
__asm__ __volatile__(
"movw %%cs, %[cs]\n"
"movw %%ds, %[ds]\n"
"movw %%ss, %[ss]\n"
"movw %%es, %[es]\n"
"movw %%fs, %[fs]\n"
"movw %%gs, %[gs]\n"
: [cs] "=m" (cs), [ds] "=m" (ds), [ss] "=m" (ss), [es] "=m" (es),
[fs] "=m" (fs), [gs] "=m" (gs));
uc->uc_mcontext.gregs[VKI_CS] = cs;
uc->uc_mcontext.gregs[VKI_DS] = ds;
uc->uc_mcontext.gregs[VKI_SS] = ss;
uc->uc_mcontext.gregs[VKI_ES] = es;
uc->uc_mcontext.gregs[VKI_FS] = fs;
uc->uc_mcontext.gregs[VKI_GS] = gs;
}
/* Architecture-specific part of VG_(save_context). */
void ML_(save_machine_context)(ThreadId tid, vki_ucontext_t *uc,
CorePart part)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
struct vki_fpchip_state *fs
= &uc->uc_mcontext.fpregs.fp_reg_set.fpchip_state;
SizeT i;
/* CPU */
/* Common registers */
uc->uc_mcontext.gregs[VKI_EIP] = tst->arch.vex.guest_EIP;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_EIP,
(Addr)&uc->uc_mcontext.gregs[VKI_EIP], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_EAX] = tst->arch.vex.guest_EAX;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_EAX,
(Addr)&uc->uc_mcontext.gregs[VKI_EAX], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_EBX] = tst->arch.vex.guest_EBX;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_EBX,
(Addr)&uc->uc_mcontext.gregs[VKI_EBX], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_ECX] = tst->arch.vex.guest_ECX;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_ECX,
(Addr)&uc->uc_mcontext.gregs[VKI_ECX], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_EDX] = tst->arch.vex.guest_EDX;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_EDX,
(Addr)&uc->uc_mcontext.gregs[VKI_EDX], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_EBP] = tst->arch.vex.guest_EBP;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_EBP,
(Addr)&uc->uc_mcontext.gregs[VKI_EBP], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_ESI] = tst->arch.vex.guest_ESI;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_ESI,
(Addr)&uc->uc_mcontext.gregs[VKI_ESI], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_EDI] = tst->arch.vex.guest_EDI;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_EDI,
(Addr)&uc->uc_mcontext.gregs[VKI_EDI], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_UESP] = tst->arch.vex.guest_ESP;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_ESP,
(Addr)&uc->uc_mcontext.gregs[VKI_UESP], sizeof(UWord));
uc->uc_mcontext.gregs[VKI_ESP] = 0;
VG_TRACK(post_mem_write, part, tid, (Addr)&uc->uc_mcontext.gregs[VKI_ESP],
sizeof(UWord));
/* ERR and TRAPNO */
uc->uc_mcontext.gregs[VKI_ERR] = 0;
VG_TRACK(post_mem_write, part, tid, (Addr)&uc->uc_mcontext.gregs[VKI_ERR],
sizeof(UWord));
uc->uc_mcontext.gregs[VKI_TRAPNO] = 0;
VG_TRACK(post_mem_write, part, tid, (Addr)&uc->uc_mcontext.gregs[VKI_TRAPNO],
sizeof(UWord));
/* Segment registers */
/* Note that segment registers are 16b in VEX, but 32b in mcontext. Thus
we tell a tool that the lower 16 bits were copied and that the higher 16
bits were set (to zero). (This assumes a little-endian
architecture.) */
uc->uc_mcontext.gregs[VKI_CS] = tst->arch.vex.guest_CS;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_CS,
(Addr)&uc->uc_mcontext.gregs[VKI_CS], sizeof(UShort));
VG_TRACK(post_mem_write, part, tid,
(Addr)(&uc->uc_mcontext.gregs[VKI_CS]) + 2, sizeof(UShort));
uc->uc_mcontext.gregs[VKI_DS] = tst->arch.vex.guest_DS;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_DS,
(Addr)&uc->uc_mcontext.gregs[VKI_DS], sizeof(UShort));
VG_TRACK(post_mem_write, part, tid,
(Addr)(&uc->uc_mcontext.gregs[VKI_DS]) + 2, sizeof(UShort));
uc->uc_mcontext.gregs[VKI_SS] = tst->arch.vex.guest_SS;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_SS,
(Addr)&uc->uc_mcontext.gregs[VKI_SS], sizeof(UShort));
VG_TRACK(post_mem_write, part, tid,
(Addr)(&uc->uc_mcontext.gregs[VKI_SS]) + 2, sizeof(UShort));
uc->uc_mcontext.gregs[VKI_ES] = tst->arch.vex.guest_ES;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_ES,
(Addr)&uc->uc_mcontext.gregs[VKI_ES], sizeof(UShort));
VG_TRACK(post_mem_write, part, tid,
(Addr)(&uc->uc_mcontext.gregs[VKI_ES]) + 2, sizeof(UShort));
uc->uc_mcontext.gregs[VKI_FS] = tst->arch.vex.guest_FS;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_FS,
(Addr)&uc->uc_mcontext.gregs[VKI_FS], sizeof(UShort));
VG_TRACK(post_mem_write, part, tid,
(Addr)(&uc->uc_mcontext.gregs[VKI_FS]) + 2, sizeof(UShort));
uc->uc_mcontext.gregs[VKI_GS] = tst->arch.vex.guest_GS;
VG_TRACK(copy_reg_to_mem, part, tid, OFFSET_x86_GS,
(Addr)&uc->uc_mcontext.gregs[VKI_GS], sizeof(UShort));
VG_TRACK(post_mem_write, part, tid,
(Addr)(&uc->uc_mcontext.gregs[VKI_GS]) + 2, sizeof(UShort));
/* Handle eflags (optimistically make all flags defined). */
uc->uc_mcontext.gregs[VKI_EFL] =
LibVEX_GuestX86_get_eflags(&tst->arch.vex);
VG_TRACK(post_mem_write, part, tid, (Addr)&uc->uc_mcontext.gregs[VKI_EFL],
sizeof(UWord));
/* The LibVEX_GuestX86_get_eflags() call calculates eflags value from the
CC_OP, CC_DEP1, CC_DEP2, CC_NDEP, DFLAG, IDFLAG and ACFLAG guest state
values. The *FLAG values represent one-bit information and are saved
without loss of precision into eflags. However when CC_* values are
converted into eflags then precision is lost. What we do here is to
save unmodified CC_* values into unused ucontext members (the 'long
uc_filler[5] and 'int fs->__pad[2]' arrays) so we can then restore the
context in ML_(restore_machine_context)() without the loss of precision.
This imposes a requirement on client programs to not use these two
members. Luckily this is never a case in Solaris-gate programs and
libraries. */
/* CC_OP and CC_NDEP are always defined, but we don't want to tell a tool
that we just defined uc_filler[0,1]. This helps if someone uses an
uninitialized ucontext and tries to read (use) uc_filler[0,1]. Memcheck
in such a case should detect this error. */
VKI_UC_GUEST_CC_OP(uc) = tst->arch.vex.guest_CC_OP;
VKI_UC_GUEST_CC_NDEP(uc) = tst->arch.vex.guest_CC_NDEP;
/* We want to copy shadow values of CC_DEP1 and CC_DEP2 so we have to tell
a tool about this copy. */
VKI_UC_GUEST_CC_DEP1(uc) = tst->arch.vex.guest_CC_DEP1;
VG_TRACK(copy_reg_to_mem, part, tid,
offsetof(VexGuestX86State, guest_CC_DEP1),
(Addr)&VKI_UC_GUEST_CC_DEP1(uc), sizeof(UWord));
VKI_UC_GUEST_CC_DEP2(uc) = tst->arch.vex.guest_CC_DEP2;
VG_TRACK(copy_reg_to_mem, part, tid,
offsetof(VexGuestX86State, guest_CC_DEP2),
(Addr)&VKI_UC_GUEST_CC_DEP2(uc), sizeof(UWord));
/* Make another copy of eflags. */
VKI_UC_GUEST_EFLAGS_NEG(uc) = ~uc->uc_mcontext.gregs[VKI_EFL];
/* Calculate a checksum. */
{
UInt buf[5];
UInt checksum;
buf[0] = VKI_UC_GUEST_CC_OP(uc);
buf[1] = VKI_UC_GUEST_CC_NDEP(uc);
buf[2] = VKI_UC_GUEST_CC_DEP1(uc);
buf[3] = VKI_UC_GUEST_CC_DEP2(uc);
buf[4] = uc->uc_mcontext.gregs[VKI_EFL];
checksum = ML_(fletcher32)((UShort*)&buf, sizeof(buf) / sizeof(UShort));
/* Store the checksum. */
VKI_UC_GUEST_EFLAGS_CHECKSUM(uc) = checksum;
}
/* FPU */
/* x87 */
vg_assert(sizeof(fs->state) == 108);
LibVEX_GuestX86_get_x87(&tst->arch.vex, (UChar*)&fs->state);
/* Flags and control words */
VG_TRACK(post_mem_write, part, tid, (Addr)&fs->state, 28);
/* ST registers */
for (i = 0; i < 8; i++) {
Addr addr = (Addr)&fs->state + 28 + i * 10;
/* x87 uses 80b FP registers but VEX uses only 64b registers, thus we
have to lie here. :< */
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_FPREG[i]), addr, sizeof(ULong));
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_FPREG[i]), addr + 8, sizeof(UShort));
}
/* Status word (sw) at exception */
fs->status = 0;
VG_TRACK(post_mem_write, part, tid, (Addr)&fs->status, sizeof(fs->status));
/* SSE */
fs->mxcsr = LibVEX_GuestX86_get_mxcsr(&tst->arch.vex);
VG_TRACK(post_mem_write, part, tid, (Addr)&fs->mxcsr, sizeof(fs->mxcsr));
/* MXCSR at exception */
fs->xstatus = 0;
VG_TRACK(post_mem_write, part, tid, (Addr)&fs->xstatus,
sizeof(fs->xstatus));
/* XMM registers */
#define COPY_OUT_XMM(dest, src) \
do { \
dest._l[0] = src[0]; \
dest._l[1] = src[1]; \
dest._l[2] = src[2]; \
dest._l[3] = src[3]; \
} while (0)
COPY_OUT_XMM(fs->xmm[0], tst->arch.vex.guest_XMM0);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM0), (Addr)&fs->xmm[0], sizeof(U128));
COPY_OUT_XMM(fs->xmm[1], tst->arch.vex.guest_XMM1);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM1), (Addr)&fs->xmm[1], sizeof(U128));
COPY_OUT_XMM(fs->xmm[2], tst->arch.vex.guest_XMM2);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM2), (Addr)&fs->xmm[2], sizeof(U128));
COPY_OUT_XMM(fs->xmm[3], tst->arch.vex.guest_XMM3);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM3), (Addr)&fs->xmm[3], sizeof(U128));
COPY_OUT_XMM(fs->xmm[4], tst->arch.vex.guest_XMM4);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM4), (Addr)&fs->xmm[4], sizeof(U128));
COPY_OUT_XMM(fs->xmm[5], tst->arch.vex.guest_XMM5);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM5), (Addr)&fs->xmm[5], sizeof(U128));
COPY_OUT_XMM(fs->xmm[6], tst->arch.vex.guest_XMM6);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM6), (Addr)&fs->xmm[6], sizeof(U128));
COPY_OUT_XMM(fs->xmm[7], tst->arch.vex.guest_XMM7);
VG_TRACK(copy_reg_to_mem, part, tid, offsetof(VexGuestX86State,
guest_XMM7), (Addr)&fs->xmm[7], sizeof(U128));
#undef COPY_OUT_XMM
}
/* Architecture-specific part of VG_(restore_context). */
void ML_(restore_machine_context)(ThreadId tid, vki_ucontext_t *uc,
CorePart part, Bool esp_is_thrptr)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
struct vki_fpchip_state *fs
= &uc->uc_mcontext.fpregs.fp_reg_set.fpchip_state;
/* CPU */
if (uc->uc_flags & VKI_UC_CPU) {
/* Common registers */
tst->arch.vex.guest_EIP = uc->uc_mcontext.gregs[VKI_EIP];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_EIP], OFFSET_x86_EIP,
sizeof(UWord));
tst->arch.vex.guest_EAX = uc->uc_mcontext.gregs[VKI_EAX];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_EAX], OFFSET_x86_EAX,
sizeof(UWord));
tst->arch.vex.guest_EBX = uc->uc_mcontext.gregs[VKI_EBX];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_EBX], OFFSET_x86_EBX,
sizeof(UWord));
tst->arch.vex.guest_ECX = uc->uc_mcontext.gregs[VKI_ECX];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_ECX], OFFSET_x86_ECX,
sizeof(UWord));
tst->arch.vex.guest_EDX = uc->uc_mcontext.gregs[VKI_EDX];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_EDX], OFFSET_x86_EDX,
sizeof(UWord));
tst->arch.vex.guest_EBP = uc->uc_mcontext.gregs[VKI_EBP];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_EBP], OFFSET_x86_EBP,
sizeof(UWord));
tst->arch.vex.guest_ESI = uc->uc_mcontext.gregs[VKI_ESI];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_ESI], OFFSET_x86_ESI,
sizeof(UWord));
tst->arch.vex.guest_EDI = uc->uc_mcontext.gregs[VKI_EDI];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_EDI], OFFSET_x86_EDI,
sizeof(UWord));
tst->arch.vex.guest_ESP = uc->uc_mcontext.gregs[VKI_UESP];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_UESP], OFFSET_x86_ESP,
sizeof(UWord));
if (esp_is_thrptr) {
/* The thrptr value is passed by libc to the kernel in the otherwise
unused ESP field. This is used when a new thread is created. */
VG_TRACK(pre_mem_read, part, tid,
"restore_machine_context(uc->uc_mcontext.gregs[VKI_ESP])",
(Addr)&uc->uc_mcontext.gregs[VKI_ESP], sizeof(UWord));
if (uc->uc_mcontext.gregs[VKI_ESP]) {
tst->os_state.thrptr = uc->uc_mcontext.gregs[VKI_ESP];
ML_(update_gdt_lwpgs)(tid);
}
}
/* Ignore ERR and TRAPNO. */
/* Segment registers */
tst->arch.vex.guest_CS = uc->uc_mcontext.gregs[VKI_CS];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_CS], OFFSET_x86_CS,
sizeof(UShort));
tst->arch.vex.guest_DS = uc->uc_mcontext.gregs[VKI_DS];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_DS], OFFSET_x86_DS,
sizeof(UShort));
tst->arch.vex.guest_SS = uc->uc_mcontext.gregs[VKI_SS];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_SS], OFFSET_x86_SS,
sizeof(UShort));
tst->arch.vex.guest_ES = uc->uc_mcontext.gregs[VKI_ES];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_ES], OFFSET_x86_ES,
sizeof(UShort));
tst->arch.vex.guest_FS = uc->uc_mcontext.gregs[VKI_FS];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_FS], OFFSET_x86_FS,
sizeof(UShort));
tst->arch.vex.guest_GS = uc->uc_mcontext.gregs[VKI_GS];
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&uc->uc_mcontext.gregs[VKI_GS], OFFSET_x86_GS,
sizeof(UShort));
/* Eflags */
{
UInt eflags;
UInt orig_eflags;
UInt new_eflags;
Bool ok_restore = False;
VG_TRACK(pre_mem_read, part, tid,
"restore_machine_context(uc->uc_mcontext.gregs[VKI_EFL])",
(Addr)&uc->uc_mcontext.gregs[VKI_EFL], sizeof(UWord));
eflags = uc->uc_mcontext.gregs[VKI_EFL];
orig_eflags = LibVEX_GuestX86_get_eflags(&tst->arch.vex);
new_eflags = eflags;
/* The kernel disallows the ID flag to be changed via the setcontext
call, thus do the same. */
if (orig_eflags & VKI_EFLAGS_ID_BIT)
new_eflags |= VKI_EFLAGS_ID_BIT;
else
new_eflags &= ~VKI_EFLAGS_ID_BIT;
LibVEX_GuestX86_put_eflags(new_eflags, &tst->arch.vex);
VG_TRACK(post_reg_write, part, tid,
offsetof(VexGuestX86State, guest_CC_DEP1), sizeof(UWord));
VG_TRACK(post_reg_write, part, tid,
offsetof(VexGuestX86State, guest_CC_DEP2), sizeof(UWord));
/* Check if this context was created by us in VG_(save_context). In
that case, try to restore the CC_OP, CC_DEP1, CC_DEP2 and CC_NDEP
values which we previously stashed into unused members of the
context. */
if (eflags != ~VKI_UC_GUEST_EFLAGS_NEG(uc)) {
VG_(debugLog)(1, "syswrap-solaris",
"The eflags value was restored from an "
"explicitly set value in thread %u.\n", tid);
ok_restore = True;
}
else {
UInt buf[5];
UInt checksum;
buf[0] = VKI_UC_GUEST_CC_OP(uc);
buf[1] = VKI_UC_GUEST_CC_NDEP(uc);
buf[2] = VKI_UC_GUEST_CC_DEP1(uc);
buf[3] = VKI_UC_GUEST_CC_DEP2(uc);
buf[4] = eflags;
checksum = ML_(fletcher32)((UShort*)&buf,
sizeof(buf) / sizeof(UShort));
if (checksum == VKI_UC_GUEST_EFLAGS_CHECKSUM(uc)) {
/* Check ok, the full restoration is possible. */
VG_(debugLog)(1, "syswrap-solaris",
"The CC_* guest state values were fully "
"restored in thread %u.\n", tid);
ok_restore = True;
tst->arch.vex.guest_CC_OP = VKI_UC_GUEST_CC_OP(uc);
tst->arch.vex.guest_CC_NDEP = VKI_UC_GUEST_CC_NDEP(uc);
tst->arch.vex.guest_CC_DEP1 = VKI_UC_GUEST_CC_DEP1(uc);
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&VKI_UC_GUEST_CC_DEP1(uc),
offsetof(VexGuestX86State, guest_CC_DEP1),
sizeof(UWord));
tst->arch.vex.guest_CC_DEP2 = VKI_UC_GUEST_CC_DEP2(uc);
VG_TRACK(copy_mem_to_reg, part, tid,
(Addr)&VKI_UC_GUEST_CC_DEP2(uc),
offsetof(VexGuestX86State, guest_CC_DEP2),
sizeof(UWord));
}
}
if (!ok_restore)
VG_(debugLog)(1, "syswrap-solaris",
"Cannot fully restore the CC_* guest state "
"values, using approximate eflags in thread "
"%u.\n", tid);
}
}
if (uc->uc_flags & VKI_UC_FPU) {
/* FPU */
VexEmNote note;
SizeT i;
/* x87 */
/* Flags and control words */
VG_TRACK(pre_mem_read, part, tid,
"restore_machine_context(uc->uc_mcontext.fpregs..x87_state)",
(Addr)&fs->state, 28);
/* ST registers */
for (i = 0; i < 8; i++) {
Addr addr = (Addr)&fs->state + 28 + i * 10;
VG_TRACK(copy_mem_to_reg, part, tid, addr,
offsetof(VexGuestX86State, guest_FPREG[i]), sizeof(ULong));
}
note = LibVEX_GuestX86_put_x87((UChar*)&fs->state, &tst->arch.vex);
if (note != EmNote_NONE)
VG_(message)(Vg_UserMsg,
"Error restoring x87 state in thread %u: %s.\n",
tid, LibVEX_EmNote_string(note));
/* SSE */
VG_TRACK(pre_mem_read, part, tid,
"restore_machine_context(uc->uc_mcontext.fpregs..mxcsr)",
(Addr)&fs->mxcsr, sizeof(fs->mxcsr));
note = LibVEX_GuestX86_put_mxcsr(fs->mxcsr, &tst->arch.vex);
if (note != EmNote_NONE)
VG_(message)(Vg_UserMsg,
"Error restoring mxcsr state in thread %u: %s.\n",
tid, LibVEX_EmNote_string(note));
/* XMM registers */
#define COPY_IN_XMM(src, dest) \
do { \
dest[0] = src._l[0]; \
dest[1] = src._l[1]; \
dest[2] = src._l[2]; \
dest[3] = src._l[3]; \
} while (0)
COPY_IN_XMM(fs->xmm[0], tst->arch.vex.guest_XMM0);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[0],
offsetof(VexGuestX86State, guest_XMM0), sizeof(U128));
COPY_IN_XMM(fs->xmm[1], tst->arch.vex.guest_XMM1);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[1],
offsetof(VexGuestX86State, guest_XMM1), sizeof(U128));
COPY_IN_XMM(fs->xmm[2], tst->arch.vex.guest_XMM2);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[2],
offsetof(VexGuestX86State, guest_XMM2), sizeof(U128));
COPY_IN_XMM(fs->xmm[3], tst->arch.vex.guest_XMM3);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[3],
offsetof(VexGuestX86State, guest_XMM3), sizeof(U128));
COPY_IN_XMM(fs->xmm[4], tst->arch.vex.guest_XMM4);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[4],
offsetof(VexGuestX86State, guest_XMM4), sizeof(U128));
COPY_IN_XMM(fs->xmm[5], tst->arch.vex.guest_XMM5);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[5],
offsetof(VexGuestX86State, guest_XMM5), sizeof(U128));
COPY_IN_XMM(fs->xmm[6], tst->arch.vex.guest_XMM6);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[6],
offsetof(VexGuestX86State, guest_XMM6), sizeof(U128));
COPY_IN_XMM(fs->xmm[7], tst->arch.vex.guest_XMM7);
VG_TRACK(copy_mem_to_reg, part, tid, (Addr)&fs->xmm[7],
offsetof(VexGuestX86State, guest_XMM7), sizeof(U128));
#undef COPY_IN_XMM
}
}
/* Allocate GDT for a given thread. */
void ML_(setup_gdt)(VexGuestX86State *vex)
{
Addr gdt = (Addr)VG_(calloc)("syswrap-solaris-x86.gdt",
VEX_GUEST_X86_GDT_NENT,
sizeof(VexGuestX86SegDescr));
vex->guest_GDT = gdt;
}
/* Deallocate GDT for a given thread. */
void ML_(cleanup_gdt)(VexGuestX86State *vex)
{
if (!vex->guest_GDT)
return;
VG_(free)((void *) (HWord) vex->guest_GDT);
vex->guest_GDT = 0;
}
/* For a given thread, update the LWPGS descriptor in the thread's GDT
according to the thread pointer. */
void ML_(update_gdt_lwpgs)(ThreadId tid)
{
ThreadState *tst = VG_(get_ThreadState)(tid);
Addr base = tst->os_state.thrptr;
VexGuestX86SegDescr *gdt
= (VexGuestX86SegDescr *) (HWord) tst->arch.vex.guest_GDT;
VexGuestX86SegDescr desc;
vg_assert(gdt);
VG_(memset)(&desc, 0, sizeof(desc));
if (base) {
desc.LdtEnt.Bits.LimitLow = -1;
desc.LdtEnt.Bits.LimitHi = -1;
desc.LdtEnt.Bits.BaseLow = base & 0xffff;
desc.LdtEnt.Bits.BaseMid = (base >> 16) & 0xff;
desc.LdtEnt.Bits.BaseHi = (base >> 24) & 0xff;
desc.LdtEnt.Bits.Pres = 1;
desc.LdtEnt.Bits.Dpl = 3; /* SEL_UPL */
desc.LdtEnt.Bits.Type = 19; /* SDT_MEMRWA */
desc.LdtEnt.Bits.Granularity = 1; /* SDP_PAGES */
desc.LdtEnt.Bits.Default_Big = 1; /* SDP_OP32 */
}
gdt[VKI_GDT_LWPGS] = desc;
/* Write %gs. */
tst->arch.vex.guest_GS = VKI_LWPGS_SEL;
VG_TRACK(post_reg_write, Vg_CoreSysCall, tid, OFFSET_x86_GS,
sizeof(UShort));
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for x86/Solaris-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(x86_solaris, name)
#define POST(name) DEFN_POST_TEMPLATE(x86_solaris, name)
/* implementation */
PRE(sys_fstatat64)
{
/* int fstatat64(int fildes, const char *path, struct stat64 *buf,
int flag); */
PRINT("sys_fstatat64 ( %ld, %#lx(%s), %#lx, %ld )", SARG1, ARG2,
(HChar*)ARG2, ARG3, SARG4);
PRE_REG_READ4(long, "fstatat64", int, fildes, const char *, path,
struct stat64 *, buf, int, flag);
if (ARG2)
PRE_MEM_RASCIIZ("fstatat64(path)", ARG2);
PRE_MEM_WRITE("fstatat64(buf)", ARG3, sizeof(struct vki_stat64));
/* Be strict. */
if (ARG1 != VKI_AT_FDCWD &&
!ML_(fd_allowed)(ARG1, "fstatat64", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
POST(sys_fstatat64)
{
POST_MEM_WRITE(ARG3, sizeof(struct vki_stat64));
}
PRE(sys_openat64)
{
/* int openat64(int fildes, const char *filename, int flags);
int openat64(int fildes, const char *filename, int flags, mode_t mode);
*/
*flags |= SfMayBlock;
if (ARG3 & VKI_O_CREAT) {
/* 4-arg version */
PRINT("sys_openat64 ( %ld, %#lx(%s), %ld, %ld )", SARG1, ARG2,
(HChar*)ARG2, SARG3, SARG4);
PRE_REG_READ4(long, "openat64", int, fildes, const char *, filename,
int, flags, vki_mode_t, mode);
}
else {
/* 3-arg version */
PRINT("sys_openat64 ( %ld, %#lx(%s), %ld )", SARG1, ARG2, (HChar*)ARG2,
SARG3);
PRE_REG_READ3(long, "openat64", int, fildes, const char *, filename,
int, flags);
}
PRE_MEM_RASCIIZ("openat64(filename)", ARG2);
/* Be strict. */
if (ARG1 != VKI_AT_FDCWD && !ML_(fd_allowed)(ARG1, "openat64", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
POST(sys_openat64)
{
if (!ML_(fd_allowed)(RES, "openat64", tid, True)) {
VG_(close)(RES);
SET_STATUS_Failure(VKI_EMFILE);
}
else if (VG_(clo_track_fds))
ML_(record_fd_open_with_given_name)(tid, RES, (HChar*)ARG2);
}
PRE(sys_llseek32)
{
/* offset_t llseek(int fildes, offset_t offset, int whence); */
PRINT("sys_llseek32 ( %ld, %#lx, %#lx, %ld )", SARG1, ARG2, ARG3, SARG4);
PRE_REG_READ4(long, "llseek", int, fildes, vki_u32, offset_low,
vki_u32, offset_high, int, whence);
/* Stay sane. */
if (!ML_(fd_allowed)(ARG1, "llseek", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
PRE(sys_mmap64)
{
/* void *mmap64(void *addr, size_t len, int prot, int flags,
int fildes, uint32_t offlo, uint32_t offhi); */
/* Note this wrapper assumes a little-endian architecture, offlo and offhi
have to be swapped if a big-endian architecture is present. */
#if !defined(VG_LITTLEENDIAN)
#error "Unexpected endianness."
#endif /* !VG_LITTLEENDIAN */
SysRes r;
ULong u;
Off64T offset;
/* Stay sane. */
vg_assert(VKI_PAGE_SIZE == 4096);
vg_assert(sizeof(u) == sizeof(offset));
PRINT("sys_mmap ( %#lx, %#lx, %#lx, %#lx, %ld, %#lx, %#lx )",
ARG1, ARG2, ARG3, ARG4, SARG5, ARG6, ARG7);
PRE_REG_READ7(long, "mmap", void *, start, vki_size_t, length,
int, prot, int, flags, int, fd, uint32_t, offlo,
uint32_t, offhi);
/* The offlo and offhi values can actually represent a negative value.
Make sure it's passed correctly to the generic mmap wrapper. */
u = ((ULong)ARG7 << 32) + ARG6;
offset = *(Off64T*)&u;
r = ML_(generic_PRE_sys_mmap)(tid, ARG1, ARG2, ARG3, ARG4, ARG5, offset);
SET_STATUS_from_SysRes(r);
}
PRE(sys_stat64)
{
/* int stat64(const char *path, struct stat64 *buf); */
PRINT("sys_stat64 ( %#lx(%s), %#lx )", ARG1, (HChar*)ARG1, ARG2);
PRE_REG_READ2(long, "stat64", const char *, path, struct stat64 *, buf);
PRE_MEM_RASCIIZ("stat64(path)", ARG1);
PRE_MEM_WRITE("stat64(buf)", ARG2, sizeof(struct vki_stat64));
}
POST(sys_stat64)
{
POST_MEM_WRITE(ARG2, sizeof(struct vki_stat64));
}
PRE(sys_lstat64)
{
/* int lstat64(const char *path, struct stat64 *buf); */
PRINT("sys_lstat64 ( %#lx(%s), %#lx )", ARG1, (HChar*)ARG1, ARG2);
PRE_REG_READ2(long, "lstat64", const char *, path, struct stat64 *, buf);
PRE_MEM_RASCIIZ("lstat64(path)", ARG1);
PRE_MEM_WRITE("lstat64(buf)", ARG2, sizeof(struct vki_stat64));
}
POST(sys_lstat64)
{
POST_MEM_WRITE(ARG2, sizeof(struct vki_stat64));
}
PRE(sys_fstat64)
{
/* int fstat64(int fildes, struct stat64 *buf); */
PRINT("sys_fstat64 ( %ld, %#lx )", SARG1, ARG2);
PRE_REG_READ2(long, "fstat64", int, fildes, struct stat64 *, buf);
PRE_MEM_WRITE("fstat64(buf)", ARG2, sizeof(struct vki_stat64));
/* Be strict. */
if (!ML_(fd_allowed)(ARG1, "fstat64", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
POST(sys_fstat64)
{
POST_MEM_WRITE(ARG2, sizeof(struct vki_stat64));
}
static void do_statvfs64_post(struct vki_statvfs64 *stats, ThreadId tid)
{
POST_FIELD_WRITE(stats->f_bsize);
POST_FIELD_WRITE(stats->f_frsize);
POST_FIELD_WRITE(stats->f_blocks);
POST_FIELD_WRITE(stats->f_bfree);
POST_FIELD_WRITE(stats->f_bavail);
POST_FIELD_WRITE(stats->f_files);
POST_FIELD_WRITE(stats->f_ffree);
POST_FIELD_WRITE(stats->f_favail);
POST_FIELD_WRITE(stats->f_fsid);
POST_MEM_WRITE((Addr) stats->f_basetype, VG_(strlen)(stats->f_basetype) + 1);
POST_FIELD_WRITE(stats->f_flag);
POST_FIELD_WRITE(stats->f_namemax);
POST_MEM_WRITE((Addr) stats->f_fstr, VG_(strlen)(stats->f_fstr) + 1);
}
PRE(sys_statvfs64)
{
/* int statvfs64(const char *path, struct statvfs64 *buf); */
*flags |= SfMayBlock;
PRINT("sys_statvfs64 ( %#lx(%s), %#lx )", ARG1, (HChar *) ARG1, ARG2);
PRE_REG_READ2(long, "statvfs64", const char *, path,
struct vki_statvfs64 *, buf);
PRE_MEM_RASCIIZ("statvfs64(path)", ARG1);
PRE_MEM_WRITE("statvfs64(buf)", ARG2, sizeof(struct vki_statvfs64));
}
POST(sys_statvfs64)
{
do_statvfs64_post((struct vki_statvfs64 *) ARG2, tid);
}
PRE(sys_fstatvfs64)
{
/* int fstatvfs64(int fd, struct statvfs64 *buf); */
*flags |= SfMayBlock;
PRINT("sys_fstatvfs64 ( %ld, %#lx )", SARG1, ARG2);
PRE_REG_READ2(long, "fstatvfs64", int, fd, struct vki_statvfs64 *, buf);
PRE_MEM_WRITE("fstatvfs64(buf)", ARG2, sizeof(struct vki_statvfs64));
/* Be strict. */
if (!ML_(fd_allowed)(ARG1, "fstatvfs64", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
POST(sys_fstatvfs64)
{
do_statvfs64_post((struct vki_statvfs64 *) ARG2, tid);
}
PRE(sys_setrlimit64)
{
/* int setrlimit64(int resource, struct rlimit64 *rlim); */
struct vki_rlimit64 *limit = (struct vki_rlimit64 *)ARG2;
PRINT("sys_setrlimit64 ( %ld, %#lx )", SARG1, ARG2);
PRE_REG_READ2(long, "setrlimit64", int, resource, struct rlimit64 *, rlim);
PRE_MEM_READ("setrlimit64(rlim)", ARG2, sizeof(struct vki_rlimit64));
if (limit && limit->rlim_cur > limit->rlim_max)
SET_STATUS_Failure(VKI_EINVAL);
else if (ARG1 == VKI_RLIMIT_NOFILE) {
if (limit->rlim_cur > VG_(fd_hard_limit) ||
limit->rlim_max != VG_(fd_hard_limit)) {
SET_STATUS_Failure(VKI_EPERM);
}
else {
VG_(fd_soft_limit) = limit->rlim_cur;
SET_STATUS_Success(0);
}
}
else if (ARG1 == VKI_RLIMIT_DATA) {
if (limit->rlim_cur > VG_(client_rlimit_data).rlim_max ||
limit->rlim_max > VG_(client_rlimit_data).rlim_max) {
SET_STATUS_Failure(VKI_EPERM);
}
else {
VG_(client_rlimit_data).rlim_max = limit->rlim_max;
VG_(client_rlimit_data).rlim_cur = limit->rlim_cur;
SET_STATUS_Success(0);
}
}
else if (ARG1 == VKI_RLIMIT_STACK && tid == 1) {
if (limit->rlim_cur > VG_(client_rlimit_stack).rlim_max ||
limit->rlim_max > VG_(client_rlimit_stack).rlim_max) {
SET_STATUS_Failure(VKI_EPERM);
}
else {
/* Change the value of client_stack_szB to the rlim_cur value but
only if it is smaller than the size of the allocated stack for the
client. */
if (limit->rlim_cur <= VG_(clstk_max_size))
VG_(threads)[tid].client_stack_szB = limit->rlim_cur;
VG_(client_rlimit_stack).rlim_max = limit->rlim_max;
VG_(client_rlimit_stack).rlim_cur = limit->rlim_cur;
SET_STATUS_Success(0);
}
}
}
PRE(sys_getrlimit64)
{
/* int getrlimit64(int resource, struct rlimit64 *rlim); */
PRINT("sys_getrlimit64 ( %ld, %#lx )", SARG1, ARG2);
PRE_REG_READ2(long, "getrlimit64",
int, resource, struct rlimit64 *, rlim);
PRE_MEM_WRITE("getrlimit64(rlim)", ARG2, sizeof(struct vki_rlimit64));
}
POST(sys_getrlimit64)
{
/* Based on common_post_getrlimit() from syswrap-generic.c. */
struct vki_rlimit64 *rlim = (struct vki_rlimit64*)ARG2;
POST_MEM_WRITE(ARG2, sizeof(struct vki_rlimit64));
switch (ARG1 /*resource*/) {
case VKI_RLIMIT_NOFILE:
rlim->rlim_cur = VG_(fd_soft_limit);
rlim->rlim_max = VG_(fd_hard_limit);
break;
case VKI_RLIMIT_DATA:
rlim->rlim_cur = VG_(client_rlimit_data).rlim_cur;
rlim->rlim_max = VG_(client_rlimit_data).rlim_max;
break;
case VKI_RLIMIT_STACK:
rlim->rlim_cur = VG_(client_rlimit_stack).rlim_cur;
rlim->rlim_max = VG_(client_rlimit_stack).rlim_max;
break;
}
}
PRE(sys_pread64)
{
/* ssize32_t pread64(int fd, void *buf, size32_t count,
uint32_t offset_1, uint32_t offset_2);
*/
*flags |= SfMayBlock;
PRINT("sys_pread64 ( %ld, %#lx, %lu, %#lx, %#lx )",
SARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(long, "pread64", int, fd, void *, buf, vki_size32_t, count,
vki_uint32_t, offset_1, vki_uint32_t, offset_2);
PRE_MEM_WRITE("pread64(buf)", ARG2, ARG3);
/* Be strict. */
if (!ML_(fd_allowed)(ARG1, "pread64", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
POST(sys_pread64)
{
POST_MEM_WRITE(ARG2, RES);
}
PRE(sys_pwrite64)
{
/* ssize32_t pwrite64(int fd, void *buf, size32_t count,
uint32_t offset_1, uint32_t offset_2);
*/
*flags |= SfMayBlock;
PRINT("sys_pwrite64 ( %ld, %#lx, %lu, %#lx, %#lx )",
SARG1, ARG2, ARG3, ARG4, ARG5);
PRE_REG_READ5(long, "pwrite64", int, fd, void *, buf, vki_size32_t, count,
vki_uint32_t, offset_1, vki_uint32_t, offset_2);
PRE_MEM_READ("pwrite64(buf)", ARG2, ARG3);
/* Be strict. */
if (!ML_(fd_allowed)(ARG1, "pwrite64", tid, False))
SET_STATUS_Failure(VKI_EBADF);
}
PRE(sys_open64)
{
/* int open64(const char *filename, int flags);
int open64(const char *filename, int flags, mode_t mode); */
*flags |= SfMayBlock;
if (ARG2 & VKI_O_CREAT) {
/* 3-arg version */
PRINT("sys_open64 ( %#lx(%s), %#lx, %ld )", ARG1, (HChar*)ARG1, ARG2,
SARG3);
PRE_REG_READ3(long, "open64", const char *, filename, int, flags,
vki_mode_t, mode);
}
else {
/* 2-arg version */
PRINT("sys_open64 ( %#lx(%s), %#lx )", ARG1, (HChar*)ARG1, ARG2);
PRE_REG_READ2(long, "open64", const char *, filename, int, flags);
}
PRE_MEM_RASCIIZ("open(filename)", ARG1);
}
POST(sys_open64)
{
if (!ML_(fd_allowed)(RES, "open64", tid, True)) {
VG_(close)(RES);
SET_STATUS_Failure(VKI_EMFILE);
}
else if (VG_(clo_track_fds))
ML_(record_fd_open_with_given_name)(tid, RES, (HChar*)ARG1);
}
#undef PRE
#undef POST
#endif // defined(VGP_x86_solaris)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/