/*---------------------------------------------------------------*/
/*--- begin host_mips_defs.h ---*/
/*---------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2010-2017 RT-RK
mips-valgrind@rt-rk.com
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#ifndef __VEX_HOST_MIPS_DEFS_H
#define __VEX_HOST_MIPS_DEFS_H
#include "libvex_basictypes.h"
#include "libvex.h" /* VexArch */
#include "host_generic_regs.h" /* HReg */
/* --------- Registers. --------- */
#define ST_IN static inline
#define GPR(_mode64, _enc, _ix64, _ix32) \
mkHReg(False, (_mode64) ? HRcInt64 : HRcInt32, \
(_enc), (_mode64) ? (_ix64) : (_ix32))
#define FR(_mode64, _enc, _ix64, _ix32) \
mkHReg(False, (_mode64) ? HRcFlt64 : HRcFlt32, \
(_enc), (_mode64) ? (_ix64) : (_ix32))
#define DR(_mode64, _enc, _ix64, _ix32) \
mkHReg(False, HRcFlt64, \
(_enc), (_mode64) ? (_ix64) : (_ix32))
ST_IN HReg hregMIPS_GPR16 ( Bool mode64 ) { return GPR(mode64, 16, 0, 0); }
ST_IN HReg hregMIPS_GPR17 ( Bool mode64 ) { return GPR(mode64, 17, 1, 1); }
ST_IN HReg hregMIPS_GPR18 ( Bool mode64 ) { return GPR(mode64, 18, 2, 2); }
ST_IN HReg hregMIPS_GPR19 ( Bool mode64 ) { return GPR(mode64, 19, 3, 3); }
ST_IN HReg hregMIPS_GPR20 ( Bool mode64 ) { return GPR(mode64, 20, 4, 4); }
ST_IN HReg hregMIPS_GPR21 ( Bool mode64 ) { return GPR(mode64, 21, 5, 5); }
ST_IN HReg hregMIPS_GPR22 ( Bool mode64 ) { return GPR(mode64, 22, 6, 6); }
ST_IN HReg hregMIPS_GPR12 ( Bool mode64 ) { return GPR(mode64, 12, 7, 7); }
ST_IN HReg hregMIPS_GPR13 ( Bool mode64 ) { return GPR(mode64, 13, 8, 8); }
ST_IN HReg hregMIPS_GPR14 ( Bool mode64 ) { return GPR(mode64, 14, 9, 9); }
ST_IN HReg hregMIPS_GPR15 ( Bool mode64 ) { return GPR(mode64, 15, 10, 10); }
ST_IN HReg hregMIPS_GPR24 ( Bool mode64 ) { return GPR(mode64, 24, 11, 11); }
ST_IN HReg hregMIPS_F16 ( Bool mode64 ) { return FR (mode64, 16, 12, 12); }
ST_IN HReg hregMIPS_F18 ( Bool mode64 ) { return FR (mode64, 18, 13, 13); }
ST_IN HReg hregMIPS_F20 ( Bool mode64 ) { return FR (mode64, 20, 14, 14); }
ST_IN HReg hregMIPS_F22 ( Bool mode64 ) { return FR (mode64, 22, 15, 15); }
ST_IN HReg hregMIPS_F24 ( Bool mode64 ) { return FR (mode64, 24, 16, 16); }
ST_IN HReg hregMIPS_F26 ( Bool mode64 ) { return FR (mode64, 26, 17, 17); }
ST_IN HReg hregMIPS_F28 ( Bool mode64 ) { return FR (mode64, 28, 18, 18); }
ST_IN HReg hregMIPS_F30 ( Bool mode64 ) { return FR (mode64, 30, 19, 19); }
// DRs are only allocatable in 32-bit mode, so the 64-bit index numbering
// doesn't advance here.
ST_IN HReg hregMIPS_D0 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 0, 0, 20); }
ST_IN HReg hregMIPS_D1 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 2, 0, 21); }
ST_IN HReg hregMIPS_D2 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 4, 0, 22); }
ST_IN HReg hregMIPS_D3 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 6, 0, 23); }
ST_IN HReg hregMIPS_D4 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 8, 0, 24); }
ST_IN HReg hregMIPS_D5 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 10, 0, 25); }
ST_IN HReg hregMIPS_D6 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 12, 0, 26); }
ST_IN HReg hregMIPS_D7 ( Bool mode64 ) { vassert(!mode64);
return DR (mode64, 14, 0, 27); }
ST_IN HReg hregMIPS_HI ( Bool mode64 ) { return FR (mode64, 33, 20, 28); }
ST_IN HReg hregMIPS_LO ( Bool mode64 ) { return FR (mode64, 34, 21, 29); }
ST_IN HReg hregMIPS_GPR0 ( Bool mode64 ) { return GPR(mode64, 0, 22, 30); }
ST_IN HReg hregMIPS_GPR1 ( Bool mode64 ) { return GPR(mode64, 1, 23, 31); }
ST_IN HReg hregMIPS_GPR2 ( Bool mode64 ) { return GPR(mode64, 2, 24, 32); }
ST_IN HReg hregMIPS_GPR3 ( Bool mode64 ) { return GPR(mode64, 3, 25, 33); }
ST_IN HReg hregMIPS_GPR4 ( Bool mode64 ) { return GPR(mode64, 4, 26, 34); }
ST_IN HReg hregMIPS_GPR5 ( Bool mode64 ) { return GPR(mode64, 5, 27, 35); }
ST_IN HReg hregMIPS_GPR6 ( Bool mode64 ) { return GPR(mode64, 6, 28, 36); }
ST_IN HReg hregMIPS_GPR7 ( Bool mode64 ) { return GPR(mode64, 7, 29, 37); }
ST_IN HReg hregMIPS_GPR8 ( Bool mode64 ) { return GPR(mode64, 8, 30, 38); }
ST_IN HReg hregMIPS_GPR9 ( Bool mode64 ) { return GPR(mode64, 9, 31, 39); }
ST_IN HReg hregMIPS_GPR10 ( Bool mode64 ) { return GPR(mode64, 10, 32, 40); }
ST_IN HReg hregMIPS_GPR11 ( Bool mode64 ) { return GPR(mode64, 11, 33, 41); }
ST_IN HReg hregMIPS_GPR23 ( Bool mode64 ) { return GPR(mode64, 23, 34, 42); }
ST_IN HReg hregMIPS_GPR25 ( Bool mode64 ) { return GPR(mode64, 25, 35, 43); }
ST_IN HReg hregMIPS_GPR29 ( Bool mode64 ) { return GPR(mode64, 29, 36, 44); }
ST_IN HReg hregMIPS_GPR31 ( Bool mode64 ) { return GPR(mode64, 31, 37, 45); }
#undef ST_IN
#undef GPR
#undef FR
#undef DR
#define GuestStatePointer(_mode64) hregMIPS_GPR23(_mode64)
#define StackFramePointer(_mode64) hregMIPS_GPR30(_mode64)
#define StackPointer(_mode64) hregMIPS_GPR29(_mode64)
/* guest_COND offset */
#define COND_OFFSET(_mode64) ((_mode64) ? 588 : 448)
/* Num registers used for function calls */
#if defined(VGP_mips32_linux)
/* a0, a1, a2, a3 */
# define MIPS_N_REGPARMS 4
#else
/* a0, a1, a2, a3, a4, a5, a6, a7 */
# define MIPS_N_REGPARMS 8
#endif
extern void ppHRegMIPS ( HReg, Bool );
/* --------- Condition codes, Intel encoding. --------- */
typedef enum {
MIPScc_EQ = 0, /* equal */
MIPScc_NE = 1, /* not equal */
MIPScc_HS = 2, /* >=u (higher or same) */
MIPScc_LO = 3, /* <u (lower) */
MIPScc_MI = 4, /* minus (negative) */
MIPScc_PL = 5, /* plus (zero or +ve) */
MIPScc_VS = 6, /* overflow */
MIPScc_VC = 7, /* no overflow */
MIPScc_HI = 8, /* >u (higher) */
MIPScc_LS = 9, /* <=u (lower or same) */
MIPScc_GE = 10, /* >=s (signed greater or equal) */
MIPScc_LT = 11, /* <s (signed less than) */
MIPScc_GT = 12, /* >s (signed greater) */
MIPScc_LE = 13, /* <=s (signed less or equal) */
MIPScc_AL = 14, /* always (unconditional) */
MIPScc_NV = 15 /* never (unconditional): */
} MIPSCondCode;
extern const HChar *showMIPSCondCode(MIPSCondCode);
/* --------- Memory address expressions (amodes). --------- */
typedef enum {
Mam_IR, /* Immediate (signed 16-bit) + Reg */
Mam_RR /* Reg1 + Reg2 */
} MIPSAModeTag;
typedef struct {
MIPSAModeTag tag;
union {
struct {
HReg base;
Int index;
} IR;
struct {
HReg base;
HReg index;
} RR;
} Mam;
} MIPSAMode;
extern MIPSAMode *MIPSAMode_IR(Int, HReg);
extern MIPSAMode *MIPSAMode_RR(HReg, HReg);
extern MIPSAMode *dopyMIPSAMode(MIPSAMode *);
extern MIPSAMode *nextMIPSAModeFloat(MIPSAMode *);
extern MIPSAMode *nextMIPSAModeInt(MIPSAMode *);
extern void ppMIPSAMode(MIPSAMode *, Bool);
/* --------- Operand, which can be a reg or a u16/s16. --------- */
/* ("RH" == "Register or Halfword immediate") */
typedef enum {
Mrh_Imm,
Mrh_Reg
} MIPSRHTag;
typedef struct {
MIPSRHTag tag;
union {
struct {
Bool syned;
UShort imm16;
} Imm;
struct {
HReg reg;
} Reg;
} Mrh;
} MIPSRH;
extern void ppMIPSRH(MIPSRH *, Bool);
extern MIPSRH *MIPSRH_Imm(Bool, UShort);
extern MIPSRH *MIPSRH_Reg(HReg);
/* --------- Instructions. --------- */
/*Tags for operations*/
/* --------- */
typedef enum {
Mun_CLO,
Mun_CLZ,
Mun_DCLO,
Mun_DCLZ,
Mun_NOP,
} MIPSUnaryOp;
extern const HChar *showMIPSUnaryOp(MIPSUnaryOp);
/* --------- */
/* --------- */
typedef enum {
Malu_INVALID,
Malu_ADD, Malu_SUB,
Malu_AND, Malu_OR, Malu_NOR, Malu_XOR,
Malu_DADD, Malu_DSUB,
Malu_SLT
} MIPSAluOp;
extern const HChar *showMIPSAluOp(MIPSAluOp,
Bool /* is the 2nd operand an immediate? */ );
/* --------- */
typedef enum {
Mshft_INVALID,
Mshft_SLL, Mshft_SRL,
Mshft_SRA
} MIPSShftOp;
extern const HChar *showMIPSShftOp(MIPSShftOp,
Bool /* is the 2nd operand an immediate? */ ,
Bool /* is this a 32bit or 64bit op? */ );
/* --------- */
typedef enum {
Macc_ADD,
Macc_SUB
} MIPSMaccOp;
extern const HChar *showMIPSMaccOp(MIPSMaccOp, Bool);
/* --------- */
/* ----- Instruction tags ----- */
typedef enum {
Min_LI, /* load word (32/64-bit) immediate (fake insn) */
Min_Alu, /* word add/sub/and/or/xor/nor/others? */
Min_Shft, /* word sll/srl/sra */
Min_Unary, /* clo, clz, nop, neg */
Min_Cmp, /* word compare (fake insn) */
Min_Mul, /* widening/non-widening multiply */
Min_Div, /* div */
Min_Call, /* call to address in register */
/* The following 5 insns are mandated by translation chaining */
Min_XDirect, /* direct transfer to GA */
Min_XIndir, /* indirect transfer to GA */
Min_XAssisted, /* assisted transfer to GA */
Min_EvCheck, /* Event check */
Min_ProfInc, /* 64-bit profile counter increment */
Min_RdWrLR, /* Read/Write Link Register */
Min_Mthi, /* Move to HI from GP register */
Min_Mtlo, /* Move to LO from GP register */
Min_Mfhi, /* Move from HI to GP register */
Min_Mflo, /* Move from LO to GP register */
Min_Macc, /* Multiply and accumulate */
Min_Load, /* zero-extending load a 8|16|32 bit value from mem */
Min_Store, /* store a 8|16|32 bit value to mem */
Min_Cas, /* compare and swap */
Min_LoadL, /* mips Load Linked Word - LL */
Min_StoreC, /* mips Store Conditional Word - SC */
Min_FpUnary, /* FP unary op */
Min_FpBinary, /* FP binary op */
Min_FpTernary, /* FP ternary op */
Min_FpConvert, /* FP conversion op */
Min_FpMulAcc, /* FP multipy-accumulate style op */
Min_FpLdSt, /* FP load/store */
Min_FpSTFIW, /* stfiwx */
Min_FpRSP, /* FP round IEEE754 double to IEEE754 single */
Min_FpCftI, /* fcfid/fctid/fctiw */
Min_FpCMov, /* FP floating point conditional move */
Min_MtFCSR, /* set FCSR register */
Min_MfFCSR, /* get FCSR register */
Min_FpCompare, /* FP compare, generating value into int reg */
Min_FpGpMove, /* Move from/to fpr to/from gpr */
Min_MoveCond /* Move Conditional */
} MIPSInstrTag;
/* --------- */
typedef enum {
Mfp_INVALID,
/* Ternary */
Mfp_MADDD, Mfp_MSUBD,
Mfp_MADDS, Mfp_MSUBS,
/* Binary */
Mfp_ADDD, Mfp_SUBD, Mfp_MULD, Mfp_DIVD,
Mfp_ADDS, Mfp_SUBS, Mfp_MULS, Mfp_DIVS,
/* Unary */
Mfp_SQRTS, Mfp_SQRTD,
Mfp_ABSS, Mfp_ABSD, Mfp_NEGS, Mfp_NEGD, Mfp_MOVS, Mfp_MOVD,
/* FP convert */
Mfp_CVTSD, Mfp_CVTSW, Mfp_CVTWD,
Mfp_CVTWS, Mfp_CVTDL, Mfp_CVTSL, Mfp_CVTLS, Mfp_CVTLD, Mfp_TRULS, Mfp_TRULD,
Mfp_TRUWS, Mfp_TRUWD, Mfp_FLOORWS, Mfp_FLOORWD, Mfp_ROUNDWS, Mfp_ROUNDWD,
Mfp_CVTDW, Mfp_CEILWS, Mfp_CEILWD, Mfp_CEILLS, Mfp_CEILLD, Mfp_CVTDS,
Mfp_ROUNDLD, Mfp_FLOORLD,
/* FP compare */
Mfp_CMP_UN, Mfp_CMP_EQ, Mfp_CMP_LT, Mfp_CMP_NGT
} MIPSFpOp;
extern const HChar *showMIPSFpOp(MIPSFpOp);
/* Move from/to fpr to/from gpr */
typedef enum {
MFpGpMove_mfc1, /* Move Word From Floating Point - MIPS32 */
MFpGpMove_dmfc1, /* Doubleword Move from Floating Point - MIPS64 */
MFpGpMove_mtc1, /* Move Word to Floating Point - MIPS32 */
MFpGpMove_dmtc1 /* Doubleword Move to Floating Point - MIPS64 */
} MIPSFpGpMoveOp;
extern const HChar *showMIPSFpGpMoveOp ( MIPSFpGpMoveOp );
/* Move Conditional */
typedef enum {
MFpMoveCond_movns, /* FP Move Conditional on Not Zero - MIPS32 */
MFpMoveCond_movnd,
MMoveCond_movn /* Move Conditional on Not Zero */
} MIPSMoveCondOp;
extern const HChar *showMIPSMoveCondOp ( MIPSMoveCondOp );
/*--------- Structure for instructions ----------*/
/* Destinations are on the LEFT (first operand) */
typedef struct {
MIPSInstrTag tag;
union {
/* Get a 32/64-bit literal into a register.
May turn into a number of real insns. */
struct {
HReg dst;
ULong imm;
} LI;
/* Integer add/sub/and/or/xor. Limitations:
- For add, the immediate, if it exists, is a signed 16.
- For sub, the immediate, if it exists, is a signed 16
which may not be -32768, since no such instruction
exists, and so we have to emit addi with +32768, but
that is not possible.
- For and/or/xor, the immediate, if it exists,
is an unsigned 16.
*/
struct {
MIPSAluOp op;
HReg dst;
HReg srcL;
MIPSRH *srcR;
} Alu;
/* Integer shl/shr/sar.
Limitations: the immediate, if it exists,
is a signed 5-bit value between 1 and 31 inclusive.
*/
struct {
MIPSShftOp op;
Bool sz32; /* mode64 has both 32 and 64bit shft */
HReg dst;
HReg srcL;
MIPSRH *srcR;
} Shft;
/* Clz, Clo, nop */
struct {
MIPSUnaryOp op;
HReg dst;
HReg src;
} Unary;
/* Word compare. Fake instruction, used for basic block ending */
struct {
Bool syned;
Bool sz32;
HReg dst;
HReg srcL;
HReg srcR;
MIPSCondCode cond;
} Cmp;
struct {
Bool widening; /* True => widening, False => non-widening */
Bool syned; /* signed/unsigned - meaningless if widenind = False */
Bool sz32;
HReg dst;
HReg srcL;
HReg srcR;
} Mul;
struct {
Bool syned; /* signed/unsigned - meaningless if widenind = False */
Bool sz32;
HReg srcL;
HReg srcR;
} Div;
/* Pseudo-insn. Call target (an absolute address), on given
condition (which could be Mcc_ALWAYS). argiregs indicates
which of $4 .. $7 (mips32) or $4 .. $11 (mips64)
carries argument values for this call,
using a bit mask (1<<N is set if $N holds an arg, for N in
$4 .. $7 or $4 .. $11 inclusive).
If cond is != Mcc_ALWAYS, src is checked.
Otherwise, unconditional call */
struct {
MIPSCondCode cond;
Addr64 target;
UInt argiregs;
HReg src;
RetLoc rloc; /* where the return value will be */
} Call;
/* Update the guest EIP value, then exit requesting to chain
to it. May be conditional. Urr, use of Addr32 implicitly
assumes that wordsize(guest) == wordsize(host). */
struct {
Addr64 dstGA; /* next guest address */
MIPSAMode* amPC; /* amode in guest state for PC */
MIPSCondCode cond; /* can be MIPScc_AL */
Bool toFastEP; /* chain to the slow or fast point? */
} XDirect;
/* Boring transfer to a guest address not known at JIT time.
Not chainable. May be conditional. */
struct {
HReg dstGA;
MIPSAMode* amPC;
MIPSCondCode cond; /* can be MIPScc_AL */
} XIndir;
/* Assisted transfer to a guest address, most general case.
Not chainable. May be conditional. */
struct {
HReg dstGA;
MIPSAMode* amPC;
MIPSCondCode cond; /* can be MIPScc_AL */
IRJumpKind jk;
} XAssisted;
/* Zero extending loads. Dst size is host word size */
struct {
UChar sz; /* 1|2|4|8 */
HReg dst;
MIPSAMode *src;
} Load;
/* 64/32/16/8 bit stores */
struct {
UChar sz; /* 1|2|4|8 */
MIPSAMode *dst;
HReg src;
} Store;
struct {
UChar sz; /* 4|8 */
HReg dst;
MIPSAMode *src;
} LoadL;
struct {
UChar sz; /* 4|8 */
HReg old;
HReg addr;
HReg expd;
HReg data;
} Cas;
struct {
UChar sz; /* 4|8 */
MIPSAMode *dst;
HReg src;
} StoreC;
/* Move from HI/LO register to GP register. */
struct {
HReg dst;
} MfHL;
/* Move to HI/LO register from GP register. */
struct {
HReg src;
} MtHL;
/* Read/Write Link Register */
struct {
Bool wrLR;
HReg gpr;
} RdWrLR;
/* MIPS Multiply and accumulate instructions. */
struct {
MIPSMaccOp op;
Bool syned;
HReg srcL;
HReg srcR;
} Macc;
/* MIPS Floating point */
struct {
MIPSFpOp op;
HReg dst;
HReg src;
} FpUnary;
struct {
MIPSFpOp op;
HReg dst;
HReg srcL;
HReg srcR;
} FpBinary;
struct {
MIPSFpOp op;
HReg dst;
HReg src1;
HReg src2;
HReg src3;
} FpTernary;
struct {
MIPSFpOp op;
HReg dst;
HReg srcML;
HReg srcMR;
HReg srcAcc;
} FpMulAcc;
struct {
Bool isLoad;
UChar sz; /* only 4 (IEEE single) or 8 (IEEE double) */
HReg reg;
MIPSAMode *addr;
} FpLdSt;
struct {
MIPSFpOp op;
HReg dst;
HReg src;
} FpConvert;
struct {
MIPSFpOp op;
HReg dst;
HReg srcL;
HReg srcR;
UChar cond1;
} FpCompare;
/* Move from GP register to FCSR register. */
struct {
HReg src;
} MtFCSR;
/* Move from FCSR register to GP register. */
struct {
HReg dst;
} MfFCSR;
struct {
MIPSAMode* amCounter;
MIPSAMode* amFailAddr;
} EvCheck;
struct {
/* No fields. The address of the counter to inc is
installed later, post-translation, by patching it in,
as it is not known at translation time. */
} ProfInc;
/* Move from/to fpr to/from gpr */
struct {
MIPSFpGpMoveOp op;
HReg dst;
HReg src;
} FpGpMove;
struct {
MIPSMoveCondOp op;
HReg dst;
HReg src;
HReg cond;
} MoveCond;
} Min;
} MIPSInstr;
extern MIPSInstr *MIPSInstr_LI(HReg, ULong);
extern MIPSInstr *MIPSInstr_Alu(MIPSAluOp, HReg, HReg, MIPSRH *);
extern MIPSInstr *MIPSInstr_Shft(MIPSShftOp, Bool sz32, HReg, HReg, MIPSRH *);
extern MIPSInstr *MIPSInstr_Unary(MIPSUnaryOp op, HReg dst, HReg src);
extern MIPSInstr *MIPSInstr_Cmp(Bool, Bool, HReg, HReg, HReg, MIPSCondCode);
extern MIPSInstr *MIPSInstr_Mul(Bool syned, Bool hi32, Bool sz32, HReg,
HReg, HReg);
extern MIPSInstr *MIPSInstr_Div(Bool syned, Bool sz32, HReg, HReg);
extern MIPSInstr *MIPSInstr_Madd(Bool, HReg, HReg);
extern MIPSInstr *MIPSInstr_Msub(Bool, HReg, HReg);
extern MIPSInstr *MIPSInstr_Load(UChar sz, HReg dst, MIPSAMode * src,
Bool mode64);
extern MIPSInstr *MIPSInstr_Store(UChar sz, MIPSAMode * dst, HReg src,
Bool mode64);
extern MIPSInstr *MIPSInstr_LoadL(UChar sz, HReg dst, MIPSAMode * src,
Bool mode64);
extern MIPSInstr *MIPSInstr_StoreC(UChar sz, MIPSAMode * dst, HReg src,
Bool mode64);
extern MIPSInstr *MIPSInstr_Cas(UChar sz, HReg old, HReg addr,
HReg expd, HReg data, Bool mode64);
extern MIPSInstr *MIPSInstr_Call ( MIPSCondCode, Addr64, UInt, HReg, RetLoc );
extern MIPSInstr *MIPSInstr_CallAlways ( MIPSCondCode, Addr64, UInt, RetLoc );
extern MIPSInstr *MIPSInstr_XDirect ( Addr64 dstGA, MIPSAMode* amPC,
MIPSCondCode cond, Bool toFastEP );
extern MIPSInstr *MIPSInstr_XIndir(HReg dstGA, MIPSAMode* amPC,
MIPSCondCode cond);
extern MIPSInstr *MIPSInstr_XAssisted(HReg dstGA, MIPSAMode* amPC,
MIPSCondCode cond, IRJumpKind jk);
extern MIPSInstr *MIPSInstr_FpUnary(MIPSFpOp op, HReg dst, HReg src);
extern MIPSInstr *MIPSInstr_FpBinary(MIPSFpOp op, HReg dst, HReg srcL,
HReg srcR);
extern MIPSInstr *MIPSInstr_FpTernary ( MIPSFpOp op, HReg dst, HReg src1,
HReg src2, HReg src3 );
extern MIPSInstr *MIPSInstr_FpConvert(MIPSFpOp op, HReg dst, HReg src);
extern MIPSInstr *MIPSInstr_FpCompare(MIPSFpOp op, HReg dst, HReg srcL,
HReg srcR);
extern MIPSInstr *MIPSInstr_FpMulAcc(MIPSFpOp op, HReg dst, HReg srcML,
HReg srcMR, HReg srcAcc);
extern MIPSInstr *MIPSInstr_FpLdSt(Bool isLoad, UChar sz, HReg, MIPSAMode *);
extern MIPSInstr *MIPSInstr_FpSTFIW(HReg addr, HReg data);
extern MIPSInstr *MIPSInstr_FpRSP(HReg dst, HReg src);
extern MIPSInstr *MIPSInstr_FpCftI(Bool fromI, Bool int32, HReg dst, HReg src);
extern MIPSInstr *MIPSInstr_FpCMov(MIPSCondCode, HReg dst, HReg src);
extern MIPSInstr *MIPSInstr_MtFCSR(HReg src);
extern MIPSInstr *MIPSInstr_MfFCSR(HReg dst);
extern MIPSInstr *MIPSInstr_FpCmp(HReg dst, HReg srcL, HReg srcR);
extern MIPSInstr *MIPSInstr_Mfhi(HReg dst);
extern MIPSInstr *MIPSInstr_Mflo(HReg dst);
extern MIPSInstr *MIPSInstr_Mthi(HReg src);
extern MIPSInstr *MIPSInstr_Mtlo(HReg src);
extern MIPSInstr *MIPSInstr_RdWrLR(Bool wrLR, HReg gpr);
extern MIPSInstr *MIPSInstr_MoveCond ( MIPSMoveCondOp op, HReg dst,
HReg src, HReg cond );
extern MIPSInstr *MIPSInstr_FpGpMove ( MIPSFpGpMoveOp op, HReg dst, HReg src );
extern MIPSInstr *MIPSInstr_EvCheck(MIPSAMode* amCounter,
MIPSAMode* amFailAddr );
extern MIPSInstr *MIPSInstr_ProfInc( void );
extern void ppMIPSInstr(const MIPSInstr *, Bool mode64);
/* Some functions that insulate the register allocator from details
of the underlying instruction set. */
extern void getRegUsage_MIPSInstr (HRegUsage *, const MIPSInstr *, Bool);
extern void mapRegs_MIPSInstr (HRegRemap *, MIPSInstr *, Bool mode64);
extern Bool isMove_MIPSInstr (const MIPSInstr *, HReg *, HReg *);
extern Int emit_MIPSInstr (/*MB_MOD*/Bool* is_profInc,
UChar* buf, Int nbuf, const MIPSInstr* i,
Bool mode64,
VexEndness endness_host,
const void* disp_cp_chain_me_to_slowEP,
const void* disp_cp_chain_me_to_fastEP,
const void* disp_cp_xindir,
const void* disp_cp_xassisted );
extern void genSpill_MIPS ( /*OUT*/ HInstr ** i1, /*OUT*/ HInstr ** i2,
HReg rreg, Int offset, Bool);
extern void genReload_MIPS( /*OUT*/ HInstr ** i1, /*OUT*/ HInstr ** i2,
HReg rreg, Int offset, Bool);
extern const RRegUniverse* getRRegUniverse_MIPS ( Bool mode64 );
extern HInstrArray *iselSB_MIPS ( const IRSB*,
VexArch,
const VexArchInfo*,
const VexAbiInfo*,
Int offs_Host_EvC_Counter,
Int offs_Host_EvC_FailAddr,
Bool chainingAllowed,
Bool addProfInc,
Addr max_ga );
/* How big is an event check? This is kind of a kludge because it
depends on the offsets of host_EvC_FAILADDR and host_EvC_COUNTER,
and so assumes that they are both <= 128, and so can use the short
offset encoding. This is all checked with assertions, so in the
worst case we will merely assert at startup. */
extern Int evCheckSzB_MIPS (void);
/* Perform a chaining and unchaining of an XDirect jump. */
extern VexInvalRange chainXDirect_MIPS ( VexEndness endness_host,
void* place_to_chain,
const void* disp_cp_chain_me_EXPECTED,
const void* place_to_jump_to,
Bool mode64 );
extern VexInvalRange unchainXDirect_MIPS ( VexEndness endness_host,
void* place_to_unchain,
const void* place_to_jump_to_EXPECTED,
const void* disp_cp_chain_me,
Bool mode64 );
/* Patch the counter location into an existing ProfInc point. */
extern VexInvalRange patchProfInc_MIPS ( VexEndness endness_host,
void* place_to_patch,
const ULong* location_of_counter,
Bool mode64 );
#endif /* ndef __VEX_HOST_MIPS_DEFS_H */
/*---------------------------------------------------------------*/
/*--- end host-mips_defs.h ---*/
/*---------------------------------------------------------------*/