// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/api-arguments.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/codegen.h"
#include "src/counters.h"
#include "src/double.h"
#include "src/heap/heap-inl.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/objects-inl.h"
#include "src/objects/regexp-match-info.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/x64/code-stubs-x64.h" // Cannot be the first include.
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ popq(rcx);
__ movq(MemOperand(rsp, rax, times_8, 0), rdi);
__ pushq(rdi);
__ pushq(rbx);
__ pushq(rcx);
__ addq(rax, Immediate(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetRegisterParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
DCHECK(param_count == 0 ||
rax.is(descriptor.GetRegisterParameter(param_count - 1)));
// Push arguments
for (int i = 0; i < param_count; ++i) {
__ Push(descriptor.GetRegisterParameter(i));
}
__ CallExternalReference(miss, param_count);
}
__ Ret();
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
__ PushCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
const int argument_count = 1;
__ PrepareCallCFunction(argument_count);
__ LoadAddress(arg_reg_1,
ExternalReference::isolate_address(isolate()));
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()),
argument_count);
__ PopCallerSaved(save_doubles() ? kSaveFPRegs : kDontSaveFPRegs);
__ ret(0);
}
class FloatingPointHelper : public AllStatic {
public:
enum ConvertUndefined {
CONVERT_UNDEFINED_TO_ZERO,
BAILOUT_ON_UNDEFINED
};
// Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
// If the operands are not both numbers, jump to not_numbers.
// Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
// NumberOperands assumes both are smis or heap numbers.
static void LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers);
};
void DoubleToIStub::Generate(MacroAssembler* masm) {
Register input_reg = this->source();
Register final_result_reg = this->destination();
DCHECK(is_truncating());
Label check_negative, process_64_bits, done;
int double_offset = offset();
// Account for return address and saved regs if input is rsp.
if (input_reg.is(rsp)) double_offset += 3 * kRegisterSize;
MemOperand mantissa_operand(MemOperand(input_reg, double_offset));
MemOperand exponent_operand(MemOperand(input_reg,
double_offset + kDoubleSize / 2));
Register scratch1;
Register scratch_candidates[3] = { rbx, rdx, rdi };
for (int i = 0; i < 3; i++) {
scratch1 = scratch_candidates[i];
if (!final_result_reg.is(scratch1) && !input_reg.is(scratch1)) break;
}
// Since we must use rcx for shifts below, use some other register (rax)
// to calculate the result if ecx is the requested return register.
Register result_reg = final_result_reg.is(rcx) ? rax : final_result_reg;
// Save ecx if it isn't the return register and therefore volatile, or if it
// is the return register, then save the temp register we use in its stead
// for the result.
Register save_reg = final_result_reg.is(rcx) ? rax : rcx;
__ pushq(scratch1);
__ pushq(save_reg);
bool stash_exponent_copy = !input_reg.is(rsp);
__ movl(scratch1, mantissa_operand);
__ Movsd(kScratchDoubleReg, mantissa_operand);
__ movl(rcx, exponent_operand);
if (stash_exponent_copy) __ pushq(rcx);
__ andl(rcx, Immediate(HeapNumber::kExponentMask));
__ shrl(rcx, Immediate(HeapNumber::kExponentShift));
__ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
__ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
__ j(below, &process_64_bits);
// Result is entirely in lower 32-bits of mantissa
int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
__ subl(rcx, Immediate(delta));
__ xorl(result_reg, result_reg);
__ cmpl(rcx, Immediate(31));
__ j(above, &done);
__ shll_cl(scratch1);
__ jmp(&check_negative);
__ bind(&process_64_bits);
__ Cvttsd2siq(result_reg, kScratchDoubleReg);
__ jmp(&done, Label::kNear);
// If the double was negative, negate the integer result.
__ bind(&check_negative);
__ movl(result_reg, scratch1);
__ negl(result_reg);
if (stash_exponent_copy) {
__ cmpl(MemOperand(rsp, 0), Immediate(0));
} else {
__ cmpl(exponent_operand, Immediate(0));
}
__ cmovl(greater, result_reg, scratch1);
// Restore registers
__ bind(&done);
if (stash_exponent_copy) {
__ addp(rsp, Immediate(kDoubleSize));
}
if (!final_result_reg.is(result_reg)) {
DCHECK(final_result_reg.is(rcx));
__ movl(final_result_reg, result_reg);
}
__ popq(save_reg);
__ popq(scratch1);
__ ret(0);
}
void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
// Load operand in rdx into xmm0, or branch to not_numbers.
__ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
__ JumpIfSmi(rdx, &load_smi_rdx);
__ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers); // Argument in rdx is not a number.
__ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1, or branch to not_numbers.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers);
__ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ Cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ Cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent.is(rdx));
const Register scratch = rcx;
const XMMRegister double_result = xmm3;
const XMMRegister double_base = xmm2;
const XMMRegister double_exponent = xmm1;
const XMMRegister double_scratch = xmm4;
Label call_runtime, done, exponent_not_smi, int_exponent;
// Save 1 in double_result - we need this several times later on.
__ movp(scratch, Immediate(1));
__ Cvtlsi2sd(double_result, scratch);
if (exponent_type() == TAGGED) {
__ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear);
__ SmiToInteger32(exponent, exponent);
__ jmp(&int_exponent);
__ bind(&exponent_not_smi);
__ Movsd(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
Label fast_power, try_arithmetic_simplification;
// Detect integer exponents stored as double.
__ DoubleToI(exponent, double_exponent, double_scratch,
TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification,
&try_arithmetic_simplification,
&try_arithmetic_simplification);
__ jmp(&int_exponent);
__ bind(&try_arithmetic_simplification);
__ Cvttsd2si(exponent, double_exponent);
// Skip to runtime if possibly NaN (indicated by the indefinite integer).
__ cmpl(exponent, Immediate(0x1));
__ j(overflow, &call_runtime);
// Using FPU instructions to calculate power.
Label fast_power_failed;
__ bind(&fast_power);
__ fnclex(); // Clear flags to catch exceptions later.
// Transfer (B)ase and (E)xponent onto the FPU register stack.
__ subp(rsp, Immediate(kDoubleSize));
__ Movsd(Operand(rsp, 0), double_exponent);
__ fld_d(Operand(rsp, 0)); // E
__ Movsd(Operand(rsp, 0), double_base);
__ fld_d(Operand(rsp, 0)); // B, E
// Exponent is in st(1) and base is in st(0)
// B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B)
// FYL2X calculates st(1) * log2(st(0))
__ fyl2x(); // X
__ fld(0); // X, X
__ frndint(); // rnd(X), X
__ fsub(1); // rnd(X), X-rnd(X)
__ fxch(1); // X - rnd(X), rnd(X)
// F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1
__ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X)
__ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X)
__ faddp(1); // 2^(X-rnd(X)), rnd(X)
// FSCALE calculates st(0) * 2^st(1)
__ fscale(); // 2^X, rnd(X)
__ fstp(1);
// Bail out to runtime in case of exceptions in the status word.
__ fnstsw_ax();
__ testb(rax, Immediate(0x5F)); // Check for all but precision exception.
__ j(not_zero, &fast_power_failed, Label::kNear);
__ fstp_d(Operand(rsp, 0));
__ Movsd(double_result, Operand(rsp, 0));
__ addp(rsp, Immediate(kDoubleSize));
__ jmp(&done);
__ bind(&fast_power_failed);
__ fninit();
__ addp(rsp, Immediate(kDoubleSize));
__ jmp(&call_runtime);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
const XMMRegister double_scratch2 = double_exponent;
// Back up exponent as we need to check if exponent is negative later.
__ movp(scratch, exponent); // Back up exponent.
__ Movsd(double_scratch, double_base); // Back up base.
__ Movsd(double_scratch2, double_result); // Load double_exponent with 1.
// Get absolute value of exponent.
Label no_neg, while_true, while_false;
__ testl(scratch, scratch);
__ j(positive, &no_neg, Label::kNear);
__ negl(scratch);
__ bind(&no_neg);
__ j(zero, &while_false, Label::kNear);
__ shrl(scratch, Immediate(1));
// Above condition means CF==0 && ZF==0. This means that the
// bit that has been shifted out is 0 and the result is not 0.
__ j(above, &while_true, Label::kNear);
__ Movsd(double_result, double_scratch);
__ j(zero, &while_false, Label::kNear);
__ bind(&while_true);
__ shrl(scratch, Immediate(1));
__ Mulsd(double_scratch, double_scratch);
__ j(above, &while_true, Label::kNear);
__ Mulsd(double_result, double_scratch);
__ j(not_zero, &while_true);
__ bind(&while_false);
// If the exponent is negative, return 1/result.
__ testl(exponent, exponent);
__ j(greater, &done);
__ Divsd(double_scratch2, double_result);
__ Movsd(double_result, double_scratch2);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ Xorpd(double_scratch2, double_scratch2);
__ Ucomisd(double_scratch2, double_result);
// double_exponent aliased as double_scratch2 has already been overwritten
// and may not have contained the exponent value in the first place when the
// input was a smi. We reset it with exponent value before bailing out.
__ j(not_equal, &done);
__ Cvtlsi2sd(double_exponent, exponent);
// Returning or bailing out.
__ bind(&call_runtime);
// Move base to the correct argument register. Exponent is already in xmm1.
__ Movsd(xmm0, double_base);
DCHECK(double_exponent.is(xmm1));
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(2);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
2);
}
// Return value is in xmm0.
__ Movsd(double_result, xmm0);
__ bind(&done);
__ ret(0);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// rsp[0] : return address
// rsp[8] : last_match_info (expected JSArray)
// rsp[16] : previous index
// rsp[24] : subject string
// rsp[32] : JSRegExp object
enum RegExpExecStubArgumentIndices {
JS_REG_EXP_OBJECT_ARGUMENT_INDEX,
SUBJECT_STRING_ARGUMENT_INDEX,
PREVIOUS_INDEX_ARGUMENT_INDEX,
LAST_MATCH_INFO_ARGUMENT_INDEX,
REG_EXP_EXEC_ARGUMENT_COUNT
};
StackArgumentsAccessor args(rsp, REG_EXP_EXEC_ARGUMENT_COUNT,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
Label runtime;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ Load(kScratchRegister, address_of_regexp_stack_memory_size);
__ testp(kScratchRegister, kScratchRegister);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ movp(rax, FieldOperand(rax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
Condition is_smi = masm->CheckSmi(rax);
__ Check(NegateCondition(is_smi),
kUnexpectedTypeForRegExpDataFixedArrayExpected);
__ CmpObjectType(rax, FIXED_ARRAY_TYPE, kScratchRegister);
__ Check(equal, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// rax: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ SmiToInteger32(rbx, FieldOperand(rax, JSRegExp::kDataTagOffset));
__ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
__ j(not_equal, &runtime);
// rax: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ SmiToInteger32(rdx,
FieldOperand(rax, JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures <= offsets vector size / 2 - 1
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ cmpl(rdx, Immediate(Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1));
__ j(above, &runtime);
// Reset offset for possibly sliced string.
__ Set(r14, 0);
__ movp(rdi, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
__ JumpIfSmi(rdi, &runtime);
__ movp(r15, rdi); // Make a copy of the original subject string.
// rax: RegExp data (FixedArray)
// rdi: subject string
// r15: subject string
// Handle subject string according to its encoding and representation:
// (1) Sequential two byte? If yes, go to (9).
// (2) Sequential one byte? If yes, go to (5).
// (3) Sequential or cons? If not, go to (6).
// (4) Cons string. If the string is flat, replace subject with first string
// and go to (1). Otherwise bail out to runtime.
// (5) One byte sequential. Load regexp code for one byte.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (6) Long external string? If not, go to (10).
// (7) External string. Make it, offset-wise, look like a sequential string.
// (8) Is the external string one byte? If yes, go to (5).
// (9) Two byte sequential. Load regexp code for two byte. Go to (E).
// (10) Short external string or not a string? If yes, bail out to runtime.
// (11) Sliced or thin string. Replace subject with parent. Go to (1).
Label seq_one_byte_string /* 5 */, seq_two_byte_string /* 9 */,
external_string /* 7 */, check_underlying /* 1 */,
not_seq_nor_cons /* 6 */, check_code /* E */, not_long_external /* 10 */;
__ bind(&check_underlying);
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
// (1) Sequential two byte? If yes, go to (9).
__ andb(rbx, Immediate(kIsNotStringMask |
kStringRepresentationMask |
kStringEncodingMask |
kShortExternalStringMask));
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string); // Go to (9).
// (2) Sequential one byte? If yes, go to (5).
// Any other sequential string must be one byte.
__ andb(rbx, Immediate(kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask));
__ j(zero, &seq_one_byte_string, Label::kNear); // Go to (5).
// (3) Sequential or cons? If not, go to (6).
// We check whether the subject string is a cons, since sequential strings
// have already been covered.
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kThinStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ cmpp(rbx, Immediate(kExternalStringTag));
__ j(greater_equal, ¬_seq_nor_cons); // Go to (6).
// (4) Cons string. Check that it's flat.
// Replace subject with first string and reload instance type.
__ CompareRoot(FieldOperand(rdi, ConsString::kSecondOffset),
Heap::kempty_stringRootIndex);
__ j(not_equal, &runtime);
__ movp(rdi, FieldOperand(rdi, ConsString::kFirstOffset));
__ jmp(&check_underlying);
// (5) One byte sequential. Load regexp code for one byte.
__ bind(&seq_one_byte_string);
// rax: RegExp data (FixedArray)
__ movp(r11, FieldOperand(rax, JSRegExp::kDataOneByteCodeOffset));
__ Set(rcx, 1); // Type is one byte.
// (E) Carry on. String handling is done.
__ bind(&check_code);
// r11: irregexp code
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// smi (code flushing support)
__ JumpIfSmi(r11, &runtime);
// rdi: sequential subject string (or look-alike, external string)
// r15: original subject string
// rcx: encoding of subject string (1 if one_byte, 0 if two_byte);
// r11: code
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
// We have to use r15 instead of rdi to load the length because rdi might
// have been only made to look like a sequential string when it actually
// is an external string.
__ movp(rbx, args.GetArgumentOperand(PREVIOUS_INDEX_ARGUMENT_INDEX));
__ JumpIfNotSmi(rbx, &runtime);
__ SmiCompare(rbx, FieldOperand(r15, String::kLengthOffset));
__ j(above_equal, &runtime);
__ SmiToInteger64(rbx, rbx);
// rdi: subject string
// rbx: previous index
// rcx: encoding of subject string (1 if one_byte 0 if two_byte);
// r11: code
// All checks done. Now push arguments for native regexp code.
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->regexp_entry_native(), 1);
// Isolates: note we add an additional parameter here (isolate pointer).
static const int kRegExpExecuteArguments = 9;
int argument_slots_on_stack =
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
__ EnterApiExitFrame(argument_slots_on_stack);
// Argument 9: Pass current isolate address.
__ LoadAddress(kScratchRegister,
ExternalReference::isolate_address(isolate()));
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kRegisterSize),
kScratchRegister);
// Argument 8: Indicate that this is a direct call from JavaScript.
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kRegisterSize),
Immediate(1));
// Argument 7: Start (high end) of backtracking stack memory area.
__ Move(kScratchRegister, address_of_regexp_stack_memory_address);
__ movp(r9, Operand(kScratchRegister, 0));
__ Move(kScratchRegister, address_of_regexp_stack_memory_size);
__ addp(r9, Operand(kScratchRegister, 0));
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kRegisterSize), r9);
// Argument 6: Set the number of capture registers to zero to force global
// regexps to behave as non-global. This does not affect non-global regexps.
// Argument 6 is passed in r9 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 4) * kRegisterSize),
Immediate(0));
#else
__ Set(r9, 0);
#endif
// Argument 5: static offsets vector buffer.
__ LoadAddress(
r8, ExternalReference::address_of_static_offsets_vector(isolate()));
// Argument 5 passed in r8 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 5) * kRegisterSize), r8);
#endif
// rdi: subject string
// rbx: previous index
// rcx: encoding of subject string (1 if one_byte 0 if two_byte);
// r11: code
// r14: slice offset
// r15: original subject string
// Argument 2: Previous index.
__ movp(arg_reg_2, rbx);
// Argument 4: End of string data
// Argument 3: Start of string data
Label setup_two_byte, setup_rest, got_length, length_not_from_slice;
// Prepare start and end index of the input.
// Load the length from the original sliced string if that is the case.
__ addp(rbx, r14);
__ SmiToInteger32(arg_reg_3, FieldOperand(r15, String::kLengthOffset));
__ addp(r14, arg_reg_3); // Using arg3 as scratch.
// rbx: start index of the input
// r14: end index of the input
// r15: original subject string
__ testb(rcx, rcx); // Last use of rcx as encoding of subject string.
__ j(zero, &setup_two_byte, Label::kNear);
__ leap(arg_reg_4,
FieldOperand(rdi, r14, times_1, SeqOneByteString::kHeaderSize));
__ leap(arg_reg_3,
FieldOperand(rdi, rbx, times_1, SeqOneByteString::kHeaderSize));
__ jmp(&setup_rest, Label::kNear);
__ bind(&setup_two_byte);
__ leap(arg_reg_4,
FieldOperand(rdi, r14, times_2, SeqTwoByteString::kHeaderSize));
__ leap(arg_reg_3,
FieldOperand(rdi, rbx, times_2, SeqTwoByteString::kHeaderSize));
__ bind(&setup_rest);
// Argument 1: Original subject string.
// The original subject is in the previous stack frame. Therefore we have to
// use rbp, which points exactly to one pointer size below the previous rsp.
// (Because creating a new stack frame pushes the previous rbp onto the stack
// and thereby moves up rsp by one kPointerSize.)
__ movp(arg_reg_1, r15);
// Locate the code entry and call it.
__ addp(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(r11);
__ LeaveApiExitFrame(true);
// Check the result.
Label success;
Label exception;
__ cmpl(rax, Immediate(1));
// We expect exactly one result since we force the called regexp to behave
// as non-global.
__ j(equal, &success, Label::kNear);
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
__ j(equal, &exception);
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
// If none of the above, it can only be retry.
// Handle that in the runtime system.
__ j(not_equal, &runtime);
// For failure return null.
__ LoadRoot(rax, Heap::kNullValueRootIndex);
__ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ movp(rax, args.GetArgumentOperand(JS_REG_EXP_OBJECT_ARGUMENT_INDEX));
__ movp(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
__ SmiToInteger32(rax,
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rax, rax, times_1, 2));
// rdx: Number of capture registers
// Check that the last match info is a FixedArray.
__ movp(rbx, args.GetArgumentOperand(LAST_MATCH_INFO_ARGUMENT_INDEX));
__ JumpIfSmi(rbx, &runtime);
// Check that the object has fast elements.
__ movp(rax, FieldOperand(rbx, HeapObject::kMapOffset));
__ CompareRoot(rax, Heap::kFixedArrayMapRootIndex);
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information. Ensure no overflow in add.
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
__ subl(rax, Immediate(RegExpMatchInfo::kLastMatchOverhead));
__ cmpl(rdx, rax);
__ j(greater, &runtime);
// rbx: last_match_info (FixedArray)
// rdx: number of capture registers
// Store the capture count.
__ Integer32ToSmi(kScratchRegister, rdx);
__ movp(FieldOperand(rbx, RegExpMatchInfo::kNumberOfCapturesOffset),
kScratchRegister);
// Store last subject and last input.
__ movp(rax, args.GetArgumentOperand(SUBJECT_STRING_ARGUMENT_INDEX));
__ movp(FieldOperand(rbx, RegExpMatchInfo::kLastSubjectOffset), rax);
__ movp(rcx, rax);
__ RecordWriteField(rbx, RegExpMatchInfo::kLastSubjectOffset, rax, rdi,
kDontSaveFPRegs);
__ movp(rax, rcx);
__ movp(FieldOperand(rbx, RegExpMatchInfo::kLastInputOffset), rax);
__ RecordWriteField(rbx, RegExpMatchInfo::kLastInputOffset, rax, rdi,
kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
__ LoadAddress(
rcx, ExternalReference::address_of_static_offsets_vector(isolate()));
// rbx: last_match_info (FixedArray)
// rcx: offsets vector
// rdx: number of capture registers
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wrapping after zero.
__ bind(&next_capture);
__ subp(rdx, Immediate(1));
__ j(negative, &done, Label::kNear);
// Read the value from the static offsets vector buffer and make it a smi.
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
__ Integer32ToSmi(rdi, rdi);
// Store the smi value in the last match info.
__ movp(FieldOperand(rbx, rdx, times_pointer_size,
RegExpMatchInfo::kFirstCaptureOffset),
rdi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ movp(rax, rbx);
__ ret(REG_EXP_EXEC_ARGUMENT_COUNT * kPointerSize);
__ bind(&exception);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
Operand pending_exception_operand =
masm->ExternalOperand(pending_exception_address, rbx);
__ movp(rax, pending_exception_operand);
__ LoadRoot(rdx, Heap::kTheHoleValueRootIndex);
__ cmpp(rax, rdx);
__ j(equal, &runtime);
// For exception, throw the exception again.
__ TailCallRuntime(Runtime::kRegExpExecReThrow);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec);
// Deferred code for string handling.
// (6) Long external string? If not, go to (10).
__ bind(¬_seq_nor_cons);
// Compare flags are still set from (3).
__ j(greater, ¬_long_external, Label::kNear); // Go to (10).
// (7) External string. Short external strings have been ruled out.
__ bind(&external_string);
__ movp(rbx, FieldOperand(rdi, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ testb(rbx, Immediate(kIsIndirectStringMask));
__ Assert(zero, kExternalStringExpectedButNotFound);
}
__ movp(rdi, FieldOperand(rdi, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ subp(rdi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
STATIC_ASSERT(kTwoByteStringTag == 0);
// (8) Is the external string one byte? If yes, go to (5).
__ testb(rbx, Immediate(kStringEncodingMask));
__ j(not_zero, &seq_one_byte_string); // Go to (5).
// rdi: subject string (flat two-byte)
// rax: RegExp data (FixedArray)
// (9) Two byte sequential. Load regexp code for two byte. Go to (E).
__ bind(&seq_two_byte_string);
__ movp(r11, FieldOperand(rax, JSRegExp::kDataUC16CodeOffset));
__ Set(rcx, 0); // Type is two byte.
__ jmp(&check_code); // Go to (E).
// (10) Not a string or a short external string? If yes, bail out to runtime.
__ bind(¬_long_external);
// Catch non-string subject or short external string.
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
__ testb(rbx, Immediate(kIsNotStringMask | kShortExternalStringMask));
__ j(not_zero, &runtime);
// (11) Sliced or thin string. Replace subject with parent. Go to (1).
Label thin_string;
__ cmpl(rbx, Immediate(kThinStringTag));
__ j(equal, &thin_string, Label::kNear);
// Load offset into r14 and replace subject string with parent.
__ SmiToInteger32(r14, FieldOperand(rdi, SlicedString::kOffsetOffset));
__ movp(rdi, FieldOperand(rdi, SlicedString::kParentOffset));
__ jmp(&check_underlying);
__ bind(&thin_string);
__ movp(rdi, FieldOperand(rdi, ThinString::kActualOffset));
__ jmp(&check_underlying);
#endif // V8_INTERPRETED_REGEXP
}
static int NegativeComparisonResult(Condition cc) {
DCHECK(cc != equal);
DCHECK((cc == less) || (cc == less_equal)
|| (cc == greater) || (cc == greater_equal));
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}
static void CheckInputType(MacroAssembler* masm, Register input,
CompareICState::State expected, Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ CompareMap(input, masm->isolate()->factory()->heap_number_map());
__ j(not_equal, fail);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ bind(&ok);
}
static void BranchIfNotInternalizedString(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ movp(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzxbp(scratch,
FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ testb(scratch, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
__ j(not_zero, label);
}
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Label runtime_call, check_unequal_objects, done;
Condition cc = GetCondition();
Factory* factory = isolate()->factory();
Label miss;
CheckInputType(masm, rdx, left(), &miss);
CheckInputType(masm, rax, right(), &miss);
// Compare two smis.
Label non_smi, smi_done;
__ JumpIfNotBothSmi(rax, rdx, &non_smi);
__ subp(rdx, rax);
__ j(no_overflow, &smi_done);
__ notp(rdx); // Correct sign in case of overflow. rdx cannot be 0 here.
__ bind(&smi_done);
__ movp(rax, rdx);
__ ret(0);
__ bind(&non_smi);
// The compare stub returns a positive, negative, or zero 64-bit integer
// value in rax, corresponding to result of comparing the two inputs.
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Two identical objects are equal unless they are both NaN or undefined.
{
Label not_identical;
__ cmpp(rax, rdx);
__ j(not_equal, ¬_identical, Label::kNear);
if (cc != equal) {
// Check for undefined. undefined OP undefined is false even though
// undefined == undefined.
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
Label check_for_nan;
__ j(not_equal, &check_for_nan, Label::kNear);
__ Set(rax, NegativeComparisonResult(cc));
__ ret(0);
__ bind(&check_for_nan);
}
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
Label heap_number;
// If it's not a heap number, then return equal for (in)equality operator.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
factory->heap_number_map());
__ j(equal, &heap_number, Label::kNear);
if (cc != equal) {
__ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rcx, FieldOperand(rcx, Map::kInstanceTypeOffset));
// Call runtime on identical objects. Otherwise return equal.
__ cmpb(rcx, Immediate(static_cast<uint8_t>(FIRST_JS_RECEIVER_TYPE)));
__ j(above_equal, &runtime_call, Label::kFar);
// Call runtime on identical symbols since we need to throw a TypeError.
__ cmpb(rcx, Immediate(static_cast<uint8_t>(SYMBOL_TYPE)));
__ j(equal, &runtime_call, Label::kFar);
}
__ Set(rax, EQUAL);
__ ret(0);
__ bind(&heap_number);
// It is a heap number, so return equal if it's not NaN.
// For NaN, return 1 for every condition except greater and
// greater-equal. Return -1 for them, so the comparison yields
// false for all conditions except not-equal.
__ Set(rax, EQUAL);
__ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ Ucomisd(xmm0, xmm0);
__ setcc(parity_even, rax);
// rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
if (cc == greater_equal || cc == greater) {
__ negp(rax);
}
__ ret(0);
__ bind(¬_identical);
}
if (cc == equal) { // Both strict and non-strict.
Label slow; // Fallthrough label.
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
if (strict()) {
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
{
Label not_smis;
__ SelectNonSmi(rbx, rax, rdx, ¬_smis);
// Check if the non-smi operand is a heap number.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
factory->heap_number_map());
// If heap number, handle it in the slow case.
__ j(equal, &slow);
// Return non-equal. ebx (the lower half of rbx) is not zero.
__ movp(rax, rbx);
__ ret(0);
__ bind(¬_smis);
}
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// If the first object is a JS object, we have done pointer comparison.
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Label first_non_object;
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(below, &first_non_object, Label::kNear);
// Return non-zero (rax (not rax) is not zero)
Label return_not_equal;
STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
}
__ bind(&slow);
}
// Generate the number comparison code.
Label non_number_comparison;
Label unordered;
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
__ xorl(rax, rax);
__ xorl(rcx, rcx);
__ Ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
__ setcc(above, rax);
__ setcc(below, rcx);
__ subp(rax, rcx);
__ ret(0);
// If one of the numbers was NaN, then the result is always false.
// The cc is never not-equal.
__ bind(&unordered);
DCHECK(cc != not_equal);
if (cc == less || cc == less_equal) {
__ Set(rax, 1);
} else {
__ Set(rax, -1);
}
__ ret(0);
// The number comparison code did not provide a valid result.
__ bind(&non_number_comparison);
// Fast negative check for internalized-to-internalized equality.
Label check_for_strings;
if (cc == equal) {
BranchIfNotInternalizedString(
masm, &check_for_strings, rax, kScratchRegister);
BranchIfNotInternalizedString(
masm, &check_for_strings, rdx, kScratchRegister);
// We've already checked for object identity, so if both operands are
// internalized strings they aren't equal. Register rax (not rax) already
// holds a non-zero value, which indicates not equal, so just return.
__ ret(0);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialOneByteStrings(rdx, rax, rcx, rbx,
&check_unequal_objects);
// Inline comparison of one-byte strings.
if (cc == equal) {
StringHelper::GenerateFlatOneByteStringEquals(masm, rdx, rax, rcx, rbx);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, rdx, rax, rcx, rbx,
rdi, r8);
}
#ifdef DEBUG
__ Abort(kUnexpectedFallThroughFromStringComparison);
#endif
__ bind(&check_unequal_objects);
if (cc == equal && !strict()) {
// Not strict equality. Objects are unequal if
// they are both JSObjects and not undetectable,
// and their pointers are different.
Label return_equal, return_unequal, undetectable;
// At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
__ leap(rcx, Operand(rax, rdx, times_1, 0));
__ testb(rcx, Immediate(kSmiTagMask));
__ j(not_zero, &runtime_call, Label::kNear);
__ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &undetectable, Label::kNear);
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &return_unequal, Label::kNear);
__ CmpInstanceType(rbx, FIRST_JS_RECEIVER_TYPE);
__ j(below, &runtime_call, Label::kNear);
__ CmpInstanceType(rcx, FIRST_JS_RECEIVER_TYPE);
__ j(below, &runtime_call, Label::kNear);
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in rax.
__ ret(0);
__ bind(&undetectable);
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal, Label::kNear);
// If both sides are JSReceivers, then the result is false according to
// the HTML specification, which says that only comparisons with null or
// undefined are affected by special casing for document.all.
__ CmpInstanceType(rbx, ODDBALL_TYPE);
__ j(zero, &return_equal, Label::kNear);
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(not_zero, &return_unequal, Label::kNear);
__ bind(&return_equal);
__ Set(rax, EQUAL);
__ ret(0);
}
__ bind(&runtime_call);
if (cc == equal) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rsi);
__ Call(strict() ? isolate()->builtins()->StrictEqual()
: isolate()->builtins()->Equal(),
RelocInfo::CODE_TARGET);
__ Pop(rsi);
}
// Turn true into 0 and false into some non-zero value.
STATIC_ASSERT(EQUAL == 0);
__ LoadRoot(rdx, Heap::kTrueValueRootIndex);
__ subp(rax, rdx);
__ Ret();
} else {
// Push arguments below the return address to prepare jump to builtin.
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ Push(rax);
__ Push(Smi::FromInt(NegativeComparisonResult(cc)));
__ PushReturnAddressFrom(rcx);
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
// rax : number of arguments to the construct function
// rbx : feedback vector
// rdx : slot in feedback vector (Smi)
// rdi : the function to call
FrameScope scope(masm, StackFrame::INTERNAL);
// Number-of-arguments register must be smi-tagged to call out.
__ Integer32ToSmi(rax, rax);
__ Push(rax);
__ Push(rdi);
__ Integer32ToSmi(rdx, rdx);
__ Push(rdx);
__ Push(rbx);
__ Push(rsi);
__ CallStub(stub);
__ Pop(rsi);
__ Pop(rbx);
__ Pop(rdx);
__ Pop(rdi);
__ Pop(rax);
__ SmiToInteger32(rdx, rdx);
__ SmiToInteger32(rax, rax);
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a feedback vector slot. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// rax : number of arguments to the construct function
// rbx : feedback vector
// rdx : slot in feedback vector (Smi)
// rdi : the function to call
Isolate* isolate = masm->isolate();
Label initialize, done, miss, megamorphic, not_array_function;
// Load the cache state into r11.
__ SmiToInteger32(rdx, rdx);
__ movp(r11,
FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
// We don't know if r11 is a WeakCell or a Symbol, but it's harmless to read
// at this position in a symbol (see static asserts in feedback-vector.h).
Label check_allocation_site;
__ cmpp(rdi, FieldOperand(r11, WeakCell::kValueOffset));
__ j(equal, &done, Label::kFar);
__ CompareRoot(r11, Heap::kmegamorphic_symbolRootIndex);
__ j(equal, &done, Label::kFar);
__ CompareRoot(FieldOperand(r11, HeapObject::kMapOffset),
Heap::kWeakCellMapRootIndex);
__ j(not_equal, &check_allocation_site);
// If the weak cell is cleared, we have a new chance to become monomorphic.
__ CheckSmi(FieldOperand(r11, WeakCell::kValueOffset));
__ j(equal, &initialize);
__ jmp(&megamorphic);
__ bind(&check_allocation_site);
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite.
__ CompareRoot(FieldOperand(r11, 0), Heap::kAllocationSiteMapRootIndex);
__ j(not_equal, &miss);
// Make sure the function is the Array() function
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11);
__ cmpp(rdi, r11);
__ j(not_equal, &megamorphic);
__ jmp(&done);
__ bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ CompareRoot(r11, Heap::kuninitialized_symbolRootIndex);
__ j(equal, &initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ bind(&megamorphic);
__ Move(FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize),
FeedbackVector::MegamorphicSentinel(isolate));
__ jmp(&done);
// An uninitialized cache is patched with the function or sentinel to
// indicate the ElementsKind if function is the Array constructor.
__ bind(&initialize);
// Make sure the function is the Array() function
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r11);
__ cmpp(rdi, r11);
__ j(not_equal, ¬_array_function);
CreateAllocationSiteStub create_stub(isolate);
CallStubInRecordCallTarget(masm, &create_stub);
__ jmp(&done);
__ bind(¬_array_function);
CreateWeakCellStub weak_cell_stub(isolate);
CallStubInRecordCallTarget(masm, &weak_cell_stub);
__ bind(&done);
// Increment the call count for all function calls.
__ SmiAddConstant(FieldOperand(rbx, rdx, times_pointer_size,
FixedArray::kHeaderSize + kPointerSize),
Smi::FromInt(1));
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// rax : number of arguments
// rbx : feedback vector
// rdx : slot in feedback vector (Smi)
// rdi : constructor function
Label non_function;
// Check that the constructor is not a smi.
__ JumpIfSmi(rdi, &non_function);
// Check that constructor is a JSFunction.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, r11);
__ j(not_equal, &non_function);
GenerateRecordCallTarget(masm);
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into rbx, or undefined.
__ movp(rbx,
FieldOperand(rbx, rdx, times_pointer_size, FixedArray::kHeaderSize));
__ CompareRoot(FieldOperand(rbx, 0), Heap::kAllocationSiteMapRootIndex);
__ j(equal, &feedback_register_initialized, Label::kNear);
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
__ AssertUndefinedOrAllocationSite(rbx);
// Pass new target to construct stub.
__ movp(rdx, rdi);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
__ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset));
__ leap(rcx, FieldOperand(rcx, Code::kHeaderSize));
__ jmp(rcx);
__ bind(&non_function);
__ movp(rdx, rdi);
__ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
bool CEntryStub::NeedsImmovableCode() {
return false;
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
// It is important that the store buffer overflow stubs are generated first.
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
CreateWeakCellStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub save_doubles(isolate, 1, kSaveFPRegs);
save_doubles.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
//
// If argv_in_register():
// r15: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
// stack to be aligned to 16 bytes. It only allows a single-word to be
// returned in register rax. Larger return sizes must be written to an address
// passed as a hidden first argument.
const Register kCCallArg0 = rcx;
const Register kCCallArg1 = rdx;
const Register kCCallArg2 = r8;
const Register kCCallArg3 = r9;
const int kArgExtraStackSpace = 2;
const int kMaxRegisterResultSize = 1;
#else
// GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
// are returned in rax, and a struct of two pointers are returned in rax+rdx.
// Larger return sizes must be written to an address passed as a hidden first
// argument.
const Register kCCallArg0 = rdi;
const Register kCCallArg1 = rsi;
const Register kCCallArg2 = rdx;
const Register kCCallArg3 = rcx;
const int kArgExtraStackSpace = 0;
const int kMaxRegisterResultSize = 2;
#endif // _WIN64
// Enter the exit frame that transitions from JavaScript to C++.
int arg_stack_space =
kArgExtraStackSpace +
(result_size() <= kMaxRegisterResultSize ? 0 : result_size());
if (argv_in_register()) {
DCHECK(!save_doubles());
DCHECK(!is_builtin_exit());
__ EnterApiExitFrame(arg_stack_space);
// Move argc into r14 (argv is already in r15).
__ movp(r14, rax);
} else {
__ EnterExitFrame(
arg_stack_space, save_doubles(),
is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
}
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r15: argv pointer (C callee-saved).
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
// Call C function. The arguments object will be created by stubs declared by
// DECLARE_RUNTIME_FUNCTION().
if (result_size() <= kMaxRegisterResultSize) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax), or a register pair (rax, rdx).
__ movp(kCCallArg0, r14); // argc.
__ movp(kCCallArg1, r15); // argv.
__ Move(kCCallArg2, ExternalReference::isolate_address(isolate()));
} else {
DCHECK_LE(result_size(), 3);
// Pass a pointer to the result location as the first argument.
__ leap(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
// Pass a pointer to the Arguments object as the second argument.
__ movp(kCCallArg1, r14); // argc.
__ movp(kCCallArg2, r15); // argv.
__ Move(kCCallArg3, ExternalReference::isolate_address(isolate()));
}
__ call(rbx);
if (result_size() > kMaxRegisterResultSize) {
// Read result values stored on stack. Result is stored
// above the the two Arguments object slots on Win64.
DCHECK_LE(result_size(), 3);
__ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
__ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
if (result_size() > 2) {
__ movq(kReturnRegister2, StackSpaceOperand(kArgExtraStackSpace + 2));
}
}
// Result is in rax, rdx:rax or r8:rdx:rax - do not destroy these registers!
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(rax, Heap::kExceptionRootIndex);
__ j(equal, &exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
__ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
Operand pending_exception_operand =
masm->ExternalOperand(pending_exception_address);
__ cmpp(r14, pending_exception_operand);
__ j(equal, &okay, Label::kNear);
__ int3();
__ bind(&okay);
}
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles(), !argv_in_register());
__ ret(0);
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
Isolate::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_code_address(
Isolate::kPendingHandlerCodeAddress, isolate());
ExternalReference pending_handler_offset_address(
Isolate::kPendingHandlerOffsetAddress, isolate());
ExternalReference pending_handler_fp_address(
Isolate::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
Isolate::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set rax to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ movp(arg_reg_1, Immediate(0)); // argc.
__ movp(arg_reg_2, Immediate(0)); // argv.
__ Move(arg_reg_3, ExternalReference::isolate_address(isolate()));
__ PrepareCallCFunction(3);
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ movp(rsi, masm->ExternalOperand(pending_handler_context_address));
__ movp(rsp, masm->ExternalOperand(pending_handler_sp_address));
__ movp(rbp, masm->ExternalOperand(pending_handler_fp_address));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (rsi == 0) for non-JS frames.
Label skip;
__ testp(rsi, rsi);
__ j(zero, &skip, Label::kNear);
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
__ bind(&skip);
// Compute the handler entry address and jump to it.
__ movp(rdi, masm->ExternalOperand(pending_handler_code_address));
__ movp(rdx, masm->ExternalOperand(pending_handler_offset_address));
__ leap(rdi, FieldOperand(rdi, rdx, times_1, Code::kHeaderSize));
__ jmp(rdi);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
Label invoke, handler_entry, exit;
Label not_outermost_js, not_outermost_js_2;
ProfileEntryHookStub::MaybeCallEntryHook(masm);
{ // NOLINT. Scope block confuses linter.
MacroAssembler::NoRootArrayScope uninitialized_root_register(masm);
// Set up frame.
__ pushq(rbp);
__ movp(rbp, rsp);
// Push the stack frame type.
__ Push(Immediate(StackFrame::TypeToMarker(type()))); // context slot
ExternalReference context_address(Isolate::kContextAddress, isolate());
__ Load(kScratchRegister, context_address);
__ Push(kScratchRegister); // context
// Save callee-saved registers (X64/X32/Win64 calling conventions).
__ pushq(r12);
__ pushq(r13);
__ pushq(r14);
__ pushq(r15);
#ifdef _WIN64
__ pushq(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
__ pushq(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
__ pushq(rbx);
#ifdef _WIN64
// On Win64 XMM6-XMM15 are callee-save
__ subp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
__ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
#endif
// Set up the roots and smi constant registers.
// Needs to be done before any further smi loads.
__ InitializeRootRegister();
}
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate());
{
Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
__ Push(c_entry_fp_operand);
}
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ Load(rax, js_entry_sp);
__ testp(rax, rax);
__ j(not_zero, ¬_outermost_js);
__ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ movp(rax, rbp);
__ Store(js_entry_sp, rax);
Label cont;
__ jmp(&cont);
__ bind(¬_outermost_js);
__ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ jmp(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Isolate::kPendingExceptionAddress,
isolate());
__ Store(pending_exception, rax);
__ LoadRoot(rax, Heap::kExceptionRootIndex);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushStackHandler();
// Fake a receiver (NULL).
__ Push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline builtin and
// pop the faked function when we return. We load the address from an
// external reference instead of inlining the call target address directly
// in the code, because the builtin stubs may not have been generated yet
// at the time this code is generated.
if (type() == StackFrame::ENTRY_CONSTRUCT) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate());
__ Load(rax, construct_entry);
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
__ Load(rax, entry);
}
__ leap(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
__ call(kScratchRegister);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit);
// Check if the current stack frame is marked as the outermost JS frame.
__ Pop(rbx);
__ cmpp(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ j(not_equal, ¬_outermost_js_2);
__ Move(kScratchRegister, js_entry_sp);
__ movp(Operand(kScratchRegister, 0), Immediate(0));
__ bind(¬_outermost_js_2);
// Restore the top frame descriptor from the stack.
{ Operand c_entry_fp_operand = masm->ExternalOperand(c_entry_fp);
__ Pop(c_entry_fp_operand);
}
// Restore callee-saved registers (X64 conventions).
#ifdef _WIN64
// On Win64 XMM6-XMM15 are callee-save
__ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
__ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
__ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
__ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
__ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
__ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
__ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
__ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
__ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
__ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
__ addp(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
#endif
__ popq(rbx);
#ifdef _WIN64
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
__ popq(rsi);
__ popq(rdi);
#endif
__ popq(r15);
__ popq(r14);
__ popq(r13);
__ popq(r12);
__ addp(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ popq(rbp);
__ ret(0);
}
// -------------------------------------------------------------------------
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
if (check_mode_ == RECEIVER_IS_UNKNOWN) {
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ testb(result_, Immediate(kIsNotStringMask));
__ j(not_zero, receiver_not_string_);
}
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ SmiCompare(index_, FieldOperand(object_, String::kLengthOffset));
__ j(above_equal, index_out_of_range_);
__ SmiToInteger32(index_, index_);
StringCharLoadGenerator::Generate(
masm, object_, index_, result_, &call_runtime_);
__ Integer32ToSmi(result_, result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
Factory* factory = masm->isolate()->factory();
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_,
factory->heap_number_map(),
index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Push(LoadWithVectorDescriptor::VectorRegister());
__ Push(LoadDescriptor::SlotRegister());
}
__ Push(object_);
__ Push(index_); // Consumed by runtime conversion function.
__ CallRuntime(Runtime::kNumberToSmi);
if (!index_.is(rax)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ movp(index_, rax);
}
__ Pop(object_);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Pop(LoadDescriptor::SlotRegister());
__ Pop(LoadWithVectorDescriptor::VectorRegister());
}
// Reload the instance type.
__ movp(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ Push(object_);
__ Integer32ToSmi(index_, index_);
__ Push(index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT);
if (!result_.is(rax)) {
__ movp(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2) {
Register length = scratch1;
// Compare lengths.
Label check_zero_length;
__ movp(length, FieldOperand(left, String::kLengthOffset));
__ SmiCompare(length, FieldOperand(right, String::kLengthOffset));
__ j(equal, &check_zero_length, Label::kNear);
__ Move(rax, Smi::FromInt(NOT_EQUAL));
__ ret(0);
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ SmiTest(length);
__ j(not_zero, &compare_chars, Label::kNear);
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
// Compare characters.
__ bind(&compare_chars);
Label strings_not_equal;
GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
&strings_not_equal, Label::kNear);
// Characters are equal.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
// Characters are not equal.
__ bind(&strings_not_equal);
__ Move(rax, Smi::FromInt(NOT_EQUAL));
__ ret(0);
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4) {
// Ensure that you can always subtract a string length from a non-negative
// number (e.g. another length).
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
// Find minimum length and length difference.
__ movp(scratch1, FieldOperand(left, String::kLengthOffset));
__ movp(scratch4, scratch1);
__ SmiSub(scratch4,
scratch4,
FieldOperand(right, String::kLengthOffset));
// Register scratch4 now holds left.length - right.length.
const Register length_difference = scratch4;
Label left_shorter;
__ j(less, &left_shorter, Label::kNear);
// The right string isn't longer that the left one.
// Get the right string's length by subtracting the (non-negative) difference
// from the left string's length.
__ SmiSub(scratch1, scratch1, length_difference);
__ bind(&left_shorter);
// Register scratch1 now holds Min(left.length, right.length).
const Register min_length = scratch1;
Label compare_lengths;
// If min-length is zero, go directly to comparing lengths.
__ SmiTest(min_length);
__ j(zero, &compare_lengths, Label::kNear);
// Compare loop.
Label result_not_equal;
GenerateOneByteCharsCompareLoop(
masm, left, right, min_length, scratch2, &result_not_equal,
// In debug-code mode, SmiTest below might push
// the target label outside the near range.
Label::kFar);
// Completed loop without finding different characters.
// Compare lengths (precomputed).
__ bind(&compare_lengths);
__ SmiTest(length_difference);
Label length_not_equal;
__ j(not_zero, &length_not_equal, Label::kNear);
// Result is EQUAL.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
Label result_greater;
Label result_less;
__ bind(&length_not_equal);
__ j(greater, &result_greater, Label::kNear);
__ jmp(&result_less, Label::kNear);
__ bind(&result_not_equal);
// Unequal comparison of left to right, either character or length.
__ j(above, &result_greater, Label::kNear);
__ bind(&result_less);
// Result is LESS.
__ Move(rax, Smi::FromInt(LESS));
__ ret(0);
// Result is GREATER.
__ bind(&result_greater);
__ Move(rax, Smi::FromInt(GREATER));
__ ret(0);
}
void StringHelper::GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch, Label* chars_not_equal, Label::Distance near_jump) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiToInteger32(length, length);
__ leap(left,
FieldOperand(left, length, times_1, SeqOneByteString::kHeaderSize));
__ leap(right,
FieldOperand(right, length, times_1, SeqOneByteString::kHeaderSize));
__ negq(length);
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ movb(scratch, Operand(left, index, times_1, 0));
__ cmpb(scratch, Operand(right, index, times_1, 0));
__ j(not_equal, chars_not_equal, near_jump);
__ incq(index);
__ j(not_zero, &loop);
}
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdx : left
// -- rax : right
// -- rsp[0] : return address
// -----------------------------------
// Load rcx with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
__ Move(rcx, isolate()->factory()->undefined_value());
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
__ testb(rcx, Immediate(kSmiTagMask));
__ Assert(not_equal, kExpectedAllocationSite);
__ Cmp(FieldOperand(rcx, HeapObject::kMapOffset),
isolate()->factory()->allocation_site_map());
__ Assert(equal, kExpectedAllocationSite);
}
// Tail call into the stub that handles binary operations with allocation
// sites.
BinaryOpWithAllocationSiteStub stub(isolate(), state());
__ TailCallStub(&stub);
}
void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::BOOLEAN, state());
Label miss;
Label::Distance const miss_distance =
masm->emit_debug_code() ? Label::kFar : Label::kNear;
__ JumpIfSmi(rdx, &miss, miss_distance);
__ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset));
__ JumpIfSmi(rax, &miss, miss_distance);
__ movp(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ JumpIfNotRoot(rcx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
__ JumpIfNotRoot(rbx, Heap::kBooleanMapRootIndex, &miss, miss_distance);
if (!Token::IsEqualityOp(op())) {
__ movp(rax, FieldOperand(rax, Oddball::kToNumberOffset));
__ AssertSmi(rax);
__ movp(rdx, FieldOperand(rdx, Oddball::kToNumberOffset));
__ AssertSmi(rdx);
__ pushq(rax);
__ movq(rax, rdx);
__ popq(rdx);
}
__ subp(rax, rdx);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateSmis(MacroAssembler* masm) {
DCHECK(state() == CompareICState::SMI);
Label miss;
__ JumpIfNotBothSmi(rdx, rax, &miss, Label::kNear);
if (GetCondition() == equal) {
// For equality we do not care about the sign of the result.
__ subp(rax, rdx);
} else {
Label done;
__ subp(rdx, rax);
__ j(no_overflow, &done, Label::kNear);
// Correct sign of result in case of overflow.
__ notp(rdx);
__ bind(&done);
__ movp(rax, rdx);
}
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
DCHECK(state() == CompareICState::NUMBER);
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
if (left() == CompareICState::SMI) {
__ JumpIfNotSmi(rdx, &miss);
}
if (right() == CompareICState::SMI) {
__ JumpIfNotSmi(rax, &miss);
}
// Load left and right operand.
Label done, left, left_smi, right_smi;
__ JumpIfSmi(rax, &right_smi, Label::kNear);
__ CompareMap(rax, isolate()->factory()->heap_number_map());
__ j(not_equal, &maybe_undefined1, Label::kNear);
__ Movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&left, Label::kNear);
__ bind(&right_smi);
__ SmiToInteger32(rcx, rax); // Can't clobber rax yet.
__ Cvtlsi2sd(xmm1, rcx);
__ bind(&left);
__ JumpIfSmi(rdx, &left_smi, Label::kNear);
__ CompareMap(rdx, isolate()->factory()->heap_number_map());
__ j(not_equal, &maybe_undefined2, Label::kNear);
__ Movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&left_smi);
__ SmiToInteger32(rcx, rdx); // Can't clobber rdx yet.
__ Cvtlsi2sd(xmm0, rcx);
__ bind(&done);
// Compare operands
__ Ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered, Label::kNear);
// Return a result of -1, 0, or 1, based on EFLAGS.
// Performing mov, because xor would destroy the flag register.
__ movl(rax, Immediate(0));
__ movl(rcx, Immediate(0));
__ setcc(above, rax); // Add one to zero if carry clear and not equal.
__ sbbp(rax, rcx); // Subtract one if below (aka. carry set).
__ ret(0);
__ bind(&unordered);
__ bind(&generic_stub);
CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
CompareICState::GENERIC, CompareICState::GENERIC);
__ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ Cmp(rax, isolate()->factory()->undefined_value());
__ j(not_equal, &miss);
__ JumpIfSmi(rdx, &unordered);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
__ j(not_equal, &maybe_undefined2, Label::kNear);
__ jmp(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ Cmp(rdx, isolate()->factory()->undefined_value());
__ j(equal, &unordered);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::INTERNALIZED_STRING);
DCHECK(GetCondition() == equal);
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
Register tmp1 = rcx;
Register tmp2 = rbx;
// Check that both operands are heap objects.
Label miss;
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
__ j(cond, &miss, Label::kNear);
// Check that both operands are internalized strings.
__ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ orp(tmp1, tmp2);
__ testb(tmp1, Immediate(kIsNotStringMask | kIsNotInternalizedMask));
__ j(not_zero, &miss, Label::kNear);
// Internalized strings are compared by identity.
Label done;
__ cmpp(left, right);
// Make sure rax is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(rax));
__ j(not_equal, &done, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(rax, Smi::FromInt(EQUAL));
__ bind(&done);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
DCHECK(state() == CompareICState::UNIQUE_NAME);
DCHECK(GetCondition() == equal);
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
Register tmp1 = rcx;
Register tmp2 = rbx;
// Check that both operands are heap objects.
Label miss;
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
__ j(cond, &miss, Label::kNear);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
__ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(tmp1, &miss, Label::kNear);
__ JumpIfNotUniqueNameInstanceType(tmp2, &miss, Label::kNear);
// Unique names are compared by identity.
Label done;
__ cmpp(left, right);
// Make sure rax is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(rax));
__ j(not_equal, &done, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(rax, Smi::FromInt(EQUAL));
__ bind(&done);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::STRING);
Label miss;
bool equality = Token::IsEqualityOp(op());
// Registers containing left and right operands respectively.
Register left = rdx;
Register right = rax;
Register tmp1 = rcx;
Register tmp2 = rbx;
Register tmp3 = rdi;
// Check that both operands are heap objects.
Condition cond = masm->CheckEitherSmi(left, right, tmp1);
__ j(cond, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ movp(tmp1, FieldOperand(left, HeapObject::kMapOffset));
__ movp(tmp2, FieldOperand(right, HeapObject::kMapOffset));
__ movzxbp(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset));
__ movzxbp(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset));
__ movp(tmp3, tmp1);
STATIC_ASSERT(kNotStringTag != 0);
__ orp(tmp3, tmp2);
__ testb(tmp3, Immediate(kIsNotStringMask));
__ j(not_zero, &miss);
// Fast check for identical strings.
Label not_same;
__ cmpp(left, right);
__ j(not_equal, ¬_same, Label::kNear);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
// Handle not identical strings.
__ bind(¬_same);
// Check that both strings are internalized strings. If they are, we're done
// because we already know they are not identical. We also know they are both
// strings.
if (equality) {
Label do_compare;
STATIC_ASSERT(kInternalizedTag == 0);
__ orp(tmp1, tmp2);
__ testb(tmp1, Immediate(kIsNotInternalizedMask));
__ j(not_zero, &do_compare, Label::kNear);
// Make sure rax is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(rax));
__ ret(0);
__ bind(&do_compare);
}
// Check that both strings are sequential one-byte.
Label runtime;
__ JumpIfNotBothSequentialOneByteStrings(left, right, tmp1, tmp2, &runtime);
// Compare flat one-byte strings. Returns when done.
if (equality) {
StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
tmp2);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(
masm, left, right, tmp1, tmp2, tmp3, kScratchRegister);
}
// Handle more complex cases in runtime.
__ bind(&runtime);
if (equality) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(left);
__ Push(right);
__ CallRuntime(Runtime::kStringEqual);
}
__ LoadRoot(rdx, Heap::kTrueValueRootIndex);
__ subp(rax, rdx);
__ Ret();
} else {
__ PopReturnAddressTo(tmp1);
__ Push(left);
__ Push(right);
__ PushReturnAddressFrom(tmp1);
__ TailCallRuntime(Runtime::kStringCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::RECEIVER, state());
Label miss;
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
__ j(either_smi, &miss, Label::kNear);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
__ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(below, &miss, Label::kNear);
__ CmpObjectType(rdx, FIRST_JS_RECEIVER_TYPE, rcx);
__ j(below, &miss, Label::kNear);
DCHECK_EQ(equal, GetCondition());
__ subp(rax, rdx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Label miss;
Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
__ j(either_smi, &miss, Label::kNear);
__ GetWeakValue(rdi, cell);
__ cmpp(FieldOperand(rdx, HeapObject::kMapOffset), rdi);
__ j(not_equal, &miss, Label::kNear);
__ cmpp(FieldOperand(rax, HeapObject::kMapOffset), rdi);
__ j(not_equal, &miss, Label::kNear);
if (Token::IsEqualityOp(op())) {
__ subp(rax, rdx);
__ ret(0);
} else {
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ Push(rax);
__ Push(Smi::FromInt(NegativeComparisonResult(GetCondition())));
__ PushReturnAddressFrom(rcx);
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(rdx);
__ Push(rax);
__ Push(rdx);
__ Push(rax);
__ Push(Smi::FromInt(op()));
__ CallRuntime(Runtime::kCompareIC_Miss);
// Compute the entry point of the rewritten stub.
__ leap(rdi, FieldOperand(rax, Code::kHeaderSize));
__ Pop(rax);
__ Pop(rdx);
}
// Do a tail call to the rewritten stub.
__ jmp(rdi);
}
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register properties,
Handle<Name> name,
Register r0) {
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// r0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = r0;
// Capacity is smi 2^n.
__ SmiToInteger32(index, FieldOperand(properties, kCapacityOffset));
__ decl(index);
__ andp(index,
Immediate(name->Hash() + NameDictionary::GetProbeOffset(i)));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ leap(index, Operand(index, index, times_2, 0)); // index *= 3.
Register entity_name = r0;
// Having undefined at this place means the name is not contained.
STATIC_ASSERT(kSmiTagSize == 1);
__ movp(entity_name, Operand(properties,
index,
times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ Cmp(entity_name, masm->isolate()->factory()->undefined_value());
__ j(equal, done);
// Stop if found the property.
__ Cmp(entity_name, Handle<Name>(name));
__ j(equal, miss);
Label good;
// Check for the hole and skip.
__ CompareRoot(entity_name, Heap::kTheHoleValueRootIndex);
__ j(equal, &good, Label::kNear);
// Check if the entry name is not a unique name.
__ movp(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset));
__ JumpIfNotUniqueNameInstanceType(
FieldOperand(entity_name, Map::kInstanceTypeOffset), miss);
__ bind(&good);
}
NameDictionaryLookupStub stub(masm->isolate(), properties, r0, r0,
NEGATIVE_LOOKUP);
__ Push(Handle<Object>(name));
__ Push(Immediate(name->Hash()));
__ CallStub(&stub);
__ testp(r0, r0);
__ j(not_zero, miss);
__ jmp(done);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Stack frame on entry:
// rsp[0 * kPointerSize] : return address.
// rsp[1 * kPointerSize] : key's hash.
// rsp[2 * kPointerSize] : key.
// Registers:
// dictionary_: NameDictionary to probe.
// result_: used as scratch.
// index_: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
Register scratch = result();
__ SmiToInteger32(scratch, FieldOperand(dictionary(), kCapacityOffset));
__ decl(scratch);
__ Push(scratch);
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
StackArgumentsAccessor args(rsp, 2, ARGUMENTS_DONT_CONTAIN_RECEIVER,
kPointerSize);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ movp(scratch, args.GetArgumentOperand(1));
if (i > 0) {
__ addl(scratch, Immediate(NameDictionary::GetProbeOffset(i)));
}
__ andp(scratch, Operand(rsp, 0));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ leap(index(), Operand(scratch, scratch, times_2, 0)); // index *= 3.
// Having undefined at this place means the name is not contained.
__ movp(scratch, Operand(dictionary(), index(), times_pointer_size,
kElementsStartOffset - kHeapObjectTag));
__ Cmp(scratch, isolate()->factory()->undefined_value());
__ j(equal, ¬_in_dictionary);
// Stop if found the property.
__ cmpp(scratch, args.GetArgumentOperand(0));
__ j(equal, &in_dictionary);
if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
// If we hit a key that is not a unique name during negative
// lookup we have to bailout as this key might be equal to the
// key we are looking for.
// Check if the entry name is not a unique name.
__ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
__ JumpIfNotUniqueNameInstanceType(
FieldOperand(scratch, Map::kInstanceTypeOffset),
&maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode() == POSITIVE_LOOKUP) {
__ movp(scratch, Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
__ bind(&in_dictionary);
__ movp(scratch, Immediate(1));
__ Drop(1);
__ ret(2 * kPointerSize);
__ bind(¬_in_dictionary);
__ movp(scratch, Immediate(0));
__ Drop(1);
__ ret(2 * kPointerSize);
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two instructions are generated with labels so as to get the
// offset fixed up correctly by the bind(Label*) call. We patch it back and
// forth between a compare instructions (a nop in this position) and the
// real branch when we start and stop incremental heap marking.
// See RecordWriteStub::Patch for details.
__ jmp(&skip_to_incremental_noncompacting, Label::kNear);
__ jmp(&skip_to_incremental_compacting, Label::kFar);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
masm->set_byte_at(0, kTwoByteNopInstruction);
masm->set_byte_at(2, kFiveByteNopInstruction);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ movp(regs_.scratch0(), Operand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(),
regs_.scratch0(),
&dont_need_remembered_set);
__ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ ret(0);
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
Register address =
arg_reg_1.is(regs_.address()) ? kScratchRegister : regs_.address();
DCHECK(!address.is(regs_.object()));
DCHECK(!address.is(arg_reg_1));
__ Move(address, regs_.address());
__ Move(arg_reg_1, regs_.object());
// TODO(gc) Can we just set address arg2 in the beginning?
__ Move(arg_reg_2, address);
__ LoadAddress(arg_reg_3,
ExternalReference::isolate_address(isolate()));
int argument_count = 3;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(isolate()),
argument_count);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}
void RecordWriteStub::Activate(Code* code) {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_object;
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(),
regs_.scratch0(),
regs_.scratch1(),
&on_black,
Label::kNear);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&on_black);
// Get the value from the slot.
__ movp(regs_.scratch0(), Operand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask,
zero,
&ensure_not_white,
Label::kNear);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
zero,
&need_incremental);
__ bind(&ensure_not_white);
}
// We need an extra register for this, so we push the object register
// temporarily.
__ Push(regs_.object());
__ JumpIfWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
&need_incremental_pop_object, Label::kNear);
__ Pop(regs_.object());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ ret(0);
}
__ bind(&need_incremental_pop_object);
__ Pop(regs_.object());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
CEntryStub ces(isolate(), 1, kSaveFPRegs);
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
__ movp(rbx, MemOperand(rbp, parameter_count_offset));
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
__ PopReturnAddressTo(rcx);
int additional_offset =
function_mode() == JS_FUNCTION_STUB_MODE ? kPointerSize : 0;
__ leap(rsp, MemOperand(rsp, rbx, times_pointer_size, additional_offset));
__ jmp(rcx); // Return to IC Miss stub, continuation still on stack.
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
ProfileEntryHookStub stub(masm->isolate());
masm->CallStub(&stub);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// This stub can be called from essentially anywhere, so it needs to save
// all volatile and callee-save registers.
const size_t kNumSavedRegisters = 2;
__ pushq(arg_reg_1);
__ pushq(arg_reg_2);
// Calculate the original stack pointer and store it in the second arg.
__ leap(arg_reg_2,
Operand(rsp, kNumSavedRegisters * kRegisterSize + kPCOnStackSize));
// Calculate the function address to the first arg.
__ movp(arg_reg_1, Operand(rsp, kNumSavedRegisters * kRegisterSize));
__ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength));
// Save the remainder of the volatile registers.
masm->PushCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
// Call the entry hook function.
__ Move(rax, FUNCTION_ADDR(isolate()->function_entry_hook()),
Assembler::RelocInfoNone());
AllowExternalCallThatCantCauseGC scope(masm);
const int kArgumentCount = 2;
__ PrepareCallCFunction(kArgumentCount);
__ CallCFunction(rax, kArgumentCount);
// Restore volatile regs.
masm->PopCallerSaved(kSaveFPRegs, arg_reg_1, arg_reg_2);
__ popq(arg_reg_2);
__ popq(arg_reg_1);
__ Ret();
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmpl(rdx, Immediate(kind));
__ j(not_equal, &next);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// rbx - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// rdx - kind (if mode != DISABLE_ALLOCATION_SITES)
// rax - number of arguments
// rdi - constructor?
// rsp[0] - return address
// rsp[8] - last argument
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// is the low bit set? If so, we are holey and that is good.
__ testb(rdx, Immediate(1));
__ j(not_zero, &normal_sequence);
}
// look at the first argument
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(rcx, args.GetArgumentOperand(0));
__ testp(rcx, rcx);
__ j(zero, &normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ bind(&normal_sequence);
ArraySingleArgumentConstructorStub stub(masm->isolate(),
initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ incl(rdx);
if (FLAG_debug_code) {
Handle<Map> allocation_site_map =
masm->isolate()->factory()->allocation_site_map();
__ Cmp(FieldOperand(rbx, 0), allocation_site_map);
__ Assert(equal, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r3
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ SmiAddConstant(FieldOperand(rbx, AllocationSite::kTransitionInfoOffset),
Smi::FromInt(kFastElementsKindPackedToHoley));
__ bind(&normal_sequence);
int last_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ cmpl(rdx, Immediate(kind));
__ j(not_equal, &next);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub);
__ bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ testp(rax, rax);
__ j(not_zero, ¬_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(¬_zero_case);
__ cmpl(rax, Immediate(1));
__ j(greater, ¬_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(¬_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rbx : AllocationSite or undefined
// -- rdi : constructor
// -- rdx : new target
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rcx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in rbx or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(rbx);
}
// Enter the context of the Array function.
__ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
Label subclassing;
__ cmpp(rdi, rdx);
__ j(not_equal, &subclassing);
Label no_info;
// If the feedback vector is the undefined value call an array constructor
// that doesn't use AllocationSites.
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(equal, &no_info);
// Only look at the lower 16 bits of the transition info.
__ movp(rdx, FieldOperand(rbx, AllocationSite::kTransitionInfoOffset));
__ SmiToInteger32(rdx, rdx);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ andp(rdx, Immediate(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
// Subclassing
__ bind(&subclassing);
StackArgumentsAccessor args(rsp, rax);
__ movp(args.GetReceiverOperand(), rdi);
__ addp(rax, Immediate(3));
__ PopReturnAddressTo(rcx);
__ Push(rdx);
__ Push(rbx);
__ PushReturnAddressFrom(rcx);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
Label not_zero_case, not_one_case;
Label normal_sequence;
__ testp(rax, rax);
__ j(not_zero, ¬_zero_case);
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0);
__ bind(¬_zero_case);
__ cmpl(rax, Immediate(1));
__ j(greater, ¬_one_case);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
StackArgumentsAccessor args(rsp, 1, ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(rcx, args.GetArgumentOperand(0));
__ testp(rcx, rcx);
__ j(zero, &normal_sequence);
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey);
}
__ bind(&normal_sequence);
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
__ bind(¬_one_case);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rax : argc
// -- rdi : constructor
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
STATIC_ASSERT(kSmiTag == 0);
Condition not_smi = NegateCondition(masm->CheckSmi(rcx));
__ Check(not_smi, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(rcx, MAP_TYPE, rcx);
__ Check(equal, kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ movp(rcx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte,
// but the following masking takes care of that anyway.
__ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(rcx);
if (FLAG_debug_code) {
Label done;
__ cmpl(rcx, Immediate(FAST_ELEMENTS));
__ j(equal, &done);
__ cmpl(rcx, Immediate(FAST_HOLEY_ELEMENTS));
__ Assert(equal,
kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmpl(rcx, Immediate(FAST_ELEMENTS));
__ j(equal, &fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, FAST_ELEMENTS);
}
static int Offset(ExternalReference ref0, ExternalReference ref1) {
int64_t offset = (ref0.address() - ref1.address());
// Check that fits into int.
DCHECK(static_cast<int>(offset) == offset);
return static_cast<int>(offset);
}
// Prepares stack to put arguments (aligns and so on). WIN64 calling
// convention requires to put the pointer to the return value slot into
// rcx (rcx must be preserverd until CallApiFunctionAndReturn). Saves
// context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
// inside the exit frame (not GCed) accessible via StackSpaceOperand.
static void PrepareCallApiFunction(MacroAssembler* masm, int arg_stack_space) {
__ EnterApiExitFrame(arg_stack_space);
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Clobbers r14, r15, rbx and
// caller-save registers. Restores context. On return removes
// stack_space * kPointerSize (GCed).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
Register thunk_last_arg, int stack_space,
Operand* stack_space_operand,
Operand return_value_operand,
Operand* context_restore_operand) {
Label prologue;
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label write_back;
Isolate* isolate = masm->isolate();
Factory* factory = isolate->factory();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = Offset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = Offset(
ExternalReference::handle_scope_level_address(isolate), next_address);
ExternalReference scheduled_exception_address =
ExternalReference::scheduled_exception_address(isolate);
DCHECK(rdx.is(function_address) || r8.is(function_address));
// Allocate HandleScope in callee-save registers.
Register prev_next_address_reg = r14;
Register prev_limit_reg = rbx;
Register base_reg = r15;
__ Move(base_reg, next_address);
__ movp(prev_next_address_reg, Operand(base_reg, kNextOffset));
__ movp(prev_limit_reg, Operand(base_reg, kLimitOffset));
__ addl(Operand(base_reg, kLevelOffset), Immediate(1));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label profiler_disabled;
Label end_profiler_check;
__ Move(rax, ExternalReference::is_profiling_address(isolate));
__ cmpb(Operand(rax, 0), Immediate(0));
__ j(zero, &profiler_disabled);
// Third parameter is the address of the actual getter function.
__ Move(thunk_last_arg, function_address);
__ Move(rax, thunk_ref);
__ jmp(&end_profiler_check);
__ bind(&profiler_disabled);
// Call the api function!
__ Move(rax, function_address);
__ bind(&end_profiler_check);
// Call the api function!
__ call(rax);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Load the value from ReturnValue
__ movp(rax, return_value_operand);
__ bind(&prologue);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ subl(Operand(base_reg, kLevelOffset), Immediate(1));
__ movp(Operand(base_reg, kNextOffset), prev_next_address_reg);
__ cmpp(prev_limit_reg, Operand(base_reg, kLimitOffset));
__ j(not_equal, &delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
__ movp(rsi, *context_restore_operand);
}
if (stack_space_operand != nullptr) {
__ movp(rbx, *stack_space_operand);
}
__ LeaveApiExitFrame(!restore_context);
// Check if the function scheduled an exception.
__ Move(rdi, scheduled_exception_address);
__ Cmp(Operand(rdi, 0), factory->the_hole_value());
__ j(not_equal, &promote_scheduled_exception);
#if DEBUG
// Check if the function returned a valid JavaScript value.
Label ok;
Register return_value = rax;
Register map = rcx;
__ JumpIfSmi(return_value, &ok, Label::kNear);
__ movp(map, FieldOperand(return_value, HeapObject::kMapOffset));
__ CmpInstanceType(map, LAST_NAME_TYPE);
__ j(below_equal, &ok, Label::kNear);
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, &ok, Label::kNear);
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kUndefinedValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kTrueValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kFalseValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ CompareRoot(return_value, Heap::kNullValueRootIndex);
__ j(equal, &ok, Label::kNear);
__ Abort(kAPICallReturnedInvalidObject);
__ bind(&ok);
#endif
if (stack_space_operand != nullptr) {
DCHECK_EQ(stack_space, 0);
__ PopReturnAddressTo(rcx);
__ addq(rsp, rbx);
__ jmp(rcx);
} else {
__ ret(stack_space * kPointerSize);
}
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ movp(Operand(base_reg, kLimitOffset), prev_limit_reg);
__ movp(prev_limit_reg, rax);
__ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
__ LoadAddress(rax,
ExternalReference::delete_handle_scope_extensions(isolate));
__ call(rax);
__ movp(rax, prev_limit_reg);
__ jmp(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- rdi : callee
// -- rbx : call_data
// -- rcx : holder
// -- rdx : api_function_address
// -- rsi : context
// -- rax : number of arguments if argc is a register
// -- rsp[0] : return address
// -- rsp[8] : last argument
// -- ...
// -- rsp[argc * 8] : first argument
// -- rsp[(argc + 1) * 8] : receiver
// -----------------------------------
Register callee = rdi;
Register call_data = rbx;
Register holder = rcx;
Register api_function_address = rdx;
Register context = rsi;
Register return_address = r8;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kNewTargetIndex == 7);
STATIC_ASSERT(FCA::kArgsLength == 8);
__ PopReturnAddressTo(return_address);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// context save
__ Push(context);
// callee
__ Push(callee);
// call data
__ Push(call_data);
Register scratch = call_data;
if (!this->call_data_undefined()) {
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
}
// return value
__ Push(scratch);
// return value default
__ Push(scratch);
// isolate
__ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
__ Push(scratch);
// holder
__ Push(holder);
__ movp(scratch, rsp);
// Push return address back on stack.
__ PushReturnAddressFrom(return_address);
if (!this->is_lazy()) {
// load context from callee
__ movp(context, FieldOperand(callee, JSFunction::kContextOffset));
}
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 3;
PrepareCallApiFunction(masm, kApiStackSpace);
// FunctionCallbackInfo::implicit_args_.
int argc = this->argc();
__ movp(StackSpaceOperand(0), scratch);
__ addp(scratch, Immediate((argc + FCA::kArgsLength - 1) * kPointerSize));
// FunctionCallbackInfo::values_.
__ movp(StackSpaceOperand(1), scratch);
// FunctionCallbackInfo::length_.
__ Set(StackSpaceOperand(2), argc);
#if defined(__MINGW64__) || defined(_WIN64)
Register arguments_arg = rcx;
Register callback_arg = rdx;
#else
Register arguments_arg = rdi;
Register callback_arg = rsi;
#endif
// It's okay if api_function_address == callback_arg
// but not arguments_arg
DCHECK(!api_function_address.is(arguments_arg));
// v8::InvocationCallback's argument.
__ leap(arguments_arg, StackSpaceOperand(0));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
// Accessor for FunctionCallbackInfo and first js arg.
StackArgumentsAccessor args_from_rbp(rbp, FCA::kArgsLength + 1,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
Operand context_restore_operand = args_from_rbp.GetArgumentOperand(
FCA::kArgsLength - FCA::kContextSaveIndex);
Operand length_operand = StackSpaceOperand(2);
Operand return_value_operand = args_from_rbp.GetArgumentOperand(
this->is_store() ? 0 : FCA::kArgsLength - FCA::kReturnValueOffset);
int stack_space = 0;
Operand* stack_space_operand = &length_operand;
stack_space = argc + FCA::kArgsLength + 1;
stack_space_operand = nullptr;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
stack_space, stack_space_operand,
return_value_operand, &context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
#if defined(__MINGW64__) || defined(_WIN64)
Register getter_arg = r8;
Register accessor_info_arg = rdx;
Register name_arg = rcx;
#else
Register getter_arg = rdx;
Register accessor_info_arg = rsi;
Register name_arg = rdi;
#endif
Register api_function_address = r8;
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = rax;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
// Insert additional parameters into the stack frame above return address.
__ PopReturnAddressTo(scratch);
__ Push(receiver);
__ Push(FieldOperand(callback, AccessorInfo::kDataOffset));
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ Push(kScratchRegister); // return value
__ Push(kScratchRegister); // return value default
__ PushAddress(ExternalReference::isolate_address(isolate()));
__ Push(holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ Push(FieldOperand(callback, AccessorInfo::kNameOffset));
__ PushReturnAddressFrom(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Allocate v8::PropertyCallbackInfo in non-GCed stack space.
const int kArgStackSpace = 1;
// Load address of v8::PropertyAccessorInfo::args_ array.
__ leap(scratch, Operand(rsp, 2 * kPointerSize));
PrepareCallApiFunction(masm, kArgStackSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
Operand info_object = StackSpaceOperand(0);
__ movp(info_object, scratch);
__ leap(name_arg, Operand(scratch, -kPointerSize));
// The context register (rsi) has been saved in PrepareCallApiFunction and
// could be used to pass arguments.
__ leap(accessor_info_arg, info_object);
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
// It's okay if api_function_address == getter_arg
// but not accessor_info_arg or name_arg
DCHECK(!api_function_address.is(accessor_info_arg));
DCHECK(!api_function_address.is(name_arg));
__ movp(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
__ movp(api_function_address,
FieldOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
Operand return_value_operand(
rbp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
kStackUnwindSpace, nullptr, return_value_operand,
NULL);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64