// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_VECTOR_H_
#define V8_VECTOR_H_
#include <string.h>
#include <algorithm>
#include "src/allocation.h"
#include "src/checks.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
template <typename T>
class Vector {
public:
Vector() : start_(NULL), length_(0) {}
Vector(T* data, int length) : start_(data), length_(length) {
DCHECK(length == 0 || (length > 0 && data != NULL));
}
template <int N>
explicit Vector(T (&arr)[N]) : start_(arr), length_(N) {}
static Vector<T> New(int length) {
return Vector<T>(NewArray<T>(length), length);
}
// Returns a vector using the same backing storage as this one,
// spanning from and including 'from', to but not including 'to'.
Vector<T> SubVector(int from, int to) const {
DCHECK(0 <= from);
SLOW_DCHECK(from < to);
SLOW_DCHECK(static_cast<unsigned>(to) <= static_cast<unsigned>(length_));
return Vector<T>(start() + from, to - from);
}
// Returns the length of the vector.
int length() const { return length_; }
// Returns whether or not the vector is empty.
bool is_empty() const { return length_ == 0; }
// Returns the pointer to the start of the data in the vector.
T* start() const { return start_; }
// Access individual vector elements - checks bounds in debug mode.
T& operator[](int index) const {
DCHECK_LE(0, index);
DCHECK_LT(index, length_);
return start_[index];
}
const T& at(int index) const { return operator[](index); }
T& first() { return start_[0]; }
T& last() { return start_[length_ - 1]; }
typedef T* iterator;
inline iterator begin() const { return &start_[0]; }
inline iterator end() const { return &start_[length_]; }
// Returns a clone of this vector with a new backing store.
Vector<T> Clone() const {
T* result = NewArray<T>(length_);
for (int i = 0; i < length_; i++) result[i] = start_[i];
return Vector<T>(result, length_);
}
template <typename CompareFunction>
void Sort(CompareFunction cmp, size_t s, size_t l) {
std::sort(start() + s, start() + s + l, RawComparer<CompareFunction>(cmp));
}
template <typename CompareFunction>
void Sort(CompareFunction cmp) {
std::sort(start(), start() + length(), RawComparer<CompareFunction>(cmp));
}
void Sort() {
std::sort(start(), start() + length());
}
template <typename CompareFunction>
void StableSort(CompareFunction cmp, size_t s, size_t l) {
std::stable_sort(start() + s, start() + s + l,
RawComparer<CompareFunction>(cmp));
}
template <typename CompareFunction>
void StableSort(CompareFunction cmp) {
std::stable_sort(start(), start() + length(),
RawComparer<CompareFunction>(cmp));
}
void StableSort() { std::stable_sort(start(), start() + length()); }
void Truncate(int length) {
DCHECK(length <= length_);
length_ = length;
}
// Releases the array underlying this vector. Once disposed the
// vector is empty.
void Dispose() {
DeleteArray(start_);
start_ = NULL;
length_ = 0;
}
inline Vector<T> operator+(int offset) {
DCHECK(offset < length_);
return Vector<T>(start_ + offset, length_ - offset);
}
// Implicit conversion from Vector<T> to Vector<const T>.
inline operator Vector<const T>() { return Vector<const T>::cast(*this); }
// Factory method for creating empty vectors.
static Vector<T> empty() { return Vector<T>(NULL, 0); }
template<typename S>
static Vector<T> cast(Vector<S> input) {
return Vector<T>(reinterpret_cast<T*>(input.start()),
input.length() * sizeof(S) / sizeof(T));
}
bool operator==(const Vector<T>& other) const {
if (length_ != other.length_) return false;
if (start_ == other.start_) return true;
for (int i = 0; i < length_; ++i) {
if (start_[i] != other.start_[i]) {
return false;
}
}
return true;
}
protected:
void set_start(T* start) { start_ = start; }
private:
T* start_;
int length_;
template <typename CookedComparer>
class RawComparer {
public:
explicit RawComparer(CookedComparer cmp) : cmp_(cmp) {}
bool operator()(const T& a, const T& b) {
return cmp_(&a, &b) < 0;
}
private:
CookedComparer cmp_;
};
};
template <typename T>
class ScopedVector : public Vector<T> {
public:
explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { }
~ScopedVector() {
DeleteArray(this->start());
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector);
};
inline int StrLength(const char* string) {
size_t length = strlen(string);
DCHECK(length == static_cast<size_t>(static_cast<int>(length)));
return static_cast<int>(length);
}
#define STATIC_CHAR_VECTOR(x) \
v8::internal::Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(x), \
arraysize(x) - 1)
inline Vector<const char> CStrVector(const char* data) {
return Vector<const char>(data, StrLength(data));
}
inline Vector<const uint8_t> OneByteVector(const char* data, int length) {
return Vector<const uint8_t>(reinterpret_cast<const uint8_t*>(data), length);
}
inline Vector<const uint8_t> OneByteVector(const char* data) {
return OneByteVector(data, StrLength(data));
}
inline Vector<char> MutableCStrVector(char* data) {
return Vector<char>(data, StrLength(data));
}
inline Vector<char> MutableCStrVector(char* data, int max) {
int length = StrLength(data);
return Vector<char>(data, (length < max) ? length : max);
}
template <typename T, int N>
inline Vector<T> ArrayVector(T (&arr)[N]) {
return Vector<T>(arr);
}
} // namespace internal
} // namespace v8
#endif // V8_VECTOR_H_