// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_RUNTIME_RUNTIME_UTILS_H_
#define V8_RUNTIME_RUNTIME_UTILS_H_
#include "src/base/logging.h"
#include "src/globals.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
// Cast the given object to a value of the specified type and store
// it in a variable with the given name. If the object is not of the
// expected type we crash safely.
#define CONVERT_ARG_CHECKED(Type, name, index) \
CHECK(args[index]->Is##Type()); \
Type* name = Type::cast(args[index]);
#define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \
CHECK(args[index]->Is##Type()); \
Handle<Type> name = args.at<Type>(index);
#define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index) \
CHECK(args[index]->IsNumber()); \
Handle<Object> name = args.at(index);
// Cast the given object to a boolean and store it in a variable with
// the given name. If the object is not a boolean we crash safely.
#define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \
CHECK(args[index]->IsBoolean()); \
bool name = args[index]->IsTrue(isolate);
// Cast the given argument to a Smi and store its value in an int variable
// with the given name. If the argument is not a Smi we crash safely.
#define CONVERT_SMI_ARG_CHECKED(name, index) \
CHECK(args[index]->IsSmi()); \
int name = args.smi_at(index);
// Cast the given argument to a double and store it in a variable with
// the given name. If the argument is not a number (as opposed to
// the number not-a-number) we crash safely.
#define CONVERT_DOUBLE_ARG_CHECKED(name, index) \
CHECK(args[index]->IsNumber()); \
double name = args.number_at(index);
// Cast the given argument to a size_t and store its value in a variable with
// the given name. If the argument is not a size_t we crash safely.
#define CONVERT_SIZE_ARG_CHECKED(name, index) \
CHECK(args[index]->IsNumber()); \
Handle<Object> name##_object = args.at(index); \
size_t name = 0; \
CHECK(TryNumberToSize(*name##_object, &name));
// Call the specified converter on the object *comand store the result in
// a variable of the specified type with the given name. If the
// object is not a Number we crash safely.
#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
CHECK(obj->IsNumber()); \
type name = NumberTo##Type(obj);
// Cast the given argument to PropertyDetails and store its value in a
// variable with the given name. If the argument is not a Smi we crash safely.
#define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \
CHECK(args[index]->IsSmi()); \
PropertyDetails name = PropertyDetails(Smi::cast(args[index]));
// Assert that the given argument has a valid value for a LanguageMode
// and store it in a LanguageMode variable with the given name.
#define CONVERT_LANGUAGE_MODE_ARG_CHECKED(name, index) \
CHECK(args[index]->IsNumber()); \
int32_t __tmp_##name = 0; \
CHECK(args[index]->ToInt32(&__tmp_##name)); \
CHECK(is_valid_language_mode(__tmp_##name)); \
LanguageMode name = static_cast<LanguageMode>(__tmp_##name);
// Assert that the given argument is a number within the Int32 range
// and convert it to int32_t. If the argument is not an Int32 we crash safely.
#define CONVERT_INT32_ARG_CHECKED(name, index) \
CHECK(args[index]->IsNumber()); \
int32_t name = 0; \
CHECK(args[index]->ToInt32(&name));
// Assert that the given argument is a number within the Uint32 range
// and convert it to uint32_t. If the argument is not an Uint32 call
// IllegalOperation and return.
#define CONVERT_UINT32_ARG_CHECKED(name, index) \
CHECK(args[index]->IsNumber()); \
uint32_t name = 0; \
CHECK(args[index]->ToUint32(&name));
// Cast the given argument to PropertyAttributes and store its value in a
// variable with the given name. If the argument is not a Smi or the
// enum value is out of range, we crash safely.
#define CONVERT_PROPERTY_ATTRIBUTES_CHECKED(name, index) \
CHECK(args[index]->IsSmi()); \
CHECK((args.smi_at(index) & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0); \
PropertyAttributes name = static_cast<PropertyAttributes>(args.smi_at(index));
// A mechanism to return a pair of Object pointers in registers (if possible).
// How this is achieved is calling convention-dependent.
// All currently supported x86 compiles uses calling conventions that are cdecl
// variants where a 64-bit value is returned in two 32-bit registers
// (edx:eax on ia32, r1:r0 on ARM).
// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
// In Win64 calling convention, a struct of two pointers is returned in memory,
// allocated by the caller, and passed as a pointer in a hidden first parameter.
#ifdef V8_HOST_ARCH_64_BIT
struct ObjectPair {
Object* x;
Object* y;
};
static inline ObjectPair MakePair(Object* x, Object* y) {
ObjectPair result = {x, y};
// Pointers x and y returned in rax and rdx, in AMD-x64-abi.
// In Win64 they are assigned to a hidden first argument.
return result;
}
#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
// For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair
// are used in the full codegen and Crankshaft compiler. An alternative is
// using uint64_t and modifying full codegen and Crankshaft compiler.
struct ObjectPair {
Object* x;
uint32_t x_upper;
Object* y;
uint32_t y_upper;
};
static inline ObjectPair MakePair(Object* x, Object* y) {
ObjectPair result = {x, 0, y, 0};
// Pointers x and y returned in rax and rdx, in x32-abi.
return result;
}
#else
typedef uint64_t ObjectPair;
static inline ObjectPair MakePair(Object* x, Object* y) {
#if defined(V8_TARGET_LITTLE_ENDIAN)
return reinterpret_cast<uint32_t>(x) |
(reinterpret_cast<ObjectPair>(y) << 32);
#elif defined(V8_TARGET_BIG_ENDIAN)
return reinterpret_cast<uint32_t>(y) |
(reinterpret_cast<ObjectPair>(x) << 32);
#else
#error Unknown endianness
#endif
}
#endif
// A mechanism to return a triple of Object pointers. In all calling
// conventions, a struct of two pointers is returned in memory,
// allocated by the caller, and passed as a pointer in a hidden first parameter.
struct ObjectTriple {
Object* x;
Object* y;
Object* z;
};
static inline ObjectTriple MakeTriple(Object* x, Object* y, Object* z) {
ObjectTriple result = {x, y, z};
// ObjectTriple is assigned to a hidden first argument.
return result;
}
} // namespace internal
} // namespace v8
#endif // V8_RUNTIME_RUNTIME_UTILS_H_