// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ostreams.h"
#include "src/regexp/regexp-ast.h"
namespace v8 {
namespace internal {
#define MAKE_ACCEPT(Name) \
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
return visitor->Visit##Name(this, data); \
}
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
#undef MAKE_ACCEPT
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExpTree::As##Name() { return NULL; } \
bool RegExpTree::Is##Name() { return false; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
#define MAKE_TYPE_CASE(Name) \
RegExp##Name* RegExp##Name::As##Name() { return this; } \
bool RegExp##Name::Is##Name() { return true; }
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
#undef MAKE_TYPE_CASE
static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
Interval result = Interval::Empty();
for (int i = 0; i < children->length(); i++)
result = result.Union(children->at(i)->CaptureRegisters());
return result;
}
Interval RegExpAlternative::CaptureRegisters() {
return ListCaptureRegisters(nodes());
}
Interval RegExpDisjunction::CaptureRegisters() {
return ListCaptureRegisters(alternatives());
}
Interval RegExpLookaround::CaptureRegisters() {
return body()->CaptureRegisters();
}
Interval RegExpCapture::CaptureRegisters() {
Interval self(StartRegister(index()), EndRegister(index()));
return self.Union(body()->CaptureRegisters());
}
Interval RegExpQuantifier::CaptureRegisters() {
return body()->CaptureRegisters();
}
bool RegExpAssertion::IsAnchoredAtStart() {
return assertion_type() == RegExpAssertion::START_OF_INPUT;
}
bool RegExpAssertion::IsAnchoredAtEnd() {
return assertion_type() == RegExpAssertion::END_OF_INPUT;
}
bool RegExpAlternative::IsAnchoredAtStart() {
ZoneList<RegExpTree*>* nodes = this->nodes();
for (int i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->at(i);
if (node->IsAnchoredAtStart()) {
return true;
}
if (node->max_match() > 0) {
return false;
}
}
return false;
}
bool RegExpAlternative::IsAnchoredAtEnd() {
ZoneList<RegExpTree*>* nodes = this->nodes();
for (int i = nodes->length() - 1; i >= 0; i--) {
RegExpTree* node = nodes->at(i);
if (node->IsAnchoredAtEnd()) {
return true;
}
if (node->max_match() > 0) {
return false;
}
}
return false;
}
bool RegExpDisjunction::IsAnchoredAtStart() {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
for (int i = 0; i < alternatives->length(); i++) {
if (!alternatives->at(i)->IsAnchoredAtStart()) return false;
}
return true;
}
bool RegExpDisjunction::IsAnchoredAtEnd() {
ZoneList<RegExpTree*>* alternatives = this->alternatives();
for (int i = 0; i < alternatives->length(); i++) {
if (!alternatives->at(i)->IsAnchoredAtEnd()) return false;
}
return true;
}
bool RegExpLookaround::IsAnchoredAtStart() {
return is_positive() && type() == LOOKAHEAD && body()->IsAnchoredAtStart();
}
bool RegExpCapture::IsAnchoredAtStart() { return body()->IsAnchoredAtStart(); }
bool RegExpCapture::IsAnchoredAtEnd() { return body()->IsAnchoredAtEnd(); }
// Convert regular expression trees to a simple sexp representation.
// This representation should be different from the input grammar
// in as many cases as possible, to make it more difficult for incorrect
// parses to look as correct ones which is likely if the input and
// output formats are alike.
class RegExpUnparser final : public RegExpVisitor {
public:
RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {}
void VisitCharacterRange(CharacterRange that);
#define MAKE_CASE(Name) void* Visit##Name(RegExp##Name*, void* data) override;
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
#undef MAKE_CASE
private:
std::ostream& os_;
Zone* zone_;
};
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
os_ << "(|";
for (int i = 0; i < that->alternatives()->length(); i++) {
os_ << " ";
that->alternatives()->at(i)->Accept(this, data);
}
os_ << ")";
return NULL;
}
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
os_ << "(:";
for (int i = 0; i < that->nodes()->length(); i++) {
os_ << " ";
that->nodes()->at(i)->Accept(this, data);
}
os_ << ")";
return NULL;
}
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
os_ << AsUC32(that.from());
if (!that.IsSingleton()) {
os_ << "-" << AsUC32(that.to());
}
}
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
void* data) {
if (that->is_negated()) os_ << "^";
os_ << "[";
for (int i = 0; i < that->ranges(zone_)->length(); i++) {
if (i > 0) os_ << " ";
VisitCharacterRange(that->ranges(zone_)->at(i));
}
os_ << "]";
return NULL;
}
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
switch (that->assertion_type()) {
case RegExpAssertion::START_OF_INPUT:
os_ << "@^i";
break;
case RegExpAssertion::END_OF_INPUT:
os_ << "@$i";
break;
case RegExpAssertion::START_OF_LINE:
os_ << "@^l";
break;
case RegExpAssertion::END_OF_LINE:
os_ << "@$l";
break;
case RegExpAssertion::BOUNDARY:
os_ << "@b";
break;
case RegExpAssertion::NON_BOUNDARY:
os_ << "@B";
break;
}
return NULL;
}
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
os_ << "'";
Vector<const uc16> chardata = that->data();
for (int i = 0; i < chardata.length(); i++) {
os_ << AsUC16(chardata[i]);
}
os_ << "'";
return NULL;
}
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
if (that->elements()->length() == 1) {
that->elements()->at(0).tree()->Accept(this, data);
} else {
os_ << "(!";
for (int i = 0; i < that->elements()->length(); i++) {
os_ << " ";
that->elements()->at(i).tree()->Accept(this, data);
}
os_ << ")";
}
return NULL;
}
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
os_ << "(# " << that->min() << " ";
if (that->max() == RegExpTree::kInfinity) {
os_ << "- ";
} else {
os_ << that->max() << " ";
}
os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
that->body()->Accept(this, data);
os_ << ")";
return NULL;
}
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
os_ << "(^ ";
that->body()->Accept(this, data);
os_ << ")";
return NULL;
}
void* RegExpUnparser::VisitGroup(RegExpGroup* that, void* data) {
os_ << "(?: ";
that->body()->Accept(this, data);
os_ << ")";
return NULL;
}
void* RegExpUnparser::VisitLookaround(RegExpLookaround* that, void* data) {
os_ << "(";
os_ << (that->type() == RegExpLookaround::LOOKAHEAD ? "->" : "<-");
os_ << (that->is_positive() ? " + " : " - ");
that->body()->Accept(this, data);
os_ << ")";
return NULL;
}
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
void* data) {
os_ << "(<- " << that->index() << ")";
return NULL;
}
void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
os_ << '%';
return NULL;
}
std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) { // NOLINT
RegExpUnparser unparser(os, zone);
Accept(&unparser, NULL);
return os;
}
RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
: alternatives_(alternatives) {
DCHECK(alternatives->length() > 1);
RegExpTree* first_alternative = alternatives->at(0);
min_match_ = first_alternative->min_match();
max_match_ = first_alternative->max_match();
for (int i = 1; i < alternatives->length(); i++) {
RegExpTree* alternative = alternatives->at(i);
min_match_ = Min(min_match_, alternative->min_match());
max_match_ = Max(max_match_, alternative->max_match());
}
}
static int IncreaseBy(int previous, int increase) {
if (RegExpTree::kInfinity - previous < increase) {
return RegExpTree::kInfinity;
} else {
return previous + increase;
}
}
RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
: nodes_(nodes) {
DCHECK(nodes->length() > 1);
min_match_ = 0;
max_match_ = 0;
for (int i = 0; i < nodes->length(); i++) {
RegExpTree* node = nodes->at(i);
int node_min_match = node->min_match();
min_match_ = IncreaseBy(min_match_, node_min_match);
int node_max_match = node->max_match();
max_match_ = IncreaseBy(max_match_, node_max_match);
}
}
} // namespace internal
} // namespace v8