// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ppc/codegen-ppc.h"
#if V8_TARGET_ARCH_PPC
#include <memory>
#include "src/codegen.h"
#include "src/macro-assembler.h"
#include "src/ppc/simulator-ppc.h"
namespace v8 {
namespace internal {
#define __ masm.
UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
#if defined(USE_SIMULATOR)
return nullptr;
#else
size_t actual_size;
byte* buffer =
static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
if (buffer == nullptr) return nullptr;
MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
CodeObjectRequired::kNo);
// Called from C
__ function_descriptor();
__ MovFromFloatParameter(d1);
__ fsqrt(d1, d1);
__ MovToFloatResult(d1);
__ Ret();
CodeDesc desc;
masm.GetCode(&desc);
DCHECK(ABI_USES_FUNCTION_DESCRIPTORS || !RelocInfo::RequiresRelocation(desc));
Assembler::FlushICache(isolate, buffer, actual_size);
base::OS::ProtectCode(buffer, actual_size);
return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
#endif
}
#undef __
// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
masm->EnterFrame(StackFrame::INTERNAL);
DCHECK(!masm->has_frame());
masm->set_has_frame(true);
}
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
masm->LeaveFrame(StackFrame::INTERNAL);
DCHECK(masm->has_frame());
masm->set_has_frame(false);
}
// -------------------------------------------------------------------------
// Code generators
#define __ ACCESS_MASM(masm)
// assume ip can be used as a scratch register below
void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string,
Register index, Register result,
Label* call_runtime) {
Label indirect_string_loaded;
__ bind(&indirect_string_loaded);
// Fetch the instance type of the receiver into result register.
__ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
// We need special handling for indirect strings.
Label check_sequential;
__ andi(r0, result, Operand(kIsIndirectStringMask));
__ beq(&check_sequential, cr0);
// Dispatch on the indirect string shape: slice or cons or thin.
Label cons_string, thin_string;
__ andi(ip, result, Operand(kStringRepresentationMask));
__ cmpi(ip, Operand(kConsStringTag));
__ beq(&cons_string);
__ cmpi(ip, Operand(kThinStringTag));
__ beq(&thin_string);
// Handle slices.
__ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
__ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset));
__ SmiUntag(ip, result);
__ add(index, index, ip);
__ b(&indirect_string_loaded);
// Handle thin strings.
__ bind(&thin_string);
__ LoadP(string, FieldMemOperand(string, ThinString::kActualOffset));
__ b(&indirect_string_loaded);
// Handle cons strings.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ bind(&cons_string);
__ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset));
__ CompareRoot(result, Heap::kempty_stringRootIndex);
__ bne(call_runtime);
// Get the first of the two strings and load its instance type.
__ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset));
__ b(&indirect_string_loaded);
// Distinguish sequential and external strings. Only these two string
// representations can reach here (slices and flat cons strings have been
// reduced to the underlying sequential or external string).
Label external_string, check_encoding;
__ bind(&check_sequential);
STATIC_ASSERT(kSeqStringTag == 0);
__ andi(r0, result, Operand(kStringRepresentationMask));
__ bne(&external_string, cr0);
// Prepare sequential strings
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ addi(string, string,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ b(&check_encoding);
// Handle external strings.
__ bind(&external_string);
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ andi(r0, result, Operand(kIsIndirectStringMask));
__ Assert(eq, kExternalStringExpectedButNotFound, cr0);
}
// Rule out short external strings.
STATIC_ASSERT(kShortExternalStringTag != 0);
__ andi(r0, result, Operand(kShortExternalStringMask));
__ bne(call_runtime, cr0);
__ LoadP(string,
FieldMemOperand(string, ExternalString::kResourceDataOffset));
Label one_byte, done;
__ bind(&check_encoding);
STATIC_ASSERT(kTwoByteStringTag == 0);
__ andi(r0, result, Operand(kStringEncodingMask));
__ bne(&one_byte, cr0);
// Two-byte string.
__ ShiftLeftImm(result, index, Operand(1));
__ lhzx(result, MemOperand(string, result));
__ b(&done);
__ bind(&one_byte);
// One-byte string.
__ lbzx(result, MemOperand(string, index));
__ bind(&done);
}
#undef __
CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
USE(isolate);
DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
// Since patcher is a large object, allocate it dynamically when needed,
// to avoid overloading the stack in stress conditions.
// DONT_FLUSH is used because the CodeAgingHelper is initialized early in
// the process, before ARM simulator ICache is setup.
std::unique_ptr<CodePatcher> patcher(
new CodePatcher(isolate, young_sequence_.start(),
young_sequence_.length() / Assembler::kInstrSize,
CodePatcher::DONT_FLUSH));
PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
patcher->masm()->PushStandardFrame(r4);
for (int i = 0; i < kNoCodeAgeSequenceNops; i++) {
patcher->masm()->nop();
}
}
#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
return Assembler::IsNop(Assembler::instr_at(candidate));
}
#endif
bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
bool result = isolate->code_aging_helper()->IsYoung(sequence);
DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
return result;
}
Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;
Code* code = NULL;
Address target_address =
Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code);
Code* stub = GetCodeFromTargetAddress(target_address);
return GetAgeOfCodeAgeStub(stub);
}
void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
Code::Age age) {
uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
if (age == kNoAgeCodeAge) {
isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
Assembler::FlushICache(isolate, sequence, young_length);
} else {
// FIXED_SEQUENCE
Code* stub = GetCodeAgeStub(isolate, age);
CodePatcher patcher(isolate, sequence,
young_length / Assembler::kInstrSize);
Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm());
intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
// Don't use Call -- we need to preserve ip and lr.
// GenerateMakeCodeYoungAgainCommon for the stub code.
patcher.masm()->nop(); // marker to detect sequence (see IsOld)
patcher.masm()->mov(r3, Operand(target));
patcher.masm()->Jump(r3);
for (int i = 0; i < kCodeAgingSequenceNops; i++) {
patcher.masm()->nop();
}
}
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_PPC