// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_PPC
#include "src/code-stubs.h"
#include "src/api-arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/ppc/code-stubs-ppc.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
__ StorePX(r4, MemOperand(sp, r0));
__ push(r4);
__ push(r5);
__ addi(r3, r3, Operand(3));
__ TailCallRuntime(Runtime::kNewArray);
}
static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Condition cond);
static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
Register rhs, Label* lhs_not_nan,
Label* slow, bool strict);
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
Register rhs);
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetRegisterParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
DCHECK(param_count == 0 ||
r3.is(descriptor.GetRegisterParameter(param_count - 1)));
// Push arguments
for (int i = 0; i < param_count; ++i) {
__ push(descriptor.GetRegisterParameter(i));
}
__ CallExternalReference(miss, param_count);
}
__ Ret();
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label out_of_range, only_low, negate, done, fastpath_done;
Register input_reg = source();
Register result_reg = destination();
DCHECK(is_truncating());
int double_offset = offset();
// Immediate values for this stub fit in instructions, so it's safe to use ip.
Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
Register scratch_low =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
Register scratch_high =
GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
DoubleRegister double_scratch = kScratchDoubleReg;
__ push(scratch);
// Account for saved regs if input is sp.
if (input_reg.is(sp)) double_offset += kPointerSize;
if (!skip_fastpath()) {
// Load double input.
__ lfd(double_scratch, MemOperand(input_reg, double_offset));
// Do fast-path convert from double to int.
__ ConvertDoubleToInt64(double_scratch,
#if !V8_TARGET_ARCH_PPC64
scratch,
#endif
result_reg, d0);
// Test for overflow
#if V8_TARGET_ARCH_PPC64
__ TestIfInt32(result_reg, r0);
#else
__ TestIfInt32(scratch, result_reg, r0);
#endif
__ beq(&fastpath_done);
}
__ Push(scratch_high, scratch_low);
// Account for saved regs if input is sp.
if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
__ lwz(scratch_high,
MemOperand(input_reg, double_offset + Register::kExponentOffset));
__ lwz(scratch_low,
MemOperand(input_reg, double_offset + Register::kMantissaOffset));
__ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
// Load scratch with exponent - 1. This is faster than loading
// with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
__ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
// If exponent is greater than or equal to 84, the 32 less significant
// bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
// the result is 0.
// Compare exponent with 84 (compare exponent - 1 with 83).
__ cmpi(scratch, Operand(83));
__ bge(&out_of_range);
// If we reach this code, 31 <= exponent <= 83.
// So, we don't have to handle cases where 0 <= exponent <= 20 for
// which we would need to shift right the high part of the mantissa.
// Scratch contains exponent - 1.
// Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
__ subfic(scratch, scratch, Operand(51));
__ cmpi(scratch, Operand::Zero());
__ ble(&only_low);
// 21 <= exponent <= 51, shift scratch_low and scratch_high
// to generate the result.
__ srw(scratch_low, scratch_low, scratch);
// Scratch contains: 52 - exponent.
// We needs: exponent - 20.
// So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
__ subfic(scratch, scratch, Operand(32));
__ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
// Set the implicit 1 before the mantissa part in scratch_high.
STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
__ oris(result_reg, result_reg,
Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
__ slw(r0, result_reg, scratch);
__ orx(result_reg, scratch_low, r0);
__ b(&negate);
__ bind(&out_of_range);
__ mov(result_reg, Operand::Zero());
__ b(&done);
__ bind(&only_low);
// 52 <= exponent <= 83, shift only scratch_low.
// On entry, scratch contains: 52 - exponent.
__ neg(scratch, scratch);
__ slw(result_reg, scratch_low, scratch);
__ bind(&negate);
// If input was positive, scratch_high ASR 31 equals 0 and
// scratch_high LSR 31 equals zero.
// New result = (result eor 0) + 0 = result.
// If the input was negative, we have to negate the result.
// Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
// New result = (result eor 0xffffffff) + 1 = 0 - result.
__ srawi(r0, scratch_high, 31);
#if V8_TARGET_ARCH_PPC64
__ srdi(r0, r0, Operand(32));
#endif
__ xor_(result_reg, result_reg, r0);
__ srwi(r0, scratch_high, Operand(31));
__ add(result_reg, result_reg, r0);
__ bind(&done);
__ Pop(scratch_high, scratch_low);
__ bind(&fastpath_done);
__ pop(scratch);
__ Ret();
}
// Handle the case where the lhs and rhs are the same object.
// Equality is almost reflexive (everything but NaN), so this is a test
// for "identity and not NaN".
static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
Condition cond) {
Label not_identical;
Label heap_number, return_equal;
__ cmp(r3, r4);
__ bne(¬_identical);
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
if (cond == lt || cond == gt) {
// Call runtime on identical JSObjects.
__ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
__ bge(slow);
// Call runtime on identical symbols since we need to throw a TypeError.
__ cmpi(r7, Operand(SYMBOL_TYPE));
__ beq(slow);
} else {
__ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
__ beq(&heap_number);
// Comparing JS objects with <=, >= is complicated.
if (cond != eq) {
__ cmpi(r7, Operand(FIRST_JS_RECEIVER_TYPE));
__ bge(slow);
// Call runtime on identical symbols since we need to throw a TypeError.
__ cmpi(r7, Operand(SYMBOL_TYPE));
__ beq(slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if (cond == le || cond == ge) {
__ cmpi(r7, Operand(ODDBALL_TYPE));
__ bne(&return_equal);
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ cmp(r3, r5);
__ bne(&return_equal);
if (cond == le) {
// undefined <= undefined should fail.
__ li(r3, Operand(GREATER));
} else {
// undefined >= undefined should fail.
__ li(r3, Operand(LESS));
}
__ Ret();
}
}
}
__ bind(&return_equal);
if (cond == lt) {
__ li(r3, Operand(GREATER)); // Things aren't less than themselves.
} else if (cond == gt) {
__ li(r3, Operand(LESS)); // Things aren't greater than themselves.
} else {
__ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
}
__ Ret();
// For less and greater we don't have to check for NaN since the result of
// x < x is false regardless. For the others here is some code to check
// for NaN.
if (cond != lt && cond != gt) {
__ bind(&heap_number);
// It is a heap number, so return non-equal if it's NaN and equal if it's
// not NaN.
// The representation of NaN values has all exponent bits (52..62) set,
// and not all mantissa bits (0..51) clear.
// Read top bits of double representation (second word of value).
__ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
// Test that exponent bits are all set.
STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
__ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
__ cmpli(r6, Operand(0x7ff));
__ bne(&return_equal);
// Shift out flag and all exponent bits, retaining only mantissa.
__ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
// Or with all low-bits of mantissa.
__ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
__ orx(r3, r6, r5);
__ cmpi(r3, Operand::Zero());
// For equal we already have the right value in r3: Return zero (equal)
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
// not (it's a NaN). For <= and >= we need to load r0 with the failing
// value if it's a NaN.
if (cond != eq) {
if (CpuFeatures::IsSupported(ISELECT)) {
__ li(r4, Operand((cond == le) ? GREATER : LESS));
__ isel(eq, r3, r3, r4);
} else {
// All-zero means Infinity means equal.
__ Ret(eq);
if (cond == le) {
__ li(r3, Operand(GREATER)); // NaN <= NaN should fail.
} else {
__ li(r3, Operand(LESS)); // NaN >= NaN should fail.
}
}
}
__ Ret();
}
// No fall through here.
__ bind(¬_identical);
}
// See comment at call site.
static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
Register rhs, Label* lhs_not_nan,
Label* slow, bool strict) {
DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
Label rhs_is_smi;
__ JumpIfSmi(rhs, &rhs_is_smi);
// Lhs is a Smi. Check whether the rhs is a heap number.
__ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
if (strict) {
// If rhs is not a number and lhs is a Smi then strict equality cannot
// succeed. Return non-equal
// If rhs is r3 then there is already a non zero value in it.
if (!rhs.is(r3)) {
Label skip;
__ beq(&skip);
__ mov(r3, Operand(NOT_EQUAL));
__ Ret();
__ bind(&skip);
} else {
__ Ret(ne);
}
} else {
// Smi compared non-strictly with a non-Smi non-heap-number. Call
// the runtime.
__ bne(slow);
}
// Lhs is a smi, rhs is a number.
// Convert lhs to a double in d7.
__ SmiToDouble(d7, lhs);
// Load the double from rhs, tagged HeapNumber r3, to d6.
__ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
// We now have both loaded as doubles but we can skip the lhs nan check
// since it's a smi.
__ b(lhs_not_nan);
__ bind(&rhs_is_smi);
// Rhs is a smi. Check whether the non-smi lhs is a heap number.
__ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
if (strict) {
// If lhs is not a number and rhs is a smi then strict equality cannot
// succeed. Return non-equal.
// If lhs is r3 then there is already a non zero value in it.
if (!lhs.is(r3)) {
Label skip;
__ beq(&skip);
__ mov(r3, Operand(NOT_EQUAL));
__ Ret();
__ bind(&skip);
} else {
__ Ret(ne);
}
} else {
// Smi compared non-strictly with a non-smi non-heap-number. Call
// the runtime.
__ bne(slow);
}
// Rhs is a smi, lhs is a heap number.
// Load the double from lhs, tagged HeapNumber r4, to d7.
__ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
// Convert rhs to a double in d6.
__ SmiToDouble(d6, rhs);
// Fall through to both_loaded_as_doubles.
}
// See comment at call site.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
Register rhs) {
DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
// If either operand is a JS object or an oddball value, then they are
// not equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Label first_non_object;
// Get the type of the first operand into r5 and compare it with
// FIRST_JS_RECEIVER_TYPE.
__ CompareObjectType(rhs, r5, r5, FIRST_JS_RECEIVER_TYPE);
__ blt(&first_non_object);
// Return non-zero (r3 is not zero)
Label return_not_equal;
__ bind(&return_not_equal);
__ Ret();
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ cmpi(r5, Operand(ODDBALL_TYPE));
__ beq(&return_not_equal);
__ CompareObjectType(lhs, r6, r6, FIRST_JS_RECEIVER_TYPE);
__ bge(&return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ cmpi(r6, Operand(ODDBALL_TYPE));
__ beq(&return_not_equal);
// Now that we have the types we might as well check for
// internalized-internalized.
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ orx(r5, r5, r6);
__ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
__ beq(&return_not_equal, cr0);
}
// See comment at call site.
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
Register rhs,
Label* both_loaded_as_doubles,
Label* not_heap_numbers, Label* slow) {
DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
__ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
__ bne(not_heap_numbers);
__ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ cmp(r5, r6);
__ bne(slow); // First was a heap number, second wasn't. Go slow case.
// Both are heap numbers. Load them up then jump to the code we have
// for that.
__ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ b(both_loaded_as_doubles);
}
// Fast negative check for internalized-to-internalized equality or receiver
// equality. Also handles the undetectable receiver to null/undefined
// comparison.
static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
Register lhs, Register rhs,
Label* possible_strings,
Label* runtime_call) {
DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
// r5 is object type of rhs.
Label object_test, return_equal, return_unequal, undetectable;
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ andi(r0, r5, Operand(kIsNotStringMask));
__ bne(&object_test, cr0);
__ andi(r0, r5, Operand(kIsNotInternalizedMask));
__ bne(possible_strings, cr0);
__ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
__ bge(runtime_call);
__ andi(r0, r6, Operand(kIsNotInternalizedMask));
__ bne(possible_strings, cr0);
// Both are internalized. We already checked they weren't the same pointer so
// they are not equal. Return non-equal by returning the non-zero object
// pointer in r3.
__ Ret();
__ bind(&object_test);
__ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ lbz(r7, FieldMemOperand(r5, Map::kBitFieldOffset));
__ lbz(r8, FieldMemOperand(r6, Map::kBitFieldOffset));
__ andi(r0, r7, Operand(1 << Map::kIsUndetectable));
__ bne(&undetectable, cr0);
__ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
__ bne(&return_unequal, cr0);
__ CompareInstanceType(r5, r5, FIRST_JS_RECEIVER_TYPE);
__ blt(runtime_call);
__ CompareInstanceType(r6, r6, FIRST_JS_RECEIVER_TYPE);
__ blt(runtime_call);
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in r3.
__ Ret();
__ bind(&undetectable);
__ andi(r0, r8, Operand(1 << Map::kIsUndetectable));
__ beq(&return_unequal, cr0);
// If both sides are JSReceivers, then the result is false according to
// the HTML specification, which says that only comparisons with null or
// undefined are affected by special casing for document.all.
__ CompareInstanceType(r5, r5, ODDBALL_TYPE);
__ beq(&return_equal);
__ CompareInstanceType(r6, r6, ODDBALL_TYPE);
__ bne(&return_unequal);
__ bind(&return_equal);
__ li(r3, Operand(EQUAL));
__ Ret();
}
static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
Register scratch,
CompareICState::State expected,
Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
DONT_DO_SMI_CHECK);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ bind(&ok);
}
// On entry r4 and r5 are the values to be compared.
// On exit r3 is 0, positive or negative to indicate the result of
// the comparison.
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Register lhs = r4;
Register rhs = r3;
Condition cc = GetCondition();
Label miss;
CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles, lhs_not_nan;
Label not_two_smis, smi_done;
__ orx(r5, r4, r3);
__ JumpIfNotSmi(r5, ¬_two_smis);
__ SmiUntag(r4);
__ SmiUntag(r3);
__ sub(r3, r4, r3);
__ Ret();
__ bind(¬_two_smis);
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, &slow, cc);
// If either is a Smi (we know that not both are), then they can only
// be strictly equal if the other is a HeapNumber.
STATIC_ASSERT(kSmiTag == 0);
DCHECK_EQ(static_cast<Smi*>(0), Smi::kZero);
__ and_(r5, lhs, rhs);
__ JumpIfNotSmi(r5, ¬_smis);
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
// 1) Return the answer.
// 2) Go to slow.
// 3) Fall through to both_loaded_as_doubles.
// 4) Jump to lhs_not_nan.
// In cases 3 and 4 we have found out we were dealing with a number-number
// comparison. The double values of the numbers have been loaded
// into d7 and d6.
EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
__ bind(&both_loaded_as_doubles);
// The arguments have been converted to doubles and stored in d6 and d7
__ bind(&lhs_not_nan);
Label no_nan;
__ fcmpu(d7, d6);
Label nan, equal, less_than;
__ bunordered(&nan);
if (CpuFeatures::IsSupported(ISELECT)) {
DCHECK(EQUAL == 0);
__ li(r4, Operand(GREATER));
__ li(r5, Operand(LESS));
__ isel(eq, r3, r0, r4);
__ isel(lt, r3, r5, r3);
__ Ret();
} else {
__ beq(&equal);
__ blt(&less_than);
__ li(r3, Operand(GREATER));
__ Ret();
__ bind(&equal);
__ li(r3, Operand(EQUAL));
__ Ret();
__ bind(&less_than);
__ li(r3, Operand(LESS));
__ Ret();
}
__ bind(&nan);
// If one of the sides was a NaN then the v flag is set. Load r3 with
// whatever it takes to make the comparison fail, since comparisons with NaN
// always fail.
if (cc == lt || cc == le) {
__ li(r3, Operand(GREATER));
} else {
__ li(r3, Operand(LESS));
}
__ Ret();
__ bind(¬_smis);
// At this point we know we are dealing with two different objects,
// and neither of them is a Smi. The objects are in rhs_ and lhs_.
if (strict()) {
// This returns non-equal for some object types, or falls through if it
// was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
}
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap-number-heap-number comparison. Can jump to slow case,
// or load both doubles into r3, r4, r5, r6 and jump to the code that handles
// that case. If the inputs are not doubles then jumps to
// check_for_internalized_strings.
// In this case r5 will contain the type of rhs_. Never falls through.
EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
&check_for_internalized_strings,
&flat_string_check);
__ bind(&check_for_internalized_strings);
// In the strict case the EmitStrictTwoHeapObjectCompare already took care of
// internalized strings.
if (cc == eq && !strict()) {
// Returns an answer for two internalized strings or two detectable objects.
// Otherwise jumps to string case or not both strings case.
// Assumes that r5 is the type of rhs_ on entry.
EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
&slow);
}
// Check for both being sequential one-byte strings,
// and inline if that is the case.
__ bind(&flat_string_check);
__ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
r6);
if (cc == eq) {
StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
}
// Never falls through to here.
__ bind(&slow);
if (cc == eq) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(cp);
__ Call(strict() ? isolate()->builtins()->StrictEqual()
: isolate()->builtins()->Equal(),
RelocInfo::CODE_TARGET);
__ Pop(cp);
}
// Turn true into 0 and false into some non-zero value.
STATIC_ASSERT(EQUAL == 0);
__ LoadRoot(r4, Heap::kTrueValueRootIndex);
__ sub(r3, r3, r4);
__ Ret();
} else {
__ Push(lhs, rhs);
int ncr; // NaN compare result
if (cc == lt || cc == le) {
ncr = GREATER;
} else {
DCHECK(cc == gt || cc == ge); // remaining cases
ncr = LESS;
}
__ LoadSmiLiteral(r3, Smi::FromInt(ncr));
__ push(r3);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
__ mflr(r0);
__ MultiPush(kJSCallerSaved | r0.bit());
if (save_doubles()) {
__ MultiPushDoubles(kCallerSavedDoubles);
}
const int argument_count = 1;
const int fp_argument_count = 0;
const Register scratch = r4;
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
__ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
argument_count);
if (save_doubles()) {
__ MultiPopDoubles(kCallerSavedDoubles);
}
__ MultiPop(kJSCallerSaved | r0.bit());
__ mtlr(r0);
__ Ret();
}
void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
__ PushSafepointRegisters();
__ blr();
}
void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
__ PopSafepointRegisters();
__ blr();
}
void MathPowStub::Generate(MacroAssembler* masm) {
const Register exponent = MathPowTaggedDescriptor::exponent();
DCHECK(exponent.is(r5));
const DoubleRegister double_base = d1;
const DoubleRegister double_exponent = d2;
const DoubleRegister double_result = d3;
const DoubleRegister double_scratch = d0;
const Register scratch = r11;
const Register scratch2 = r10;
Label call_runtime, done, int_exponent;
if (exponent_type() == TAGGED) {
// Base is already in double_base.
__ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
__ lfd(double_exponent,
FieldMemOperand(exponent, HeapNumber::kValueOffset));
}
if (exponent_type() != INTEGER) {
// Detect integer exponents stored as double.
__ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
double_scratch);
__ beq(&int_exponent);
__ mflr(r0);
__ push(r0);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 0, 2);
}
__ pop(r0);
__ mtlr(r0);
__ MovFromFloatResult(double_result);
__ b(&done);
}
// Calculate power with integer exponent.
__ bind(&int_exponent);
// Get two copies of exponent in the registers scratch and exponent.
if (exponent_type() == INTEGER) {
__ mr(scratch, exponent);
} else {
// Exponent has previously been stored into scratch as untagged integer.
__ mr(exponent, scratch);
}
__ fmr(double_scratch, double_base); // Back up base.
__ li(scratch2, Operand(1));
__ ConvertIntToDouble(scratch2, double_result);
// Get absolute value of exponent.
__ cmpi(scratch, Operand::Zero());
if (CpuFeatures::IsSupported(ISELECT)) {
__ neg(scratch2, scratch);
__ isel(lt, scratch, scratch2, scratch);
} else {
Label positive_exponent;
__ bge(&positive_exponent);
__ neg(scratch, scratch);
__ bind(&positive_exponent);
}
Label while_true, no_carry, loop_end;
__ bind(&while_true);
__ andi(scratch2, scratch, Operand(1));
__ beq(&no_carry, cr0);
__ fmul(double_result, double_result, double_scratch);
__ bind(&no_carry);
__ ShiftRightImm(scratch, scratch, Operand(1), SetRC);
__ beq(&loop_end, cr0);
__ fmul(double_scratch, double_scratch, double_scratch);
__ b(&while_true);
__ bind(&loop_end);
__ cmpi(exponent, Operand::Zero());
__ bge(&done);
__ li(scratch2, Operand(1));
__ ConvertIntToDouble(scratch2, double_scratch);
__ fdiv(double_result, double_scratch, double_result);
// Test whether result is zero. Bail out to check for subnormal result.
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
__ fcmpu(double_result, kDoubleRegZero);
__ bne(&done);
// double_exponent may not containe the exponent value if the input was a
// smi. We set it with exponent value before bailing out.
__ ConvertIntToDouble(exponent, double_exponent);
// Returning or bailing out.
__ mflr(r0);
__ push(r0);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ PrepareCallCFunction(0, 2, scratch);
__ MovToFloatParameters(double_base, double_exponent);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 0, 2);
}
__ pop(r0);
__ mtlr(r0);
__ MovFromFloatResult(double_result);
__ bind(&done);
__ Ret();
}
bool CEntryStub::NeedsImmovableCode() { return true; }
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
CreateWeakCellStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
StoreRegistersStateStub::GenerateAheadOfTime(isolate);
RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
StoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
RestoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Generate if not already in cache.
SaveFPRegsMode mode = kSaveFPRegs;
CEntryStub(isolate, 1, mode).GetCode();
StoreBufferOverflowStub(isolate, mode).GetCode();
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// Called from JavaScript; parameters are on stack as if calling JS function.
// r3: number of arguments including receiver
// r4: pointer to builtin function
// fp: frame pointer (restored after C call)
// sp: stack pointer (restored as callee's sp after C call)
// cp: current context (C callee-saved)
//
// If argv_in_register():
// r5: pointer to the first argument
ProfileEntryHookStub::MaybeCallEntryHook(masm);
__ mr(r15, r4);
if (argv_in_register()) {
// Move argv into the correct register.
__ mr(r4, r5);
} else {
// Compute the argv pointer.
__ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
__ add(r4, r4, sp);
__ subi(r4, r4, Operand(kPointerSize));
}
// Enter the exit frame that transitions from JavaScript to C++.
FrameScope scope(masm, StackFrame::MANUAL);
// Need at least one extra slot for return address location.
int arg_stack_space = 1;
// Pass buffer for return value on stack if necessary
bool needs_return_buffer =
result_size() > 2 ||
(result_size() == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
if (needs_return_buffer) {
arg_stack_space += result_size();
}
__ EnterExitFrame(save_doubles(), arg_stack_space, is_builtin_exit()
? StackFrame::BUILTIN_EXIT
: StackFrame::EXIT);
// Store a copy of argc in callee-saved registers for later.
__ mr(r14, r3);
// r3, r14: number of arguments including receiver (C callee-saved)
// r4: pointer to the first argument
// r15: pointer to builtin function (C callee-saved)
// Result returned in registers or stack, depending on result size and ABI.
Register isolate_reg = r5;
if (needs_return_buffer) {
// The return value is a non-scalar value.
// Use frame storage reserved by calling function to pass return
// buffer as implicit first argument.
__ mr(r5, r4);
__ mr(r4, r3);
__ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
isolate_reg = r6;
}
// Call C built-in.
__ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
Register target = r15;
if (ABI_USES_FUNCTION_DESCRIPTORS) {
// AIX/PPC64BE Linux use a function descriptor.
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
__ LoadP(ip, MemOperand(r15, 0)); // Instruction address
target = ip;
} else if (ABI_CALL_VIA_IP) {
__ Move(ip, r15);
target = ip;
}
// To let the GC traverse the return address of the exit frames, we need to
// know where the return address is. The CEntryStub is unmovable, so
// we can store the address on the stack to be able to find it again and
// we never have to restore it, because it will not change.
Label after_call;
__ mov_label_addr(r0, &after_call);
__ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
__ Call(target);
__ bind(&after_call);
// If return value is on the stack, pop it to registers.
if (needs_return_buffer) {
if (result_size() > 2) __ LoadP(r5, MemOperand(r3, 2 * kPointerSize));
__ LoadP(r4, MemOperand(r3, kPointerSize));
__ LoadP(r3, MemOperand(r3));
}
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(r3, Heap::kExceptionRootIndex);
__ beq(&exception_returned);
// Check that there is no pending exception, otherwise we
// should have returned the exception sentinel.
if (FLAG_debug_code) {
Label okay;
ExternalReference pending_exception_address(
Isolate::kPendingExceptionAddress, isolate());
__ mov(r6, Operand(pending_exception_address));
__ LoadP(r6, MemOperand(r6));
__ CompareRoot(r6, Heap::kTheHoleValueRootIndex);
// Cannot use check here as it attempts to generate call into runtime.
__ beq(&okay);
__ stop("Unexpected pending exception");
__ bind(&okay);
}
// Exit C frame and return.
// r3:r4: result
// sp: stack pointer
// fp: frame pointer
Register argc;
if (argv_in_register()) {
// We don't want to pop arguments so set argc to no_reg.
argc = no_reg;
} else {
// r14: still holds argc (callee-saved).
argc = r14;
}
__ LeaveExitFrame(save_doubles(), argc, true);
__ blr();
// Handling of exception.
__ bind(&exception_returned);
ExternalReference pending_handler_context_address(
Isolate::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_code_address(
Isolate::kPendingHandlerCodeAddress, isolate());
ExternalReference pending_handler_offset_address(
Isolate::kPendingHandlerOffsetAddress, isolate());
ExternalReference pending_handler_fp_address(
Isolate::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
Isolate::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set r3 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(3, 0, r3);
__ li(r3, Operand::Zero());
__ li(r4, Operand::Zero());
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
__ CallCFunction(find_handler, 3);
}
// Retrieve the handler context, SP and FP.
__ mov(cp, Operand(pending_handler_context_address));
__ LoadP(cp, MemOperand(cp));
__ mov(sp, Operand(pending_handler_sp_address));
__ LoadP(sp, MemOperand(sp));
__ mov(fp, Operand(pending_handler_fp_address));
__ LoadP(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label skip;
__ cmpi(cp, Operand::Zero());
__ beq(&skip);
__ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
// Compute the handler entry address and jump to it.
ConstantPoolUnavailableScope constant_pool_unavailable(masm);
__ mov(r4, Operand(pending_handler_code_address));
__ LoadP(r4, MemOperand(r4));
__ mov(r5, Operand(pending_handler_offset_address));
__ LoadP(r5, MemOperand(r5));
__ addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start
if (FLAG_enable_embedded_constant_pool) {
__ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r4);
}
__ add(ip, r4, r5);
__ Jump(ip);
}
void JSEntryStub::Generate(MacroAssembler* masm) {
// r3: code entry
// r4: function
// r5: receiver
// r6: argc
// [sp+0]: argv
Label invoke, handler_entry, exit;
// Called from C
__ function_descriptor();
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// PPC LINUX ABI:
// preserve LR in pre-reserved slot in caller's frame
__ mflr(r0);
__ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
// Save callee saved registers on the stack.
__ MultiPush(kCalleeSaved);
// Save callee-saved double registers.
__ MultiPushDoubles(kCalleeSavedDoubles);
// Set up the reserved register for 0.0.
__ LoadDoubleLiteral(kDoubleRegZero, 0.0, r0);
// Push a frame with special values setup to mark it as an entry frame.
// r3: code entry
// r4: function
// r5: receiver
// r6: argc
// r7: argv
__ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used.
__ push(r0);
if (FLAG_enable_embedded_constant_pool) {
__ li(kConstantPoolRegister, Operand::Zero());
__ push(kConstantPoolRegister);
}
StackFrame::Type marker = type();
__ mov(r0, Operand(StackFrame::TypeToMarker(marker)));
__ push(r0);
__ push(r0);
// Save copies of the top frame descriptor on the stack.
__ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
__ LoadP(r0, MemOperand(r8));
__ push(r0);
// Set up frame pointer for the frame to be pushed.
__ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// If this is the outermost JS call, set js_entry_sp value.
Label non_outermost_js;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ mov(r8, Operand(ExternalReference(js_entry_sp)));
__ LoadP(r9, MemOperand(r8));
__ cmpi(r9, Operand::Zero());
__ bne(&non_outermost_js);
__ StoreP(fp, MemOperand(r8));
__ mov(ip, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
Label cont;
__ b(&cont);
__ bind(&non_outermost_js);
__ mov(ip, Operand(StackFrame::INNER_JSENTRY_FRAME));
__ bind(&cont);
__ push(ip); // frame-type
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ b(&invoke);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushStackHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ StoreP(r3, MemOperand(ip));
__ LoadRoot(r3, Heap::kExceptionRootIndex);
__ b(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
// Must preserve r3-r7.
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the b(&invoke) above, which
// restores all kCalleeSaved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// r3: code entry
// r4: function
// r5: receiver
// r6: argc
// r7: argv
if (type() == StackFrame::ENTRY_CONSTRUCT) {
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
isolate());
__ mov(ip, Operand(construct_entry));
} else {
ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
__ mov(ip, Operand(entry));
}
__ LoadP(ip, MemOperand(ip)); // deref address
// Branch and link to JSEntryTrampoline.
// the address points to the start of the code object, skip the header
__ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
__ mtctr(ip);
__ bctrl(); // make the call
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ bind(&exit); // r3 holds result
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ pop(r8);
__ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
__ bne(&non_outermost_js_2);
__ mov(r9, Operand::Zero());
__ mov(r8, Operand(ExternalReference(js_entry_sp)));
__ StoreP(r9, MemOperand(r8));
__ bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ pop(r6);
__ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
__ StoreP(r6, MemOperand(ip));
// Reset the stack to the callee saved registers.
__ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
// Restore callee-saved double registers.
__ MultiPopDoubles(kCalleeSavedDoubles);
// Restore callee-saved registers.
__ MultiPop(kCalleeSaved);
// Return
__ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
__ mtlr(r0);
__ blr();
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// sp[0]: last_match_info (expected JSArray)
// sp[4]: previous index
// sp[8]: subject string
// sp[12]: JSRegExp object
const int kLastMatchInfoOffset = 0 * kPointerSize;
const int kPreviousIndexOffset = 1 * kPointerSize;
const int kSubjectOffset = 2 * kPointerSize;
const int kJSRegExpOffset = 3 * kPointerSize;
Label runtime, br_over, encoding_type_UC16;
// Allocation of registers for this function. These are in callee save
// registers and will be preserved by the call to the native RegExp code, as
// this code is called using the normal C calling convention. When calling
// directly from generated code the native RegExp code will not do a GC and
// therefore the content of these registers are safe to use after the call.
Register subject = r14;
Register regexp_data = r15;
Register last_match_info_elements = r16;
Register code = r17;
// Ensure register assigments are consistent with callee save masks
DCHECK(subject.bit() & kCalleeSaved);
DCHECK(regexp_data.bit() & kCalleeSaved);
DCHECK(last_match_info_elements.bit() & kCalleeSaved);
DCHECK(code.bit() & kCalleeSaved);
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ mov(r3, Operand(address_of_regexp_stack_memory_size));
__ LoadP(r3, MemOperand(r3, 0));
__ cmpi(r3, Operand::Zero());
__ beq(&runtime);
// Check that the first argument is a JSRegExp object.
__ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
__ JumpIfSmi(r3, &runtime);
__ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
__ bne(&runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
__ TestIfSmi(regexp_data, r0);
__ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
__ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// regexp_data: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
// DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
__ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
__ bne(&runtime);
// regexp_data: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ LoadP(r5,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// Or number_of_captures * 2 <= offsets vector size - 2
// SmiToShortArrayOffset accomplishes the multiplication by 2 and
// SmiUntag (which is a nop for 32-bit).
__ SmiToShortArrayOffset(r5, r5);
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
__ bgt(&runtime);
// Reset offset for possibly sliced string.
__ li(r11, Operand::Zero());
__ LoadP(subject, MemOperand(sp, kSubjectOffset));
__ JumpIfSmi(subject, &runtime);
__ mr(r6, subject); // Make a copy of the original subject string.
// subject: subject string
// r6: subject string
// regexp_data: RegExp data (FixedArray)
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (4).
// (2) Sequential or cons? If not, go to (5).
// (3) Cons string. If the string is flat, replace subject with first string
// and go to (1). Otherwise bail out to runtime.
// (4) Sequential string. Load regexp code according to encoding.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (5) Long external string? If not, go to (7).
// (6) External string. Make it, offset-wise, look like a sequential string.
// Go to (4).
// (7) Short external string or not a string? If yes, bail out to runtime.
// (8) Sliced or thin string. Replace subject with parent. Go to (1).
Label seq_string /* 4 */, external_string /* 6 */, check_underlying /* 1 */,
not_seq_nor_cons /* 5 */, not_long_external /* 7 */;
__ bind(&check_underlying);
__ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
__ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
// (1) Sequential string? If yes, go to (4).
STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
kShortExternalStringMask) == 0xa7);
__ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
kShortExternalStringMask));
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
__ beq(&seq_string, cr0); // Go to (4).
// (2) Sequential or cons? If not, go to (5).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kThinStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
STATIC_ASSERT(kExternalStringTag < 0xffffu);
__ cmpi(r4, Operand(kExternalStringTag));
__ bge(¬_seq_nor_cons); // Go to (5).
// (3) Cons string. Check that it's flat.
// Replace subject with first string and reload instance type.
__ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
__ CompareRoot(r3, Heap::kempty_stringRootIndex);
__ bne(&runtime);
__ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
__ b(&check_underlying);
// (4) Sequential string. Load regexp code according to encoding.
__ bind(&seq_string);
// subject: sequential subject string (or look-alike, external string)
// r6: original subject string
// Load previous index and check range before r6 is overwritten. We have to
// use r6 instead of subject here because subject might have been only made
// to look like a sequential string when it actually is an external string.
__ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
__ JumpIfNotSmi(r4, &runtime);
__ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
__ cmpl(r6, r4);
__ ble(&runtime);
__ SmiUntag(r4);
STATIC_ASSERT(8 == kOneByteStringTag);
STATIC_ASSERT(kTwoByteStringTag == 0);
STATIC_ASSERT(kStringEncodingMask == 8);
__ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
__ beq(&encoding_type_UC16, cr0);
__ LoadP(code,
FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
__ b(&br_over);
__ bind(&encoding_type_UC16);
__ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
__ bind(&br_over);
// (E) Carry on. String handling is done.
// code: irregexp code
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(code, &runtime);
// r4: previous index
// r6: encoding of subject string (1 if one_byte, 0 if two_byte);
// code: Address of generated regexp code
// subject: Subject string
// regexp_data: RegExp data (FixedArray)
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
// Isolates: note we add an additional parameter here (isolate pointer).
const int kRegExpExecuteArguments = 10;
const int kParameterRegisters = 8;
__ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
// Stack pointer now points to cell where return address is to be written.
// Arguments are before that on the stack or in registers.
// Argument 10 (in stack parameter area): Pass current isolate address.
__ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
__ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
// Argument 9 is a dummy that reserves the space used for
// the return address added by the ExitFrame in native calls.
// Argument 8 (r10): Indicate that this is a direct call from JavaScript.
__ li(r10, Operand(1));
// Argument 7 (r9): Start (high end) of backtracking stack memory area.
__ mov(r3, Operand(address_of_regexp_stack_memory_address));
__ LoadP(r3, MemOperand(r3, 0));
__ mov(r5, Operand(address_of_regexp_stack_memory_size));
__ LoadP(r5, MemOperand(r5, 0));
__ add(r9, r3, r5);
// Argument 6 (r8): Set the number of capture registers to zero to force
// global egexps to behave as non-global. This does not affect non-global
// regexps.
__ li(r8, Operand::Zero());
// Argument 5 (r7): static offsets vector buffer.
__ mov(
r7,
Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
// For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
// and calculate the shift of the index (0 for one-byte and 1 for two-byte).
__ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
__ xori(r6, r6, Operand(1));
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
__ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
// If slice offset is not 0, load the length from the original sliced string.
// Argument 4, r6: End of string data
// Argument 3, r5: Start of string data
// Prepare start and end index of the input.
__ ShiftLeft_(r11, r11, r6);
__ add(r11, r18, r11);
__ ShiftLeft_(r5, r4, r6);
__ add(r5, r11, r5);
__ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
__ SmiUntag(r18);
__ ShiftLeft_(r6, r18, r6);
__ add(r6, r11, r6);
// Argument 2 (r4): Previous index.
// Already there
// Argument 1 (r3): Subject string.
__ mr(r3, subject);
// Locate the code entry and call it.
__ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
DirectCEntryStub stub(isolate());
stub.GenerateCall(masm, code);
__ LeaveExitFrame(false, no_reg, true);
// r3: result (int32)
// subject: subject string (callee saved)
// regexp_data: RegExp data (callee saved)
// last_match_info_elements: Last match info elements (callee saved)
// Check the result.
Label success;
__ cmpwi(r3, Operand(1));
// We expect exactly one result since we force the called regexp to behave
// as non-global.
__ beq(&success);
Label failure;
__ cmpwi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
__ beq(&failure);
__ cmpwi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
__ bne(&runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
__ mov(r4, Operand(isolate()->factory()->the_hole_value()));
__ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ LoadP(r3, MemOperand(r5, 0));
__ cmp(r3, r4);
__ beq(&runtime);
// For exception, throw the exception again.
__ TailCallRuntime(Runtime::kRegExpExecReThrow);
__ bind(&failure);
// For failure and exception return null.
__ mov(r3, Operand(isolate()->factory()->null_value()));
__ addi(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Process the result from the native regexp code.
__ bind(&success);
__ LoadP(r4,
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
// SmiToShortArrayOffset accomplishes the multiplication by 2 and
// SmiUntag (which is a nop for 32-bit).
__ SmiToShortArrayOffset(r4, r4);
__ addi(r4, r4, Operand(2));
// Check that the last match info is a FixedArray.
__ LoadP(last_match_info_elements, MemOperand(sp, kLastMatchInfoOffset));
__ JumpIfSmi(last_match_info_elements, &runtime);
// Check that the object has fast elements.
__ LoadP(r3,
FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
__ bne(&runtime);
// Check that the last match info has space for the capture registers and the
// additional information.
__ LoadP(
r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
__ addi(r5, r4, Operand(RegExpMatchInfo::kLastMatchOverhead));
__ SmiUntag(r0, r3);
__ cmp(r5, r0);
__ bgt(&runtime);
// r4: number of capture registers
// subject: subject string
// Store the capture count.
__ SmiTag(r5, r4);
__ StoreP(r5, FieldMemOperand(last_match_info_elements,
RegExpMatchInfo::kNumberOfCapturesOffset),
r0);
// Store last subject and last input.
__ StoreP(subject, FieldMemOperand(last_match_info_elements,
RegExpMatchInfo::kLastSubjectOffset),
r0);
__ mr(r5, subject);
__ RecordWriteField(last_match_info_elements,
RegExpMatchInfo::kLastSubjectOffset, subject, r10,
kLRHasNotBeenSaved, kDontSaveFPRegs);
__ mr(subject, r5);
__ StoreP(subject, FieldMemOperand(last_match_info_elements,
RegExpMatchInfo::kLastInputOffset),
r0);
__ RecordWriteField(last_match_info_elements,
RegExpMatchInfo::kLastInputOffset, subject, r10,
kLRHasNotBeenSaved, kDontSaveFPRegs);
// Get the static offsets vector filled by the native regexp code.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ mov(r5, Operand(address_of_static_offsets_vector));
// r4: number of capture registers
// r5: offsets vector
Label next_capture;
// Capture register counter starts from number of capture registers and
// counts down until wrapping after zero.
__ addi(r3, last_match_info_elements,
Operand(RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag -
kPointerSize));
__ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu
__ mtctr(r4);
__ bind(&next_capture);
// Read the value from the static offsets vector buffer.
__ lwzu(r6, MemOperand(r5, kIntSize));
// Store the smi value in the last match info.
__ SmiTag(r6);
__ StorePU(r6, MemOperand(r3, kPointerSize));
__ bdnz(&next_capture);
// Return last match info.
__ mr(r3, last_match_info_elements);
__ addi(sp, sp, Operand(4 * kPointerSize));
__ Ret();
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec);
// Deferred code for string handling.
// (5) Long external string? If not, go to (7).
__ bind(¬_seq_nor_cons);
// Compare flags are still set.
__ bgt(¬_long_external); // Go to (7).
// (6) External string. Make it, offset-wise, look like a sequential string.
__ bind(&external_string);
__ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
__ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
if (FLAG_debug_code) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
STATIC_ASSERT(kIsIndirectStringMask == 1);
__ andi(r0, r3, Operand(kIsIndirectStringMask));
__ Assert(eq, kExternalStringExpectedButNotFound, cr0);
}
__ LoadP(subject,
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ subi(subject, subject,
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
__ b(&seq_string); // Go to (4).
// (7) Short external string or not a string? If yes, bail out to runtime.
__ bind(¬_long_external);
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
__ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
__ bne(&runtime, cr0);
// (8) Sliced or thin string. Replace subject with parent. Go to (4).
Label thin_string;
__ cmpi(r4, Operand(kThinStringTag));
__ beq(&thin_string);
// Load offset into r11 and replace subject string with parent.
__ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
__ SmiUntag(r11);
__ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
__ b(&check_underlying); // Go to (4).
__ bind(&thin_string);
__ LoadP(subject, FieldMemOperand(subject, ThinString::kActualOffset));
__ b(&check_underlying); // Go to (4).
#endif // V8_INTERPRETED_REGEXP
}
static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) {
// r3 : number of arguments to the construct function
// r4 : the function to call
// r5 : feedback vector
// r6 : slot in feedback vector (Smi)
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
// Number-of-arguments register must be smi-tagged to call out.
__ SmiTag(r3);
__ Push(r6, r5, r4, r3);
__ Push(cp);
__ CallStub(stub);
__ Pop(cp);
__ Pop(r6, r5, r4, r3);
__ SmiUntag(r3);
}
static void GenerateRecordCallTarget(MacroAssembler* masm) {
// Cache the called function in a feedback vector slot. Cache states
// are uninitialized, monomorphic (indicated by a JSFunction), and
// megamorphic.
// r3 : number of arguments to the construct function
// r4 : the function to call
// r5 : feedback vector
// r6 : slot in feedback vector (Smi)
Label initialize, done, miss, megamorphic, not_array_function;
DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
masm->isolate()->heap()->megamorphic_symbol());
DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
const int count_offset = FixedArray::kHeaderSize + kPointerSize;
// Load the cache state into r8.
__ SmiToPtrArrayOffset(r8, r6);
__ add(r8, r5, r8);
__ LoadP(r8, FieldMemOperand(r8, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
// We don't know if r8 is a WeakCell or a Symbol, but it's harmless to read at
// this position in a symbol (see static asserts in feedback-vector.h).
Label check_allocation_site;
Register feedback_map = r9;
Register weak_value = r10;
__ LoadP(weak_value, FieldMemOperand(r8, WeakCell::kValueOffset));
__ cmp(r4, weak_value);
__ beq(&done);
__ CompareRoot(r8, Heap::kmegamorphic_symbolRootIndex);
__ beq(&done);
__ LoadP(feedback_map, FieldMemOperand(r8, HeapObject::kMapOffset));
__ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
__ bne(&check_allocation_site);
// If the weak cell is cleared, we have a new chance to become monomorphic.
__ JumpIfSmi(weak_value, &initialize);
__ b(&megamorphic);
__ bind(&check_allocation_site);
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite.
__ CompareRoot(feedback_map, Heap::kAllocationSiteMapRootIndex);
__ bne(&miss);
// Make sure the function is the Array() function
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
__ cmp(r4, r8);
__ bne(&megamorphic);
__ b(&done);
__ bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ CompareRoot(r8, Heap::kuninitialized_symbolRootIndex);
__ beq(&initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ bind(&megamorphic);
__ SmiToPtrArrayOffset(r8, r6);
__ add(r8, r5, r8);
__ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex);
__ StoreP(ip, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
__ jmp(&done);
// An uninitialized cache is patched with the function
__ bind(&initialize);
// Make sure the function is the Array() function.
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, r8);
__ cmp(r4, r8);
__ bne(¬_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
CreateAllocationSiteStub create_stub(masm->isolate());
CallStubInRecordCallTarget(masm, &create_stub);
__ b(&done);
__ bind(¬_array_function);
CreateWeakCellStub weak_cell_stub(masm->isolate());
CallStubInRecordCallTarget(masm, &weak_cell_stub);
__ bind(&done);
// Increment the call count for all function calls.
__ SmiToPtrArrayOffset(r8, r6);
__ add(r8, r5, r8);
__ LoadP(r7, FieldMemOperand(r8, count_offset));
__ AddSmiLiteral(r7, r7, Smi::FromInt(1), r0);
__ StoreP(r7, FieldMemOperand(r8, count_offset), r0);
}
void CallConstructStub::Generate(MacroAssembler* masm) {
// r3 : number of arguments
// r4 : the function to call
// r5 : feedback vector
// r6 : slot in feedback vector (Smi, for RecordCallTarget)
Label non_function;
// Check that the function is not a smi.
__ JumpIfSmi(r4, &non_function);
// Check that the function is a JSFunction.
__ CompareObjectType(r4, r8, r8, JS_FUNCTION_TYPE);
__ bne(&non_function);
GenerateRecordCallTarget(masm);
__ SmiToPtrArrayOffset(r8, r6);
__ add(r8, r5, r8);
// Put the AllocationSite from the feedback vector into r5, or undefined.
__ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
__ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
__ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
if (CpuFeatures::IsSupported(ISELECT)) {
__ LoadRoot(r8, Heap::kUndefinedValueRootIndex);
__ isel(eq, r5, r5, r8);
} else {
Label feedback_register_initialized;
__ beq(&feedback_register_initialized);
__ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
}
__ AssertUndefinedOrAllocationSite(r5, r8);
// Pass function as new target.
__ mr(r6, r4);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
__ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset));
__ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag));
__ JumpToJSEntry(ip);
__ bind(&non_function);
__ mr(r6, r4);
__ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
if (check_mode_ == RECEIVER_IS_UNKNOWN) {
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ andi(r0, result_, Operand(kIsNotStringMask));
__ bne(receiver_not_string_, cr0);
}
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
__ cmpl(ip, index_);
__ ble(index_out_of_range_);
__ SmiUntag(index_);
StringCharLoadGenerator::Generate(masm, object_, index_, result_,
&call_runtime_);
__ SmiTag(result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
DONT_DO_SMI_CHECK);
call_helper.BeforeCall(masm);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Push(LoadWithVectorDescriptor::VectorRegister(),
LoadWithVectorDescriptor::SlotRegister(), object_, index_);
} else {
// index_ is consumed by runtime conversion function.
__ Push(object_, index_);
}
__ CallRuntime(Runtime::kNumberToSmi);
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ Move(index_, r3);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Pop(LoadWithVectorDescriptor::VectorRegister(),
LoadWithVectorDescriptor::SlotRegister(), object_);
} else {
__ pop(object_);
}
// Reload the instance type.
__ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ b(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ SmiTag(index_);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT);
__ Move(result_, r3);
call_helper.AfterCall(masm);
__ b(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2) {
Register length = scratch1;
// Compare lengths.
Label strings_not_equal, check_zero_length;
__ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
__ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ cmp(length, scratch2);
__ beq(&check_zero_length);
__ bind(&strings_not_equal);
__ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
__ Ret();
// Check if the length is zero.
Label compare_chars;
__ bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ cmpi(length, Operand::Zero());
__ bne(&compare_chars);
__ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
// Compare characters.
__ bind(&compare_chars);
GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
&strings_not_equal);
// Characters are equal.
__ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3) {
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
__ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
Register length_delta = scratch3;
if (CpuFeatures::IsSupported(ISELECT)) {
__ isel(gt, scratch1, scratch2, scratch1, cr0);
} else {
Label skip;
__ ble(&skip, cr0);
__ mr(scratch1, scratch2);
__ bind(&skip);
}
Register min_length = scratch1;
STATIC_ASSERT(kSmiTag == 0);
__ cmpi(min_length, Operand::Zero());
__ beq(&compare_lengths);
// Compare loop.
GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
&result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ bind(&compare_lengths);
DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
__ mr(r3, length_delta);
__ cmpi(r3, Operand::Zero());
__ bind(&result_not_equal);
// Conditionally update the result based either on length_delta or
// the last comparion performed in the loop above.
if (CpuFeatures::IsSupported(ISELECT)) {
__ LoadSmiLiteral(r4, Smi::FromInt(GREATER));
__ LoadSmiLiteral(r5, Smi::FromInt(LESS));
__ isel(eq, r3, r0, r4);
__ isel(lt, r3, r5, r3);
__ Ret();
} else {
Label less_equal, equal;
__ ble(&less_equal);
__ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
__ Ret();
__ bind(&less_equal);
__ beq(&equal);
__ LoadSmiLiteral(r3, Smi::FromInt(LESS));
__ bind(&equal);
__ Ret();
}
}
void StringHelper::GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch1, Label* chars_not_equal) {
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ addi(scratch1, length,
Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
__ add(left, left, scratch1);
__ add(right, right, scratch1);
__ subfic(length, length, Operand::Zero());
Register index = length; // index = -length;
// Compare loop.
Label loop;
__ bind(&loop);
__ lbzx(scratch1, MemOperand(left, index));
__ lbzx(r0, MemOperand(right, index));
__ cmp(scratch1, r0);
__ bne(chars_not_equal);
__ addi(index, index, Operand(1));
__ cmpi(index, Operand::Zero());
__ bne(&loop);
}
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r4 : left
// -- r3 : right
// -- lr : return address
// -----------------------------------
// Load r5 with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
__ Move(r5, isolate()->factory()->undefined_value());
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
__ TestIfSmi(r5, r0);
__ Assert(ne, kExpectedAllocationSite, cr0);
__ push(r5);
__ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
__ cmp(r5, ip);
__ pop(r5);
__ Assert(eq, kExpectedAllocationSite);
}
// Tail call into the stub that handles binary operations with allocation
// sites.
BinaryOpWithAllocationSiteStub stub(isolate(), state());
__ TailCallStub(&stub);
}
void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::BOOLEAN, state());
Label miss;
__ CheckMap(r4, r5, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
__ CheckMap(r3, r6, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
if (!Token::IsEqualityOp(op())) {
__ LoadP(r4, FieldMemOperand(r4, Oddball::kToNumberOffset));
__ AssertSmi(r4);
__ LoadP(r3, FieldMemOperand(r3, Oddball::kToNumberOffset));
__ AssertSmi(r3);
}
__ sub(r3, r4, r3);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateSmis(MacroAssembler* masm) {
DCHECK(state() == CompareICState::SMI);
Label miss;
__ orx(r5, r4, r3);
__ JumpIfNotSmi(r5, &miss);
if (GetCondition() == eq) {
// For equality we do not care about the sign of the result.
// __ sub(r3, r3, r4, SetCC);
__ sub(r3, r3, r4);
} else {
// Untag before subtracting to avoid handling overflow.
__ SmiUntag(r4);
__ SmiUntag(r3);
__ sub(r3, r4, r3);
}
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
DCHECK(state() == CompareICState::NUMBER);
Label generic_stub;
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss;
Label equal, less_than;
if (left() == CompareICState::SMI) {
__ JumpIfNotSmi(r4, &miss);
}
if (right() == CompareICState::SMI) {
__ JumpIfNotSmi(r3, &miss);
}
// Inlining the double comparison and falling back to the general compare
// stub if NaN is involved.
// Load left and right operand.
Label done, left, left_smi, right_smi;
__ JumpIfSmi(r3, &right_smi);
__ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
DONT_DO_SMI_CHECK);
__ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
__ b(&left);
__ bind(&right_smi);
__ SmiToDouble(d1, r3);
__ bind(&left);
__ JumpIfSmi(r4, &left_smi);
__ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
DONT_DO_SMI_CHECK);
__ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
__ b(&done);
__ bind(&left_smi);
__ SmiToDouble(d0, r4);
__ bind(&done);
// Compare operands
__ fcmpu(d0, d1);
// Don't base result on status bits when a NaN is involved.
__ bunordered(&unordered);
// Return a result of -1, 0, or 1, based on status bits.
if (CpuFeatures::IsSupported(ISELECT)) {
DCHECK(EQUAL == 0);
__ li(r4, Operand(GREATER));
__ li(r5, Operand(LESS));
__ isel(eq, r3, r0, r4);
__ isel(lt, r3, r5, r3);
__ Ret();
} else {
__ beq(&equal);
__ blt(&less_than);
// assume greater than
__ li(r3, Operand(GREATER));
__ Ret();
__ bind(&equal);
__ li(r3, Operand(EQUAL));
__ Ret();
__ bind(&less_than);
__ li(r3, Operand(LESS));
__ Ret();
}
__ bind(&unordered);
__ bind(&generic_stub);
CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
CompareICState::GENERIC, CompareICState::GENERIC);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
__ bne(&miss);
__ JumpIfSmi(r4, &unordered);
__ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
__ bne(&maybe_undefined2);
__ b(&unordered);
}
__ bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
__ beq(&unordered);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::INTERNALIZED_STRING);
Label miss, not_equal;
// Registers containing left and right operands respectively.
Register left = r4;
Register right = r3;
Register tmp1 = r5;
Register tmp2 = r6;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are symbols.
__ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
__ orx(tmp1, tmp1, tmp2);
__ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
__ bne(&miss, cr0);
// Internalized strings are compared by identity.
__ cmp(left, right);
__ bne(¬_equal);
// Make sure r3 is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(r3));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ bind(¬_equal);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
DCHECK(state() == CompareICState::UNIQUE_NAME);
DCHECK(GetCondition() == eq);
Label miss;
// Registers containing left and right operands respectively.
Register left = r4;
Register right = r3;
Register tmp1 = r5;
Register tmp2 = r6;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
__ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(tmp1, &miss);
__ JumpIfNotUniqueNameInstanceType(tmp2, &miss);
// Unique names are compared by identity.
__ cmp(left, right);
__ bne(&miss);
// Make sure r3 is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(r3));
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::STRING);
Label miss, not_identical, is_symbol;
bool equality = Token::IsEqualityOp(op());
// Registers containing left and right operands respectively.
Register left = r4;
Register right = r3;
Register tmp1 = r5;
Register tmp2 = r6;
Register tmp3 = r7;
Register tmp4 = r8;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(left, right, &miss);
// Check that both operands are strings. This leaves the instance
// types loaded in tmp1 and tmp2.
__ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
__ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
__ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ orx(tmp3, tmp1, tmp2);
__ andi(r0, tmp3, Operand(kIsNotStringMask));
__ bne(&miss, cr0);
// Fast check for identical strings.
__ cmp(left, right);
STATIC_ASSERT(EQUAL == 0);
STATIC_ASSERT(kSmiTag == 0);
__ bne(¬_identical);
__ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
__ Ret();
__ bind(¬_identical);
// Handle not identical strings.
// Check that both strings are internalized strings. If they are, we're done
// because we already know they are not identical. We know they are both
// strings.
if (equality) {
DCHECK(GetCondition() == eq);
STATIC_ASSERT(kInternalizedTag == 0);
__ orx(tmp3, tmp1, tmp2);
__ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
// Make sure r3 is non-zero. At this point input operands are
// guaranteed to be non-zero.
DCHECK(right.is(r3));
__ Ret(eq, cr0);
}
// Check that both strings are sequential one-byte.
Label runtime;
__ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
&runtime);
// Compare flat one-byte strings. Returns when done.
if (equality) {
StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
tmp2);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
tmp2, tmp3);
}
// Handle more complex cases in runtime.
__ bind(&runtime);
if (equality) {
{
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(left, right);
__ CallRuntime(Runtime::kStringEqual);
}
__ LoadRoot(r4, Heap::kTrueValueRootIndex);
__ sub(r3, r3, r4);
__ Ret();
} else {
__ Push(left, right);
__ TailCallRuntime(Runtime::kStringCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::RECEIVER, state());
Label miss;
__ and_(r5, r4, r3);
__ JumpIfSmi(r5, &miss);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
__ CompareObjectType(r3, r5, r5, FIRST_JS_RECEIVER_TYPE);
__ blt(&miss);
__ CompareObjectType(r4, r5, r5, FIRST_JS_RECEIVER_TYPE);
__ blt(&miss);
DCHECK(GetCondition() == eq);
__ sub(r3, r3, r4);
__ Ret();
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
Label miss;
Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
__ and_(r5, r4, r3);
__ JumpIfSmi(r5, &miss);
__ GetWeakValue(r7, cell);
__ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
__ cmp(r5, r7);
__ bne(&miss);
__ cmp(r6, r7);
__ bne(&miss);
if (Token::IsEqualityOp(op())) {
__ sub(r3, r3, r4);
__ Ret();
} else {
if (op() == Token::LT || op() == Token::LTE) {
__ LoadSmiLiteral(r5, Smi::FromInt(GREATER));
} else {
__ LoadSmiLiteral(r5, Smi::FromInt(LESS));
}
__ Push(r4, r3, r5);
__ TailCallRuntime(Runtime::kCompare);
}
__ bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateMiss(MacroAssembler* masm) {
{
// Call the runtime system in a fresh internal frame.
FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
__ Push(r4, r3);
__ Push(r4, r3);
__ LoadSmiLiteral(r0, Smi::FromInt(op()));
__ push(r0);
__ CallRuntime(Runtime::kCompareIC_Miss);
// Compute the entry point of the rewritten stub.
__ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
// Restore registers.
__ Pop(r4, r3);
}
__ JumpToJSEntry(r5);
}
// This stub is paired with DirectCEntryStub::GenerateCall
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// Place the return address on the stack, making the call
// GC safe. The RegExp backend also relies on this.
__ mflr(r0);
__ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
__ Call(ip); // Call the C++ function.
__ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
__ mtlr(r0);
__ blr();
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
if (ABI_USES_FUNCTION_DESCRIPTORS) {
// AIX/PPC64BE Linux use a function descriptor.
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
__ LoadP(ip, MemOperand(target, 0)); // Instruction address
} else {
// ip needs to be set for DirectCEentryStub::Generate, and also
// for ABI_CALL_VIA_IP.
__ Move(ip, target);
}
intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
__ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
__ Call(r0); // Call the stub.
}
void NameDictionaryLookupStub::GenerateNegativeLookup(
MacroAssembler* masm, Label* miss, Label* done, Register receiver,
Register properties, Handle<Name> name, Register scratch0) {
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
__ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
__ subi(index, index, Operand(1));
__ LoadSmiLiteral(
ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
__ and_(index, index, ip);
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ ShiftLeftImm(ip, index, Operand(1));
__ add(index, index, ip); // index *= 3.
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
Register tmp = properties;
__ SmiToPtrArrayOffset(ip, index);
__ add(tmp, properties, ip);
__ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
DCHECK(!tmp.is(entity_name));
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
__ cmp(entity_name, tmp);
__ beq(done);
// Load the hole ready for use below:
__ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
// Stop if found the property.
__ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
__ beq(miss);
Label good;
__ cmp(entity_name, tmp);
__ beq(&good);
// Check if the entry name is not a unique name.
__ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entity_name, miss);
__ bind(&good);
// Restore the properties.
__ LoadP(properties,
FieldMemOperand(receiver, JSObject::kPropertiesOffset));
}
const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
r5.bit() | r4.bit() | r3.bit());
__ mflr(r0);
__ MultiPush(spill_mask);
__ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ mov(r4, Operand(Handle<Name>(name)));
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
__ CallStub(&stub);
__ cmpi(r3, Operand::Zero());
__ MultiPop(spill_mask); // MultiPop does not touch condition flags
__ mtlr(r0);
__ beq(done);
__ bne(miss);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
// Registers:
// result: NameDictionary to probe
// r4: key
// dictionary: NameDictionary to probe.
// index: will hold an index of entry if lookup is successful.
// might alias with result_.
// Returns:
// result_ is zero if lookup failed, non zero otherwise.
Register result = r3;
Register dictionary = r3;
Register key = r4;
Register index = r5;
Register mask = r6;
Register hash = r7;
Register undefined = r8;
Register entry_key = r9;
Register scratch = r9;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
__ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
__ SmiUntag(mask);
__ subi(mask, mask, Operand(1));
__ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
// Capacity is smi 2^n.
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ addi(index, hash,
Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
} else {
__ mr(index, hash);
}
__ srwi(r0, index, Operand(Name::kHashShift));
__ and_(index, mask, r0);
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ ShiftLeftImm(scratch, index, Operand(1));
__ add(index, index, scratch); // index *= 3.
__ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
__ add(index, dictionary, scratch);
__ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
__ cmp(entry_key, undefined);
__ beq(¬_in_dictionary);
// Stop if found the property.
__ cmp(entry_key, key);
__ beq(&in_dictionary);
if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
// Check if the entry name is not a unique name.
__ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
__ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
}
}
__ bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup probing failure
// should be treated as lookup failure.
if (mode() == POSITIVE_LOOKUP) {
__ li(result, Operand::Zero());
__ Ret();
}
__ bind(&in_dictionary);
__ li(result, Operand(1));
__ Ret();
__ bind(¬_in_dictionary);
__ li(result, Operand::Zero());
__ Ret();
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
// Hydrogen code stubs need stub2 at snapshot time.
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
// the value has just been written into the object, now this stub makes sure
// we keep the GC informed. The word in the object where the value has been
// written is in the address register.
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// The first two branch instructions are generated with labels so as to
// get the offset fixed up correctly by the bind(Label*) call. We patch
// it back and forth between branch condition True and False
// when we start and stop incremental heap marking.
// See RecordWriteStub::Patch for details.
// Clear the bit, branch on True for NOP action initially
__ crclr(Assembler::encode_crbit(cr2, CR_LT));
__ blt(&skip_to_incremental_noncompacting, cr2);
__ blt(&skip_to_incremental_compacting, cr2);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
}
__ Ret();
__ bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
// patching not required on PPC as the initial path is effectively NOP
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
regs_.Save(masm);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
__ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
regs_.scratch0(), &dont_need_remembered_set);
__ JumpIfInNewSpace(regs_.object(), regs_.scratch0(),
&dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
__ bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm);
__ Ret();
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
int argument_count = 3;
__ PrepareCallCFunction(argument_count, regs_.scratch0());
Register address =
r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
DCHECK(!address.is(regs_.object()));
DCHECK(!address.is(r3));
__ mr(address, regs_.address());
__ mr(r3, regs_.object());
__ mr(r4, address);
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
AllowExternalCallThatCantCauseGC scope(masm);
__ CallCFunction(
ExternalReference::incremental_marking_record_write_function(isolate()),
argument_count);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_scratch;
// Let's look at the color of the object: If it is not black we don't have
// to inform the incremental marker.
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ bind(&on_black);
// Get the value from the slot.
__ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlag(regs_.scratch0(), // Contains value.
regs_.scratch1(), // Scratch.
MemoryChunk::kEvacuationCandidateMask, eq,
&ensure_not_white);
__ CheckPageFlag(regs_.object(),
regs_.scratch1(), // Scratch.
MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
&need_incremental);
__ bind(&ensure_not_white);
}
// We need extra registers for this, so we push the object and the address
// register temporarily.
__ Push(regs_.object(), regs_.address());
__ JumpIfWhite(regs_.scratch0(), // The value.
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
regs_.address(), // Scratch.
&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
regs_.Restore(masm);
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ bind(&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
__ bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
CEntryStub ces(isolate(), 1, kSaveFPRegs);
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
__ LoadP(r4, MemOperand(fp, parameter_count_offset));
if (function_mode() == JS_FUNCTION_STUB_MODE) {
__ addi(r4, r4, Operand(1));
}
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
__ slwi(r4, r4, Operand(kPointerSizeLog2));
__ add(sp, sp, r4);
__ Ret();
}
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
PredictableCodeSizeScope predictable(masm,
#if V8_TARGET_ARCH_PPC64
14 * Assembler::kInstrSize);
#else
11 * Assembler::kInstrSize);
#endif
ProfileEntryHookStub stub(masm->isolate());
__ mflr(r0);
__ Push(r0, ip);
__ CallStub(&stub);
__ Pop(r0, ip);
__ mtlr(r0);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
// The entry hook is a "push lr, ip" instruction, followed by a call.
const int32_t kReturnAddressDistanceFromFunctionStart =
Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize;
// This should contain all kJSCallerSaved registers.
const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
r15.bit(); // Saved stack pointer.
// We also save lr, so the count here is one higher than the mask indicates.
const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
// Save all caller-save registers as this may be called from anywhere.
__ mflr(ip);
__ MultiPush(kSavedRegs | ip.bit());
// Compute the function's address for the first argument.
__ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart));
// The caller's return address is two slots above the saved temporaries.
// Grab that for the second argument to the hook.
__ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize));
// Align the stack if necessary.
int frame_alignment = masm->ActivationFrameAlignment();
if (frame_alignment > kPointerSize) {
__ mr(r15, sp);
DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
__ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
}
#if !defined(USE_SIMULATOR)
uintptr_t entry_hook =
reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
#else
// Under the simulator we need to indirect the entry hook through a
// trampoline function at a known address.
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
ExternalReference entry_hook = ExternalReference(
&dispatcher, ExternalReference::BUILTIN_CALL, isolate());
// It additionally takes an isolate as a third parameter
__ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
#endif
__ mov(ip, Operand(entry_hook));
if (ABI_USES_FUNCTION_DESCRIPTORS) {
__ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
__ LoadP(ip, MemOperand(ip, 0));
}
// ip set above, so nothing more to do for ABI_CALL_VIA_IP.
// PPC LINUX ABI:
__ li(r0, Operand::Zero());
__ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
__ Call(ip);
__ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
// Restore the stack pointer if needed.
if (frame_alignment > kPointerSize) {
__ mr(sp, r15);
}
// Also pop lr to get Ret(0).
__ MultiPop(kSavedRegs | ip.bit());
__ mtlr(ip);
__ Ret();
}
template <class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ Cmpi(r6, Operand(kind), r0);
T stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
// r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
// r3 - number of arguments
// r4 - constructor?
// sp[0] - last argument
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// is the low bit set? If so, we are holey and that is good.
__ andi(r0, r6, Operand(1));
__ bne(&normal_sequence, cr0);
}
// look at the first argument
__ LoadP(r8, MemOperand(sp, 0));
__ cmpi(r8, Operand::Zero());
__ beq(&normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(
masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ bind(&normal_sequence);
ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ addi(r6, r6, Operand(1));
if (FLAG_debug_code) {
__ LoadP(r8, FieldMemOperand(r5, 0));
__ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
__ Assert(eq, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store r6
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field...upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
__ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
__ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
r0);
__ bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
__ mov(r0, Operand(kind));
__ cmp(r6, r0);
ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
__ TailCallStub(&stub, eq);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template <class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm, AllocationSiteOverrideMode mode) {
Label not_zero_case, not_one_case;
__ cmpi(r3, Operand::Zero());
__ bne(¬_zero_case);
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ bind(¬_zero_case);
__ cmpi(r3, Operand(1));
__ bgt(¬_one_case);
CreateArrayDispatchOneArgument(masm, mode);
__ bind(¬_one_case);
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : argc (only if argument_count() == ANY)
// -- r4 : constructor
// -- r5 : AllocationSite or undefined
// -- r6 : new target
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ TestIfSmi(r7, r0);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r7, r7, r8, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
// We should either have undefined in r5 or a valid AllocationSite
__ AssertUndefinedOrAllocationSite(r5, r7);
}
// Enter the context of the Array function.
__ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
Label subclassing;
__ cmp(r6, r4);
__ bne(&subclassing);
Label no_info;
// Get the elements kind and case on that.
__ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
__ beq(&no_info);
__ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
__ SmiUntag(r6);
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
__ bind(&subclassing);
__ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2));
__ StorePX(r4, MemOperand(sp, r0));
__ addi(r3, r3, Operand(3));
__ Push(r6, r5);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
ElementsKind kind) {
__ cmpli(r3, Operand(1));
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0, lt);
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN, gt);
if (IsFastPackedElementsKind(kind)) {
// We might need to create a holey array
// look at the first argument
__ LoadP(r6, MemOperand(sp, 0));
__ cmpi(r6, Operand::Zero());
InternalArraySingleArgumentConstructorStub stub1_holey(
isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey, ne);
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : argc
// -- r4 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
// Initial map for the builtin Array function should be a map.
__ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ TestIfSmi(r6, r0);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
__ CompareObjectType(r6, r6, r7, MAP_TYPE);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction);
}
// Figure out the right elements kind
__ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
// Load the map's "bit field 2" into |result|.
__ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ DecodeField<Map::ElementsKindBits>(r6);
if (FLAG_debug_code) {
Label done;
__ cmpi(r6, Operand(FAST_ELEMENTS));
__ beq(&done);
__ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
__ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
__ bind(&done);
}
Label fast_elements_case;
__ cmpi(r6, Operand(FAST_ELEMENTS));
__ beq(&fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ bind(&fast_elements_case);
GenerateCase(masm, FAST_ELEMENTS);
}
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return ref0.address() - ref1.address();
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions. Restores context. stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
Register function_address,
ExternalReference thunk_ref,
int stack_space,
MemOperand* stack_space_operand,
MemOperand return_value_operand,
MemOperand* context_restore_operand) {
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
// Additional parameter is the address of the actual callback.
DCHECK(function_address.is(r4) || function_address.is(r5));
Register scratch = r6;
__ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate)));
__ lbz(scratch, MemOperand(scratch, 0));
__ cmpi(scratch, Operand::Zero());
if (CpuFeatures::IsSupported(ISELECT)) {
__ mov(scratch, Operand(thunk_ref));
__ isel(eq, scratch, function_address, scratch);
} else {
Label profiler_disabled;
Label end_profiler_check;
__ beq(&profiler_disabled);
__ mov(scratch, Operand(thunk_ref));
__ b(&end_profiler_check);
__ bind(&profiler_disabled);
__ mr(scratch, function_address);
__ bind(&end_profiler_check);
}
// Allocate HandleScope in callee-save registers.
// r17 - next_address
// r14 - next_address->kNextOffset
// r15 - next_address->kLimitOffset
// r16 - next_address->kLevelOffset
__ mov(r17, Operand(next_address));
__ LoadP(r14, MemOperand(r17, kNextOffset));
__ LoadP(r15, MemOperand(r17, kLimitOffset));
__ lwz(r16, MemOperand(r17, kLevelOffset));
__ addi(r16, r16, Operand(1));
__ stw(r16, MemOperand(r17, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, r3);
__ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, scratch);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ PrepareCallCFunction(1, r3);
__ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// load value from ReturnValue
__ LoadP(r3, return_value_operand);
__ bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ StoreP(r14, MemOperand(r17, kNextOffset));
if (__ emit_debug_code()) {
__ lwz(r4, MemOperand(r17, kLevelOffset));
__ cmp(r4, r16);
__ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
}
__ subi(r16, r16, Operand(1));
__ stw(r16, MemOperand(r17, kLevelOffset));
__ LoadP(r0, MemOperand(r17, kLimitOffset));
__ cmp(r15, r0);
__ bne(&delete_allocated_handles);
// Leave the API exit frame.
__ bind(&leave_exit_frame);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
__ LoadP(cp, *context_restore_operand);
}
// LeaveExitFrame expects unwind space to be in a register.
if (stack_space_operand != NULL) {
__ lwz(r14, *stack_space_operand);
} else {
__ mov(r14, Operand(stack_space));
}
__ LeaveExitFrame(false, r14, !restore_context, stack_space_operand != NULL);
// Check if the function scheduled an exception.
__ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
__ mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate)));
__ LoadP(r15, MemOperand(r15));
__ cmp(r14, r15);
__ bne(&promote_scheduled_exception);
__ blr();
// Re-throw by promoting a scheduled exception.
__ bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ bind(&delete_allocated_handles);
__ StoreP(r15, MemOperand(r17, kLimitOffset));
__ mr(r14, r3);
__ PrepareCallCFunction(1, r15);
__ mov(r3, Operand(ExternalReference::isolate_address(isolate)));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
1);
__ mr(r3, r14);
__ b(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r3 : callee
// -- r7 : call_data
// -- r5 : holder
// -- r4 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1)* 4] : first argument
// -- sp[argc * 4] : receiver
// -----------------------------------
Register callee = r3;
Register call_data = r7;
Register holder = r5;
Register api_function_address = r4;
Register context = cp;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kNewTargetIndex == 7);
STATIC_ASSERT(FCA::kArgsLength == 8);
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// context save
__ push(context);
if (!is_lazy()) {
// load context from callee
__ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
}
// callee
__ push(callee);
// call data
__ push(call_data);
Register scratch = call_data;
if (!call_data_undefined()) {
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
}
// return value
__ push(scratch);
// return value default
__ push(scratch);
// isolate
__ mov(scratch, Operand(ExternalReference::isolate_address(masm->isolate())));
__ push(scratch);
// holder
__ push(holder);
// Prepare arguments.
__ mr(scratch, sp);
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
// PPC LINUX ABI:
//
// Create 4 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1-3] FunctionCallbackInfo
const int kApiStackSpace = 4;
const int kFunctionCallbackInfoOffset =
(kStackFrameExtraParamSlot + 1) * kPointerSize;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, kApiStackSpace);
DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
// r3 = FunctionCallbackInfo&
// Arguments is after the return address.
__ addi(r3, sp, Operand(kFunctionCallbackInfoOffset));
// FunctionCallbackInfo::implicit_args_
__ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
// FunctionCallbackInfo::values_
__ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ li(ip, Operand(argc()));
__ stw(ip, MemOperand(r3, 2 * kPointerSize));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
AllowExternalCallThatCantCauseGC scope(masm);
MemOperand context_restore_operand(
fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
// Stores return the first js argument
int return_value_offset = 0;
if (is_store()) {
return_value_offset = 2 + FCA::kArgsLength;
} else {
return_value_offset = 2 + FCA::kReturnValueOffset;
}
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
int stack_space = 0;
MemOperand length_operand =
MemOperand(sp, kFunctionCallbackInfoOffset + 2 * kPointerSize);
MemOperand* stack_space_operand = &length_operand;
stack_space = argc() + FCA::kArgsLength + 1;
stack_space_operand = NULL;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_operand, return_value_operand,
&context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
int arg0Slot = 0;
int accessorInfoSlot = 0;
int apiStackSpace = 0;
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = r7;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
Register api_function_address = r5;
__ push(receiver);
// Push data from AccessorInfo.
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ push(scratch);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ Push(scratch, scratch);
__ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
__ Push(scratch, holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ push(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ mr(r3, sp); // r3 = Handle<Name>
__ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = v8::PCI::args_
// If ABI passes Handles (pointer-sized struct) in a register:
//
// Create 2 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] AccessorInfo&
//
// Otherwise:
//
// Create 3 extra slots on stack:
// [0] space for DirectCEntryStub's LR save
// [1] copy of Handle (first arg)
// [2] AccessorInfo&
if (ABI_PASSES_HANDLES_IN_REGS) {
accessorInfoSlot = kStackFrameExtraParamSlot + 1;
apiStackSpace = 2;
} else {
arg0Slot = kStackFrameExtraParamSlot + 1;
accessorInfoSlot = arg0Slot + 1;
apiStackSpace = 3;
}
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, apiStackSpace);
if (!ABI_PASSES_HANDLES_IN_REGS) {
// pass 1st arg by reference
__ StoreP(r3, MemOperand(sp, arg0Slot * kPointerSize));
__ addi(r3, sp, Operand(arg0Slot * kPointerSize));
}
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ StoreP(r4, MemOperand(sp, accessorInfoSlot * kPointerSize));
__ addi(r4, sp, Operand(accessorInfoSlot * kPointerSize));
// r4 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
__ LoadP(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ LoadP(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, NULL, return_value_operand, NULL);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_PPC