// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
#define V8_MIPS_ASSEMBLER_MIPS_INL_H_
#include "src/mips64/assembler-mips64.h"
#include "src/assembler.h"
#include "src/debug/debug.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
bool CpuFeatures::SupportsSimd128() { return false; }
// -----------------------------------------------------------------------------
// Operand and MemOperand.
Operand::Operand(int64_t immediate, RelocInfo::Mode rmode) {
rm_ = no_reg;
imm64_ = immediate;
rmode_ = rmode;
}
Operand::Operand(const ExternalReference& f) {
rm_ = no_reg;
imm64_ = reinterpret_cast<int64_t>(f.address());
rmode_ = RelocInfo::EXTERNAL_REFERENCE;
}
Operand::Operand(Smi* value) {
rm_ = no_reg;
imm64_ = reinterpret_cast<intptr_t>(value);
rmode_ = RelocInfo::NONE32;
}
Operand::Operand(Register rm) {
rm_ = rm;
}
bool Operand::is_reg() const {
return rm_.is_valid();
}
// -----------------------------------------------------------------------------
// RelocInfo.
void RelocInfo::apply(intptr_t delta) {
if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
byte* p = reinterpret_cast<byte*>(pc_);
int count = Assembler::RelocateInternalReference(rmode_, p, delta);
Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) ||
rmode_ == EMBEDDED_OBJECT ||
rmode_ == EXTERNAL_REFERENCE);
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LUI/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written. In this case the target_address_address function should
// return the end of the instructions to be patched, allowing the
// deserializer to deserialize the instructions as raw bytes and put them in
// place, ready to be patched with the target. After jump optimization,
// that is the address of the instruction that follows J/JAL/JR/JALR
// instruction.
// return reinterpret_cast<Address>(
// pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
return reinterpret_cast<Address>(
pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
}
Address RelocInfo::constant_pool_entry_address() {
UNREACHABLE();
return NULL;
}
int RelocInfo::target_address_size() {
return Assembler::kSpecialTargetSize;
}
Address Assembler::target_address_at(Address pc, Code* code) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
Address target,
ICacheFlushMode icache_flush_mode) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
}
Address Assembler::target_address_from_return_address(Address pc) {
return pc - kCallTargetAddressOffset;
}
void Assembler::set_target_internal_reference_encoded_at(Address pc,
Address target) {
// Encoded internal references are j/jal instructions.
Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
uint64_t imm28 =
(reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask));
instr &= ~kImm26Mask;
uint64_t imm26 = imm28 >> 2;
DCHECK(is_uint26(imm26));
instr_at_put(pc, instr | (imm26 & kImm26Mask));
// Currently used only by deserializer, and all code will be flushed
// after complete deserialization, no need to flush on each reference.
}
void Assembler::deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
DCHECK(IsJ(instr_at(pc)));
set_target_internal_reference_encoded_at(pc, target);
} else {
DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
Memory::Address_at(pc) = target;
}
}
Object* RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
}
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<Object>(reinterpret_cast<Object**>(
Assembler::target_address_at(pc_, host_)));
}
void RelocInfo::set_target_object(Object* target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(isolate_, pc_, host_,
reinterpret_cast<Address>(target),
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
host() != NULL &&
target->IsHeapObject()) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target));
host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, host_);
}
Address RelocInfo::target_internal_reference() {
if (rmode_ == INTERNAL_REFERENCE) {
return Memory::Address_at(pc_);
} else {
// Encoded internal references are j/jal instructions.
DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
instr &= kImm26Mask;
uint64_t imm28 = instr << 2;
uint64_t segment =
(reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask));
return reinterpret_cast<Address>(segment | imm28);
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(target, write_barrier_mode, icache_flush_mode);
}
Handle<Cell> RelocInfo::target_cell_handle() {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = Memory::Address_at(pc_);
return Handle<Cell>(reinterpret_cast<Cell**>(address));
}
Cell* RelocInfo::target_cell() {
DCHECK(rmode_ == RelocInfo::CELL);
return Cell::FromValueAddress(Memory::Address_at(pc_));
}
void RelocInfo::set_target_cell(Cell* cell,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::CELL);
Address address = cell->address() + Cell::kValueOffset;
Memory::Address_at(pc_) = address;
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
cell);
}
}
static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
UNREACHABLE(); // This should never be reached on Arm.
return Handle<Object>();
}
Code* RelocInfo::code_age_stub() {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
return Code::GetCodeFromTargetAddress(
Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
}
void RelocInfo::set_code_age_stub(Code* stub,
ICacheFlushMode icache_flush_mode) {
DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
stub->instruction_start());
}
Address RelocInfo::debug_call_address() {
// The pc_ offset of 0 assumes patched debug break slot or return
// sequence.
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
return Assembler::target_address_at(pc_, host_);
}
void RelocInfo::set_debug_call_address(Address target) {
DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
// The pc_ offset of 0 assumes patched debug break slot or return
// sequence.
Assembler::set_target_address_at(isolate_, pc_, host_, target);
if (host() != NULL) {
Object* target_code = Code::GetCodeFromTargetAddress(target);
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target_code));
}
}
void RelocInfo::WipeOut() {
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
if (IsInternalReference(rmode_)) {
Memory::Address_at(pc_) = NULL;
} else if (IsInternalReferenceEncoded(rmode_)) {
Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
} else {
Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
}
}
template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(this);
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(this);
} else if (mode == RelocInfo::CELL) {
visitor->VisitCell(this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE ||
mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
visitor->VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
visitor->VisitCodeAgeSequence(this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
visitor->VisitDebugTarget(this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
visitor->VisitRuntimeEntry(this);
}
}
template<typename StaticVisitor>
void RelocInfo::Visit(Heap* heap) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
StaticVisitor::VisitEmbeddedPointer(heap, this);
} else if (RelocInfo::IsCodeTarget(mode)) {
StaticVisitor::VisitCodeTarget(heap, this);
} else if (mode == RelocInfo::CELL) {
StaticVisitor::VisitCell(heap, this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
StaticVisitor::VisitExternalReference(this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE ||
mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
StaticVisitor::VisitInternalReference(this);
} else if (RelocInfo::IsCodeAgeSequence(mode)) {
StaticVisitor::VisitCodeAgeSequence(heap, this);
} else if (RelocInfo::IsDebugBreakSlot(mode) &&
IsPatchedDebugBreakSlotSequence()) {
StaticVisitor::VisitDebugTarget(heap, this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
StaticVisitor::VisitRuntimeEntry(this);
}
}
// -----------------------------------------------------------------------------
// Assembler.
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
CheckTrampolinePool();
}
}
void Assembler::CheckForEmitInForbiddenSlot() {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
if (IsPrevInstrCompactBranch()) {
// Nop instruction to preceed a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
ClearCompactBranchState();
}
}
void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
if (IsPrevInstrCompactBranch()) {
if (Instruction::IsForbiddenAfterBranchInstr(x)) {
// Nop instruction to preceed a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
}
ClearCompactBranchState();
}
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
EmittedCompactBranchInstruction();
}
CheckTrampolinePoolQuick();
}
template <>
inline void Assembler::EmitHelper(uint8_t x);
template <typename T>
void Assembler::EmitHelper(T x) {
*reinterpret_cast<T*>(pc_) = x;
pc_ += sizeof(x);
CheckTrampolinePoolQuick();
}
template <>
void Assembler::EmitHelper(uint8_t x) {
*reinterpret_cast<uint8_t*>(pc_) = x;
pc_ += sizeof(x);
if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
CheckTrampolinePoolQuick();
}
}
void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
EmitHelper(x, is_compact_branch);
}
void Assembler::emit(uint64_t data) {
CheckForEmitInForbiddenSlot();
EmitHelper(data);
}
} // namespace internal
} // namespace v8
#endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_