// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_MIPS_CODE_STUBS_MIPS_H_
#define V8_MIPS_CODE_STUBS_MIPS_H_
#include "src/mips/frames-mips.h"
namespace v8 {
namespace internal {
void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code);
class StringHelper : public AllStatic {
public:
// Compares two flat one-byte strings and returns result in v0.
static void GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4);
// Compares two flat one-byte strings for equality and returns result in v0.
static void GenerateFlatOneByteStringEquals(MacroAssembler* masm,
Register left, Register right,
Register scratch1,
Register scratch2,
Register scratch3);
private:
static void GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch1, Register scratch2, Register scratch3,
Label* chars_not_equal);
DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper);
};
class StoreRegistersStateStub: public PlatformCodeStub {
public:
explicit StoreRegistersStateStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
private:
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(StoreRegistersState, PlatformCodeStub);
};
class RestoreRegistersStateStub: public PlatformCodeStub {
public:
explicit RestoreRegistersStateStub(Isolate* isolate)
: PlatformCodeStub(isolate) {}
static void GenerateAheadOfTime(Isolate* isolate);
private:
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(RestoreRegistersState, PlatformCodeStub);
};
class RecordWriteStub: public PlatformCodeStub {
public:
RecordWriteStub(Isolate* isolate,
Register object,
Register value,
Register address,
RememberedSetAction remembered_set_action,
SaveFPRegsMode fp_mode)
: PlatformCodeStub(isolate),
regs_(object, // An input reg.
address, // An input reg.
value) { // One scratch reg.
minor_key_ = ObjectBits::encode(object.code()) |
ValueBits::encode(value.code()) |
AddressBits::encode(address.code()) |
RememberedSetActionBits::encode(remembered_set_action) |
SaveFPRegsModeBits::encode(fp_mode);
}
RecordWriteStub(uint32_t key, Isolate* isolate)
: PlatformCodeStub(key, isolate), regs_(object(), address(), value()) {}
enum Mode {
STORE_BUFFER_ONLY,
INCREMENTAL,
INCREMENTAL_COMPACTION
};
bool SometimesSetsUpAFrame() override { return false; }
static void PatchBranchIntoNop(MacroAssembler* masm, int pos) {
const unsigned offset = masm->instr_at(pos) & kImm16Mask;
masm->instr_at_put(pos, BNE | (zero_reg.code() << kRsShift) |
(zero_reg.code() << kRtShift) | (offset & kImm16Mask));
DCHECK(Assembler::IsBne(masm->instr_at(pos)));
}
static void PatchNopIntoBranch(MacroAssembler* masm, int pos) {
const unsigned offset = masm->instr_at(pos) & kImm16Mask;
masm->instr_at_put(pos, BEQ | (zero_reg.code() << kRsShift) |
(zero_reg.code() << kRtShift) | (offset & kImm16Mask));
DCHECK(Assembler::IsBeq(masm->instr_at(pos)));
}
static Mode GetMode(Code* stub) {
Instr first_instruction = Assembler::instr_at(stub->instruction_start());
Instr second_instruction = Assembler::instr_at(stub->instruction_start() +
2 * Assembler::kInstrSize);
if (Assembler::IsBeq(first_instruction)) {
return INCREMENTAL;
}
DCHECK(Assembler::IsBne(first_instruction));
if (Assembler::IsBeq(second_instruction)) {
return INCREMENTAL_COMPACTION;
}
DCHECK(Assembler::IsBne(second_instruction));
return STORE_BUFFER_ONLY;
}
static void Patch(Code* stub, Mode mode) {
MacroAssembler masm(stub->GetIsolate(), stub->instruction_start(),
stub->instruction_size(), CodeObjectRequired::kNo);
switch (mode) {
case STORE_BUFFER_ONLY:
DCHECK(GetMode(stub) == INCREMENTAL ||
GetMode(stub) == INCREMENTAL_COMPACTION);
PatchBranchIntoNop(&masm, 0);
PatchBranchIntoNop(&masm, 2 * Assembler::kInstrSize);
break;
case INCREMENTAL:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, 0);
break;
case INCREMENTAL_COMPACTION:
DCHECK(GetMode(stub) == STORE_BUFFER_ONLY);
PatchNopIntoBranch(&masm, 2 * Assembler::kInstrSize);
break;
}
DCHECK(GetMode(stub) == mode);
Assembler::FlushICache(stub->GetIsolate(), stub->instruction_start(),
4 * Assembler::kInstrSize);
}
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
private:
// This is a helper class for freeing up 3 scratch registers. The input is
// two registers that must be preserved and one scratch register provided by
// the caller.
class RegisterAllocation {
public:
RegisterAllocation(Register object,
Register address,
Register scratch0)
: object_(object),
address_(address),
scratch0_(scratch0) {
DCHECK(!AreAliased(scratch0, object, address, no_reg));
scratch1_ = GetRegisterThatIsNotOneOf(object_, address_, scratch0_);
}
void Save(MacroAssembler* masm) {
DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_));
// We don't have to save scratch0_ because it was given to us as
// a scratch register.
masm->push(scratch1_);
}
void Restore(MacroAssembler* masm) {
masm->pop(scratch1_);
}
// If we have to call into C then we need to save and restore all caller-
// saved registers that were not already preserved. The scratch registers
// will be restored by other means so we don't bother pushing them here.
void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) {
masm->MultiPush((kJSCallerSaved | ra.bit()) & ~scratch1_.bit());
if (mode == kSaveFPRegs) {
masm->MultiPushFPU(kCallerSavedFPU);
}
}
inline void RestoreCallerSaveRegisters(MacroAssembler*masm,
SaveFPRegsMode mode) {
if (mode == kSaveFPRegs) {
masm->MultiPopFPU(kCallerSavedFPU);
}
masm->MultiPop((kJSCallerSaved | ra.bit()) & ~scratch1_.bit());
}
inline Register object() { return object_; }
inline Register address() { return address_; }
inline Register scratch0() { return scratch0_; }
inline Register scratch1() { return scratch1_; }
private:
Register object_;
Register address_;
Register scratch0_;
Register scratch1_;
friend class RecordWriteStub;
};
enum OnNoNeedToInformIncrementalMarker {
kReturnOnNoNeedToInformIncrementalMarker,
kUpdateRememberedSetOnNoNeedToInformIncrementalMarker
};
inline Major MajorKey() const final { return RecordWrite; }
void Generate(MacroAssembler* masm) override;
void GenerateIncremental(MacroAssembler* masm, Mode mode);
void CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode);
void InformIncrementalMarker(MacroAssembler* masm);
void Activate(Code* code) override {
code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code);
}
Register object() const {
return Register::from_code(ObjectBits::decode(minor_key_));
}
Register value() const {
return Register::from_code(ValueBits::decode(minor_key_));
}
Register address() const {
return Register::from_code(AddressBits::decode(minor_key_));
}
RememberedSetAction remembered_set_action() const {
return RememberedSetActionBits::decode(minor_key_);
}
SaveFPRegsMode save_fp_regs_mode() const {
return SaveFPRegsModeBits::decode(minor_key_);
}
class ObjectBits: public BitField<int, 0, 5> {};
class ValueBits: public BitField<int, 5, 5> {};
class AddressBits: public BitField<int, 10, 5> {};
class RememberedSetActionBits: public BitField<RememberedSetAction, 15, 1> {};
class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 16, 1> {};
Label slow_;
RegisterAllocation regs_;
DISALLOW_COPY_AND_ASSIGN(RecordWriteStub);
};
// Trampoline stub to call into native code. To call safely into native code
// in the presence of compacting GC (which can move code objects) we need to
// keep the code which called into native pinned in the memory. Currently the
// simplest approach is to generate such stub early enough so it can never be
// moved by GC
class DirectCEntryStub: public PlatformCodeStub {
public:
explicit DirectCEntryStub(Isolate* isolate) : PlatformCodeStub(isolate) {}
void GenerateCall(MacroAssembler* masm, Register target);
private:
bool NeedsImmovableCode() override { return true; }
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(DirectCEntry, PlatformCodeStub);
};
class NameDictionaryLookupStub: public PlatformCodeStub {
public:
enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP };
NameDictionaryLookupStub(Isolate* isolate, LookupMode mode)
: PlatformCodeStub(isolate) {
minor_key_ = LookupModeBits::encode(mode);
}
static void GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<Name> name,
Register scratch0);
bool SometimesSetsUpAFrame() override { return false; }
private:
static const int kInlinedProbes = 4;
static const int kTotalProbes = 20;
static const int kCapacityOffset =
NameDictionary::kHeaderSize +
NameDictionary::kCapacityIndex * kPointerSize;
static const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
LookupMode mode() const { return LookupModeBits::decode(minor_key_); }
class LookupModeBits: public BitField<LookupMode, 0, 1> {};
DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR();
DEFINE_PLATFORM_CODE_STUB(NameDictionaryLookup, PlatformCodeStub);
};
} // namespace internal
} // namespace v8
#endif // V8_MIPS_CODE_STUBS_MIPS_H_