// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X64
#include "src/crankshaft/x64/lithium-codegen-x64.h"
#include "src/base/bits.h"
#include "src/builtins/builtins-constructor.h"
#include "src/code-factory.h"
#include "src/code-stubs.h"
#include "src/crankshaft/hydrogen-osr.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator final : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() {}
void BeforeCall(int call_size) const override {}
void AfterCall() const override {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
LPhase phase("Z_Code generation", chunk());
DCHECK(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
DCHECK(is_done());
code->set_stack_slots(GetTotalFrameSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
#ifdef _MSC_VER
void LCodeGen::MakeSureStackPagesMapped(int offset) {
const int kPageSize = 4 * KB;
for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
__ movp(Operand(rsp, offset), rax);
}
}
#endif
void LCodeGen::SaveCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Save clobbered callee double registers");
int count = 0;
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
while (!save_iterator.Done()) {
__ Movsd(MemOperand(rsp, count * kDoubleSize),
XMMRegister::from_code(save_iterator.Current()));
save_iterator.Advance();
count++;
}
}
void LCodeGen::RestoreCallerDoubles() {
DCHECK(info()->saves_caller_doubles());
DCHECK(NeedsEagerFrame());
Comment(";;; Restore clobbered callee double registers");
BitVector* doubles = chunk()->allocated_double_registers();
BitVector::Iterator save_iterator(doubles);
int count = 0;
while (!save_iterator.Done()) {
__ Movsd(XMMRegister::from_code(save_iterator.Current()),
MemOperand(rsp, count * kDoubleSize));
save_iterator.Advance();
count++;
}
}
bool LCodeGen::GeneratePrologue() {
DCHECK(is_generating());
if (info()->IsOptimizing()) {
ProfileEntryHookStub::MaybeCallEntryHook(masm_);
}
info()->set_prologue_offset(masm_->pc_offset());
if (NeedsEagerFrame()) {
DCHECK(!frame_is_built_);
frame_is_built_ = true;
if (info()->IsStub()) {
__ StubPrologue(StackFrame::STUB);
} else {
__ Prologue(info()->GeneratePreagedPrologue());
}
}
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ subp(rsp, Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
__ Push(rax);
__ Set(rax, slots);
__ Set(kScratchRegister, kSlotsZapValue);
Label loop;
__ bind(&loop);
__ movp(MemOperand(rsp, rax, times_pointer_size, 0),
kScratchRegister);
__ decl(rax);
__ j(not_zero, &loop);
__ Pop(rax);
} else {
__ subp(rsp, Immediate(slots * kPointerSize));
#ifdef _MSC_VER
MakeSureStackPagesMapped(slots * kPointerSize);
#endif
}
if (info()->saves_caller_doubles()) {
SaveCallerDoubles();
}
}
return !is_aborted();
}
void LCodeGen::DoPrologue(LPrologue* instr) {
Comment(";;; Prologue begin");
// Possibly allocate a local context.
if (info_->scope()->NeedsContext()) {
Comment(";;; Allocate local context");
bool need_write_barrier = true;
// Argument to NewContext is the function, which is still in rdi.
int slots = info_->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
if (info()->scope()->is_script_scope()) {
__ Push(rdi);
__ Push(info()->scope()->scope_info());
__ CallRuntime(Runtime::kNewScriptContext);
deopt_mode = Safepoint::kLazyDeopt;
} else {
if (slots <=
ConstructorBuiltinsAssembler::MaximumFunctionContextSlots()) {
Callable callable = CodeFactory::FastNewFunctionContext(
isolate(), info()->scope()->scope_type());
__ Set(FastNewFunctionContextDescriptor::SlotsRegister(), slots);
__ Call(callable.code(), RelocInfo::CODE_TARGET);
// Result of FastNewFunctionContextStub is always in new space.
need_write_barrier = false;
} else {
__ Push(rdi);
__ Push(Smi::FromInt(info()->scope()->scope_type()));
__ CallRuntime(Runtime::kNewFunctionContext);
}
}
RecordSafepoint(deopt_mode);
// Context is returned in rax. It replaces the context passed to us.
// It's saved in the stack and kept live in rsi.
__ movp(rsi, rax);
__ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
// Copy any necessary parameters into the context.
int num_parameters = info()->scope()->num_parameters();
int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0;
for (int i = first_parameter; i < num_parameters; i++) {
Variable* var = (i == -1) ? info()->scope()->receiver()
: info()->scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ movp(rax, Operand(rbp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ movp(Operand(rsi, context_offset), rax);
// Update the write barrier. This clobbers rax and rbx.
if (need_write_barrier) {
__ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
} else if (FLAG_debug_code) {
Label done;
__ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
__ Abort(kExpectedNewSpaceObject);
__ bind(&done);
}
}
}
Comment(";;; End allocate local context");
}
Comment(";;; Prologue end");
}
void LCodeGen::GenerateOsrPrologue() {
// Generate the OSR entry prologue at the first unknown OSR value, or if there
// are none, at the OSR entrypoint instruction.
if (osr_pc_offset_ >= 0) return;
osr_pc_offset_ = masm()->pc_offset();
// Adjust the frame size, subsuming the unoptimized frame into the
// optimized frame.
int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
DCHECK(slots >= 0);
__ subp(rsp, Immediate(slots * kPointerSize));
}
void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
if (instr->IsCall()) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
}
if (!instr->IsLazyBailout() && !instr->IsGap()) {
safepoints_.BumpLastLazySafepointIndex();
}
}
void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
instr->hydrogen_value()->representation().IsInteger32() &&
instr->result()->IsRegister()) {
__ AssertZeroExtended(ToRegister(instr->result()));
}
if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
// We sign extend the dehoisted key at the definition point when the pointer
// size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
// points and MustSignExtendResult is always false. We can't use
// STATIC_ASSERT here as the pointer size is 32-bit for x32.
DCHECK(kPointerSize == kInt64Size);
if (instr->result()->IsRegister()) {
Register result_reg = ToRegister(instr->result());
__ movsxlq(result_reg, result_reg);
} else {
// Sign extend the 32bit result in the stack slots.
DCHECK(instr->result()->IsStackSlot());
Operand src = ToOperand(instr->result());
__ movsxlq(kScratchRegister, src);
__ movq(src, kScratchRegister);
}
}
}
bool LCodeGen::GenerateJumpTable() {
if (jump_table_.length() == 0) return !is_aborted();
Label needs_frame;
Comment(";;; -------------------- Jump table --------------------");
for (int i = 0; i < jump_table_.length(); i++) {
Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
__ bind(&table_entry->label);
Address entry = table_entry->address;
DeoptComment(table_entry->deopt_info);
if (table_entry->needs_frame) {
DCHECK(!info()->saves_caller_doubles());
__ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
__ call(&needs_frame);
} else {
if (info()->saves_caller_doubles()) {
DCHECK(info()->IsStub());
RestoreCallerDoubles();
}
__ call(entry, RelocInfo::RUNTIME_ENTRY);
}
}
if (needs_frame.is_linked()) {
__ bind(&needs_frame);
/* stack layout
3: return address <-- rsp
2: garbage
1: garbage
0: garbage
*/
// Reserve space for stub marker.
__ subp(rsp, Immediate(TypedFrameConstants::kFrameTypeSize));
__ Push(MemOperand(
rsp, TypedFrameConstants::kFrameTypeSize)); // Copy return address.
__ Push(kScratchRegister);
/* stack layout
3: return address
2: garbage
1: return address
0: entry address <-- rsp
*/
// Create a stack frame.
__ movp(MemOperand(rsp, 3 * kPointerSize), rbp);
__ leap(rbp, MemOperand(rsp, 3 * kPointerSize));
// This variant of deopt can only be used with stubs. Since we don't
// have a function pointer to install in the stack frame that we're
// building, install a special marker there instead.
DCHECK(info()->IsStub());
__ movp(MemOperand(rsp, 2 * kPointerSize),
Immediate(StackFrame::TypeToMarker(StackFrame::STUB)));
/* stack layout
3: old rbp
2: stub marker
1: return address
0: entry address <-- rsp
*/
__ ret(0);
}
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
DCHECK(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
HValue* value =
instructions_->at(code->instruction_index())->hydrogen_value();
RecordAndWritePosition(value->position());
Comment(";;; <@%d,#%d> "
"-------------------- Deferred %s --------------------",
code->instruction_index(),
code->instr()->hydrogen_value()->id(),
code->instr()->Mnemonic());
__ bind(code->entry());
if (NeedsDeferredFrame()) {
Comment(";;; Build frame");
DCHECK(!frame_is_built_);
DCHECK(info()->IsStub());
frame_is_built_ = true;
// Build the frame in such a way that esi isn't trashed.
__ pushq(rbp); // Caller's frame pointer.
__ Push(Immediate(StackFrame::TypeToMarker(StackFrame::STUB)));
__ leap(rbp, Operand(rsp, TypedFrameConstants::kFixedFrameSizeFromFp));
Comment(";;; Deferred code");
}
code->Generate();
if (NeedsDeferredFrame()) {
__ bind(code->done());
Comment(";;; Destroy frame");
DCHECK(frame_is_built_);
frame_is_built_ = false;
__ movp(rsp, rbp);
__ popq(rbp);
}
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
DCHECK(is_done());
safepoints_.Emit(masm(), GetTotalFrameSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::from_code(index);
}
XMMRegister LCodeGen::ToDoubleRegister(int index) const {
return XMMRegister::from_code(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
DCHECK(op->IsRegister());
return ToRegister(op->index());
}
XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
DCHECK(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
}
bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsExternal();
}
bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
return op->IsConstantOperand() &&
chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
}
bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
return chunk_->LookupLiteralRepresentation(op).IsSmi();
}
int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
return ToRepresentation(op, Representation::Integer32());
}
int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
const Representation& r) const {
HConstant* constant = chunk_->LookupConstant(op);
int32_t value = constant->Integer32Value();
if (r.IsInteger32()) return value;
DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
}
Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
return Smi::FromInt(constant->Integer32Value());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasDoubleValue());
return constant->DoubleValue();
}
ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(constant->HasExternalReferenceValue());
return constant->ExternalReferenceValue();
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
HConstant* constant = chunk_->LookupConstant(op);
DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
return constant->handle(isolate());
}
static int ArgumentsOffsetWithoutFrame(int index) {
DCHECK(index < 0);
return -(index + 1) * kPointerSize + kPCOnStackSize;
}
Operand LCodeGen::ToOperand(LOperand* op) const {
// Does not handle registers. In X64 assembler, plain registers are not
// representable as an Operand.
DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
if (NeedsEagerFrame()) {
return Operand(rbp, FrameSlotToFPOffset(op->index()));
} else {
// Retrieve parameter without eager stack-frame relative to the
// stack-pointer.
return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->translation_size();
WriteTranslation(environment->outer(), translation);
WriteTranslationFrame(environment, translation);
int object_index = 0;
int dematerialized_index = 0;
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
AddToTranslation(
environment, translation, value, environment->HasTaggedValueAt(i),
environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
}
}
void LCodeGen::AddToTranslation(LEnvironment* environment,
Translation* translation,
LOperand* op,
bool is_tagged,
bool is_uint32,
int* object_index_pointer,
int* dematerialized_index_pointer) {
if (op == LEnvironment::materialization_marker()) {
int object_index = (*object_index_pointer)++;
if (environment->ObjectIsDuplicateAt(object_index)) {
int dupe_of = environment->ObjectDuplicateOfAt(object_index);
translation->DuplicateObject(dupe_of);
return;
}
int object_length = environment->ObjectLengthAt(object_index);
if (environment->ObjectIsArgumentsAt(object_index)) {
translation->BeginArgumentsObject(object_length);
} else {
translation->BeginCapturedObject(object_length);
}
int dematerialized_index = *dematerialized_index_pointer;
int env_offset = environment->translation_size() + dematerialized_index;
*dematerialized_index_pointer += object_length;
for (int i = 0; i < object_length; ++i) {
LOperand* value = environment->values()->at(env_offset + i);
AddToTranslation(environment,
translation,
value,
environment->HasTaggedValueAt(env_offset + i),
environment->HasUint32ValueAt(env_offset + i),
object_index_pointer,
dematerialized_index_pointer);
}
return;
}
if (op->IsStackSlot()) {
int index = op->index();
if (is_tagged) {
translation->StoreStackSlot(index);
} else if (is_uint32) {
translation->StoreUint32StackSlot(index);
} else {
translation->StoreInt32StackSlot(index);
}
} else if (op->IsDoubleStackSlot()) {
int index = op->index();
translation->StoreDoubleStackSlot(index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else if (is_uint32) {
translation->StoreUint32Register(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
XMMRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode,
int argc) {
DCHECK(instr != NULL);
__ call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr,
SaveFPRegsMode save_doubles) {
DCHECK(instr != NULL);
DCHECK(instr->HasPointerMap());
__ CallRuntime(function, num_arguments, save_doubles);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
void LCodeGen::LoadContextFromDeferred(LOperand* context) {
if (context->IsRegister()) {
if (!ToRegister(context).is(rsi)) {
__ movp(rsi, ToRegister(context));
}
} else if (context->IsStackSlot()) {
__ movp(rsi, ToOperand(context));
} else if (context->IsConstantOperand()) {
HConstant* constant =
chunk_->LookupConstant(LConstantOperand::cast(context));
__ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
} else {
UNREACHABLE();
}
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr,
LOperand* context) {
LoadContextFromDeferred(context);
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
environment->set_has_been_used();
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count, zone());
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment, environment->zone());
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
DeoptimizeReason deopt_reason,
Deoptimizer::BailoutType bailout_type) {
LEnvironment* environment = instr->environment();
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
DCHECK(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry =
Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
if (entry == NULL) {
Abort(kBailoutWasNotPrepared);
return;
}
if (DeoptEveryNTimes()) {
ExternalReference count = ExternalReference::stress_deopt_count(isolate());
Label no_deopt;
__ pushfq();
__ pushq(rax);
Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
__ movl(rax, count_operand);
__ subl(rax, Immediate(1));
__ j(not_zero, &no_deopt, Label::kNear);
if (FLAG_trap_on_deopt) __ int3();
__ movl(rax, Immediate(FLAG_deopt_every_n_times));
__ movl(count_operand, rax);
__ popq(rax);
__ popfq();
DCHECK(frame_is_built_);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&no_deopt);
__ movl(count_operand, rax);
__ popq(rax);
__ popfq();
}
if (info()->ShouldTrapOnDeopt()) {
Label done;
if (cc != no_condition) {
__ j(NegateCondition(cc), &done, Label::kNear);
}
__ int3();
__ bind(&done);
}
Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id);
DCHECK(info()->IsStub() || frame_is_built_);
// Go through jump table if we need to handle condition, build frame, or
// restore caller doubles.
if (cc == no_condition && frame_is_built_ &&
!info()->saves_caller_doubles()) {
DeoptComment(deopt_info);
__ call(entry, RelocInfo::RUNTIME_ENTRY);
} else {
Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
!frame_is_built_);
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (FLAG_trace_deopt || isolate()->is_profiling() ||
jump_table_.is_empty() ||
!table_entry.IsEquivalentTo(jump_table_.last())) {
jump_table_.Add(table_entry, zone());
}
if (cc == no_condition) {
__ jmp(&jump_table_.last().label);
} else {
__ j(cc, &jump_table_.last().label);
}
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
DeoptimizeReason deopt_reason) {
Deoptimizer::BailoutType bailout_type = info()->IsStub()
? Deoptimizer::LAZY
: Deoptimizer::EAGER;
DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode, int argc) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
DCHECK(kind == expected_safepoint_kind_);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index(), zone());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer), zone());
}
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(zone());
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
static const char* LabelType(LLabel* label) {
if (label->is_loop_header()) return " (loop header)";
if (label->is_osr_entry()) return " (OSR entry)";
return "";
}
void LCodeGen::DoLabel(LLabel* label) {
Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
current_instruction_,
label->hydrogen_value()->id(),
label->block_id(),
LabelType(label));
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
GenerateOsrPrologue();
}
void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// Theoretically, a variation of the branch-free code for integer division by
// a power of 2 (calculating the remainder via an additional multiplication
// (which gets simplified to an 'and') and subtraction) should be faster, and
// this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
// indicate that positive dividends are heavily favored, so the branching
// version performs better.
HMod* hmod = instr->hydrogen();
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
Label dividend_is_not_negative, done;
if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
__ testl(dividend, dividend);
__ j(not_sign, ÷nd_is_not_negative, Label::kNear);
// Note that this is correct even for kMinInt operands.
__ negl(dividend);
__ andl(dividend, Immediate(mask));
__ negl(dividend);
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
__ jmp(&done, Label::kNear);
}
__ bind(÷nd_is_not_negative);
__ andl(dividend, Immediate(mask));
__ bind(&done);
}
void LCodeGen::DoModByConstI(LModByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(rax));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
__ TruncatingDiv(dividend, Abs(divisor));
__ imull(rdx, rdx, Immediate(Abs(divisor)));
__ movl(rax, dividend);
__ subl(rax, rdx);
// Check for negative zero.
HMod* hmod = instr->hydrogen();
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label remainder_not_zero;
__ j(not_zero, &remainder_not_zero, Label::kNear);
__ cmpl(dividend, Immediate(0));
DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
__ bind(&remainder_not_zero);
}
}
void LCodeGen::DoModI(LModI* instr) {
HMod* hmod = instr->hydrogen();
Register left_reg = ToRegister(instr->left());
DCHECK(left_reg.is(rax));
Register right_reg = ToRegister(instr->right());
DCHECK(!right_reg.is(rax));
DCHECK(!right_reg.is(rdx));
Register result_reg = ToRegister(instr->result());
DCHECK(result_reg.is(rdx));
Label done;
// Check for x % 0, idiv would signal a divide error. We have to
// deopt in this case because we can't return a NaN.
if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(right_reg, right_reg);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for kMinInt % -1, idiv would signal a divide error. We
// have to deopt if we care about -0, because we can't return that.
if (hmod->CheckFlag(HValue::kCanOverflow)) {
Label no_overflow_possible;
__ cmpl(left_reg, Immediate(kMinInt));
__ j(not_zero, &no_overflow_possible, Label::kNear);
__ cmpl(right_reg, Immediate(-1));
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kMinusZero);
} else {
__ j(not_equal, &no_overflow_possible, Label::kNear);
__ Set(result_reg, 0);
__ jmp(&done, Label::kNear);
}
__ bind(&no_overflow_possible);
}
// Sign extend dividend in eax into edx:eax, since we are using only the low
// 32 bits of the values.
__ cdq();
// If we care about -0, test if the dividend is <0 and the result is 0.
if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
__ testl(left_reg, left_reg);
__ j(not_sign, &positive_left, Label::kNear);
__ idivl(right_reg);
__ testl(result_reg, result_reg);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
__ jmp(&done, Label::kNear);
__ bind(&positive_left);
}
__ idivl(right_reg);
__ bind(&done);
}
void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(dividend.is(ToRegister(instr->result())));
// If the divisor is positive, things are easy: There can be no deopts and we
// can simply do an arithmetic right shift.
if (divisor == 1) return;
int32_t shift = WhichPowerOf2Abs(divisor);
if (divisor > 1) {
__ sarl(dividend, Immediate(shift));
return;
}
// If the divisor is negative, we have to negate and handle edge cases.
__ negl(dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Dividing by -1 is basically negation, unless we overflow.
if (divisor == -1) {
if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
return;
}
// If the negation could not overflow, simply shifting is OK.
if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
__ sarl(dividend, Immediate(shift));
return;
}
Label not_kmin_int, done;
__ j(no_overflow, ¬_kmin_int, Label::kNear);
__ movl(dividend, Immediate(kMinInt / divisor));
__ jmp(&done, Label::kNear);
__ bind(¬_kmin_int);
__ sarl(dividend, Immediate(shift));
__ bind(&done);
}
void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(rdx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HMathFloorOfDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ testl(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Easy case: We need no dynamic check for the dividend and the flooring
// division is the same as the truncating division.
if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
(divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ negl(rdx);
return;
}
// In the general case we may need to adjust before and after the truncating
// division to get a flooring division.
Register temp = ToRegister(instr->temp3());
DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
Label needs_adjustment, done;
__ cmpl(dividend, Immediate(0));
__ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ negl(rdx);
__ jmp(&done, Label::kNear);
__ bind(&needs_adjustment);
__ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
__ TruncatingDiv(temp, Abs(divisor));
if (divisor < 0) __ negl(rdx);
__ decl(rdx);
__ bind(&done);
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
Register result = ToRegister(instr->result());
DCHECK(dividend.is(rax));
DCHECK(remainder.is(rdx));
DCHECK(result.is(rax));
DCHECK(!divisor.is(rax));
DCHECK(!divisor.is(rdx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(divisor, divisor);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ testl(dividend, dividend);
__ j(not_zero, ÷nd_not_zero, Label::kNear);
__ testl(divisor, divisor);
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmpl(dividend, Immediate(kMinInt));
__ j(not_zero, ÷nd_not_min_int, Label::kNear);
__ cmpl(divisor, Immediate(-1));
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
__ bind(÷nd_not_min_int);
}
// Sign extend to rdx (= remainder).
__ cdq();
__ idivl(divisor);
Label done;
__ testl(remainder, remainder);
__ j(zero, &done, Label::kNear);
__ xorl(remainder, divisor);
__ sarl(remainder, Immediate(31));
__ addl(result, remainder);
__ bind(&done);
}
void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
Register result = ToRegister(instr->result());
DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
DCHECK(!result.is(dividend));
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ testl(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
__ cmpl(dividend, Immediate(kMinInt));
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
}
// Deoptimize if remainder will not be 0.
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
divisor != 1 && divisor != -1) {
int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
__ testl(dividend, Immediate(mask));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
}
__ Move(result, dividend);
int32_t shift = WhichPowerOf2Abs(divisor);
if (shift > 0) {
// The arithmetic shift is always OK, the 'if' is an optimization only.
if (shift > 1) __ sarl(result, Immediate(31));
__ shrl(result, Immediate(32 - shift));
__ addl(result, dividend);
__ sarl(result, Immediate(shift));
}
if (divisor < 0) __ negl(result);
}
void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
Register dividend = ToRegister(instr->dividend());
int32_t divisor = instr->divisor();
DCHECK(ToRegister(instr->result()).is(rdx));
if (divisor == 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kDivisionByZero);
return;
}
// Check for (0 / -x) that will produce negative zero.
HDiv* hdiv = instr->hydrogen();
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
__ testl(dividend, dividend);
DeoptimizeIf(zero, instr, DeoptimizeReason::kMinusZero);
}
__ TruncatingDiv(dividend, Abs(divisor));
if (divisor < 0) __ negl(rdx);
if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
__ movl(rax, rdx);
__ imull(rax, rax, Immediate(divisor));
__ subl(rax, dividend);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
}
}
// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
void LCodeGen::DoDivI(LDivI* instr) {
HBinaryOperation* hdiv = instr->hydrogen();
Register dividend = ToRegister(instr->dividend());
Register divisor = ToRegister(instr->divisor());
Register remainder = ToRegister(instr->temp());
DCHECK(dividend.is(rax));
DCHECK(remainder.is(rdx));
DCHECK(ToRegister(instr->result()).is(rax));
DCHECK(!divisor.is(rax));
DCHECK(!divisor.is(rdx));
// Check for x / 0.
if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(divisor, divisor);
DeoptimizeIf(zero, instr, DeoptimizeReason::kDivisionByZero);
}
// Check for (0 / -x) that will produce negative zero.
if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label dividend_not_zero;
__ testl(dividend, dividend);
__ j(not_zero, ÷nd_not_zero, Label::kNear);
__ testl(divisor, divisor);
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
__ bind(÷nd_not_zero);
}
// Check for (kMinInt / -1).
if (hdiv->CheckFlag(HValue::kCanOverflow)) {
Label dividend_not_min_int;
__ cmpl(dividend, Immediate(kMinInt));
__ j(not_zero, ÷nd_not_min_int, Label::kNear);
__ cmpl(divisor, Immediate(-1));
DeoptimizeIf(zero, instr, DeoptimizeReason::kOverflow);
__ bind(÷nd_not_min_int);
}
// Sign extend to rdx (= remainder).
__ cdq();
__ idivl(divisor);
if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
// Deoptimize if remainder is not 0.
__ testl(remainder, remainder);
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kLostPrecision);
}
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->left());
LOperand* right = instr->right();
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ movp(kScratchRegister, left);
} else {
__ movl(kScratchRegister, left);
}
}
bool can_overflow =
instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right->IsConstantOperand()) {
int32_t right_value = ToInteger32(LConstantOperand::cast(right));
if (right_value == -1) {
__ negl(left);
} else if (right_value == 0) {
__ xorl(left, left);
} else if (right_value == 2) {
__ addl(left, left);
} else if (!can_overflow) {
// If the multiplication is known to not overflow, we
// can use operations that don't set the overflow flag
// correctly.
switch (right_value) {
case 1:
// Do nothing.
break;
case 3:
__ leal(left, Operand(left, left, times_2, 0));
break;
case 4:
__ shll(left, Immediate(2));
break;
case 5:
__ leal(left, Operand(left, left, times_4, 0));
break;
case 8:
__ shll(left, Immediate(3));
break;
case 9:
__ leal(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shll(left, Immediate(4));
break;
default:
__ imull(left, left, Immediate(right_value));
break;
}
} else {
__ imull(left, left, Immediate(right_value));
}
} else if (right->IsStackSlot()) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ SmiToInteger64(left, left);
__ imulp(left, ToOperand(right));
} else {
__ imull(left, ToOperand(right));
}
} else {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ SmiToInteger64(left, left);
__ imulp(left, ToRegister(right));
} else {
__ imull(left, ToRegister(right));
}
}
if (can_overflow) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
if (instr->hydrogen_value()->representation().IsSmi()) {
__ testp(left, left);
} else {
__ testl(left, left);
}
__ j(not_zero, &done, Label::kNear);
if (right->IsConstantOperand()) {
// Constant can't be represented as 32-bit Smi due to immediate size
// limit.
DCHECK(SmiValuesAre32Bits()
? !instr->hydrogen_value()->representation().IsSmi()
: SmiValuesAre31Bits());
if (ToInteger32(LConstantOperand::cast(right)) < 0) {
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
} else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
__ cmpl(kScratchRegister, Immediate(0));
DeoptimizeIf(less, instr, DeoptimizeReason::kMinusZero);
}
} else if (right->IsStackSlot()) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ orp(kScratchRegister, ToOperand(right));
} else {
__ orl(kScratchRegister, ToOperand(right));
}
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
} else {
// Test the non-zero operand for negative sign.
if (instr->hydrogen_value()->representation().IsSmi()) {
__ orp(kScratchRegister, ToRegister(right));
} else {
__ orl(kScratchRegister, ToRegister(right));
}
DeoptimizeIf(sign, instr, DeoptimizeReason::kMinusZero);
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
DCHECK(left->IsRegister());
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
switch (instr->op()) {
case Token::BIT_AND:
__ andl(ToRegister(left), Immediate(right_operand));
break;
case Token::BIT_OR:
__ orl(ToRegister(left), Immediate(right_operand));
break;
case Token::BIT_XOR:
if (right_operand == int32_t(~0)) {
__ notl(ToRegister(left));
} else {
__ xorl(ToRegister(left), Immediate(right_operand));
}
break;
default:
UNREACHABLE();
break;
}
} else if (right->IsStackSlot()) {
switch (instr->op()) {
case Token::BIT_AND:
if (instr->IsInteger32()) {
__ andl(ToRegister(left), ToOperand(right));
} else {
__ andp(ToRegister(left), ToOperand(right));
}
break;
case Token::BIT_OR:
if (instr->IsInteger32()) {
__ orl(ToRegister(left), ToOperand(right));
} else {
__ orp(ToRegister(left), ToOperand(right));
}
break;
case Token::BIT_XOR:
if (instr->IsInteger32()) {
__ xorl(ToRegister(left), ToOperand(right));
} else {
__ xorp(ToRegister(left), ToOperand(right));
}
break;
default:
UNREACHABLE();
break;
}
} else {
DCHECK(right->IsRegister());
switch (instr->op()) {
case Token::BIT_AND:
if (instr->IsInteger32()) {
__ andl(ToRegister(left), ToRegister(right));
} else {
__ andp(ToRegister(left), ToRegister(right));
}
break;
case Token::BIT_OR:
if (instr->IsInteger32()) {
__ orl(ToRegister(left), ToRegister(right));
} else {
__ orp(ToRegister(left), ToRegister(right));
}
break;
case Token::BIT_XOR:
if (instr->IsInteger32()) {
__ xorl(ToRegister(left), ToRegister(right));
} else {
__ xorp(ToRegister(left), ToRegister(right));
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
DCHECK(left->IsRegister());
if (right->IsRegister()) {
DCHECK(ToRegister(right).is(rcx));
switch (instr->op()) {
case Token::ROR:
__ rorl_cl(ToRegister(left));
break;
case Token::SAR:
__ sarl_cl(ToRegister(left));
break;
case Token::SHR:
__ shrl_cl(ToRegister(left));
if (instr->can_deopt()) {
__ testl(ToRegister(left), ToRegister(left));
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case Token::SHL:
__ shll_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int32_t value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::ROR:
if (shift_count != 0) {
__ rorl(ToRegister(left), Immediate(shift_count));
}
break;
case Token::SAR:
if (shift_count != 0) {
__ sarl(ToRegister(left), Immediate(shift_count));
}
break;
case Token::SHR:
if (shift_count != 0) {
__ shrl(ToRegister(left), Immediate(shift_count));
} else if (instr->can_deopt()) {
__ testl(ToRegister(left), ToRegister(left));
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case Token::SHL:
if (shift_count != 0) {
if (instr->hydrogen_value()->representation().IsSmi()) {
if (SmiValuesAre32Bits()) {
__ shlp(ToRegister(left), Immediate(shift_count));
} else {
DCHECK(SmiValuesAre31Bits());
if (instr->can_deopt()) {
if (shift_count != 1) {
__ shll(ToRegister(left), Immediate(shift_count - 1));
}
__ Integer32ToSmi(ToRegister(left), ToRegister(left));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
} else {
__ shll(ToRegister(left), Immediate(shift_count));
}
}
} else {
__ shll(ToRegister(left), Immediate(shift_count));
}
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
__ subl(ToRegister(left), Immediate(right_operand));
} else if (right->IsRegister()) {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ subp(ToRegister(left), ToRegister(right));
} else {
__ subl(ToRegister(left), ToRegister(right));
}
} else {
if (instr->hydrogen_value()->representation().IsSmi()) {
__ subp(ToRegister(left), ToOperand(right));
} else {
__ subl(ToRegister(left), ToOperand(right));
}
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
Register dst = ToRegister(instr->result());
if (instr->value() == 0) {
__ xorl(dst, dst);
} else {
__ movl(dst, Immediate(instr->value()));
}
}
void LCodeGen::DoConstantS(LConstantS* instr) {
__ Move(ToRegister(instr->result()), instr->value());
}
void LCodeGen::DoConstantD(LConstantD* instr) {
__ Move(ToDoubleRegister(instr->result()), instr->bits());
}
void LCodeGen::DoConstantE(LConstantE* instr) {
__ LoadAddress(ToRegister(instr->result()), instr->value());
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> object = instr->value(isolate());
AllowDeferredHandleDereference smi_check;
__ Move(ToRegister(instr->result()), object);
}
Operand LCodeGen::BuildSeqStringOperand(Register string,
LOperand* index,
String::Encoding encoding) {
if (index->IsConstantOperand()) {
int offset = ToInteger32(LConstantOperand::cast(index));
if (encoding == String::TWO_BYTE_ENCODING) {
offset *= kUC16Size;
}
STATIC_ASSERT(kCharSize == 1);
return FieldOperand(string, SeqString::kHeaderSize + offset);
}
return FieldOperand(
string, ToRegister(index),
encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
SeqString::kHeaderSize);
}
void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register result = ToRegister(instr->result());
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
__ Push(string);
__ movp(string, FieldOperand(string, HeapObject::kMapOffset));
__ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
__ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
__ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type));
__ Check(equal, kUnexpectedStringType);
__ Pop(string);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (encoding == String::ONE_BYTE_ENCODING) {
__ movzxbl(result, operand);
} else {
__ movzxwl(result, operand);
}
}
void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
String::Encoding encoding = instr->hydrogen()->encoding();
Register string = ToRegister(instr->string());
if (FLAG_debug_code) {
Register value = ToRegister(instr->value());
Register index = ToRegister(instr->index());
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
int encoding_mask =
instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
? one_byte_seq_type : two_byte_seq_type;
__ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
}
Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
if (instr->value()->IsConstantOperand()) {
int value = ToInteger32(LConstantOperand::cast(instr->value()));
DCHECK_LE(0, value);
if (encoding == String::ONE_BYTE_ENCODING) {
DCHECK_LE(value, String::kMaxOneByteCharCode);
__ movb(operand, Immediate(value));
} else {
DCHECK_LE(value, String::kMaxUtf16CodeUnit);
__ movw(operand, Immediate(value));
}
} else {
Register value = ToRegister(instr->value());
if (encoding == String::ONE_BYTE_ENCODING) {
__ movb(operand, value);
} else {
__ movw(operand, value);
}
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
Representation target_rep = instr->hydrogen()->representation();
bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
if (right->IsConstantOperand()) {
// No support for smi-immediates for 32-bit SMI.
DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
int32_t offset =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
if (is_p) {
__ leap(ToRegister(instr->result()),
MemOperand(ToRegister(left), offset));
} else {
__ leal(ToRegister(instr->result()),
MemOperand(ToRegister(left), offset));
}
} else {
Operand address(ToRegister(left), ToRegister(right), times_1, 0);
if (is_p) {
__ leap(ToRegister(instr->result()), address);
} else {
__ leal(ToRegister(instr->result()), address);
}
}
} else {
if (right->IsConstantOperand()) {
// No support for smi-immediates for 32-bit SMI.
DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
int32_t right_operand =
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation());
if (is_p) {
__ addp(ToRegister(left), Immediate(right_operand));
} else {
__ addl(ToRegister(left), Immediate(right_operand));
}
} else if (right->IsRegister()) {
if (is_p) {
__ addp(ToRegister(left), ToRegister(right));
} else {
__ addl(ToRegister(left), ToRegister(right));
}
} else {
if (is_p) {
__ addp(ToRegister(left), ToOperand(right));
} else {
__ addl(ToRegister(left), ToOperand(right));
}
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
}
void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
DCHECK(left->Equals(instr->result()));
HMathMinMax::Operation operation = instr->hydrogen()->operation();
if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
Label return_left;
Condition condition = (operation == HMathMinMax::kMathMin)
? less_equal
: greater_equal;
Register left_reg = ToRegister(left);
if (right->IsConstantOperand()) {
Immediate right_imm = Immediate(
ToRepresentation(LConstantOperand::cast(right),
instr->hydrogen()->right()->representation()));
DCHECK(SmiValuesAre32Bits()
? !instr->hydrogen()->representation().IsSmi()
: SmiValuesAre31Bits());
__ cmpl(left_reg, right_imm);
__ j(condition, &return_left, Label::kNear);
__ movl(left_reg, right_imm);
} else if (right->IsRegister()) {
Register right_reg = ToRegister(right);
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmpp(left_reg, right_reg);
} else {
__ cmpl(left_reg, right_reg);
}
__ j(condition, &return_left, Label::kNear);
__ movp(left_reg, right_reg);
} else {
Operand right_op = ToOperand(right);
if (instr->hydrogen_value()->representation().IsSmi()) {
__ cmpp(left_reg, right_op);
} else {
__ cmpl(left_reg, right_op);
}
__ j(condition, &return_left, Label::kNear);
__ movp(left_reg, right_op);
}
__ bind(&return_left);
} else {
DCHECK(instr->hydrogen()->representation().IsDouble());
Label not_nan, distinct, return_left, return_right;
Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
XMMRegister left_reg = ToDoubleRegister(left);
XMMRegister right_reg = ToDoubleRegister(right);
__ Ucomisd(left_reg, right_reg);
__ j(parity_odd, ¬_nan, Label::kNear); // Both are not NaN.
// One of the numbers is NaN. Find which one and return it.
__ Ucomisd(left_reg, left_reg);
__ j(parity_even, &return_left, Label::kNear); // left is NaN.
__ jmp(&return_right, Label::kNear); // right is NaN.
__ bind(¬_nan);
__ j(not_equal, &distinct, Label::kNear); // left != right.
// left == right
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(left_reg, xmm_scratch);
__ j(not_equal, &return_left, Label::kNear); // left == right != 0.
// At this point, both left and right are either +0 or -0.
if (operation == HMathMinMax::kMathMin) {
__ Orpd(left_reg, right_reg);
} else {
__ Andpd(left_reg, right_reg);
}
__ jmp(&return_left, Label::kNear);
__ bind(&distinct);
__ j(condition, &return_left, Label::kNear);
__ bind(&return_right);
__ Movapd(left_reg, right_reg);
__ bind(&return_left);
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->left());
XMMRegister right = ToDoubleRegister(instr->right());
XMMRegister result = ToDoubleRegister(instr->result());
switch (instr->op()) {
case Token::ADD:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vaddsd(result, left, right);
} else {
DCHECK(result.is(left));
__ addsd(left, right);
}
break;
case Token::SUB:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vsubsd(result, left, right);
} else {
DCHECK(result.is(left));
__ subsd(left, right);
}
break;
case Token::MUL:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vmulsd(result, left, right);
} else {
DCHECK(result.is(left));
__ mulsd(left, right);
}
break;
case Token::DIV:
if (CpuFeatures::IsSupported(AVX)) {
CpuFeatureScope scope(masm(), AVX);
__ vdivsd(result, left, right);
} else {
DCHECK(result.is(left));
__ divsd(left, right);
}
// Don't delete this mov. It may improve performance on some CPUs,
// when there is a (v)mulsd depending on the result
__ Movapd(result, result);
break;
case Token::MOD: {
DCHECK(left.is(xmm0));
DCHECK(right.is(xmm1));
DCHECK(result.is(xmm0));
__ PrepareCallCFunction(2);
__ CallCFunction(
ExternalReference::mod_two_doubles_operation(isolate()), 2);
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->left()).is(rdx));
DCHECK(ToRegister(instr->right()).is(rax));
DCHECK(ToRegister(instr->result()).is(rax));
Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
}
template<class InstrType>
void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
if (right_block == left_block || cc == no_condition) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
if (cc != always) {
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
}
template <class InstrType>
void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
int true_block = instr->TrueDestination(chunk_);
__ j(cc, chunk_->GetAssemblyLabel(true_block));
}
template <class InstrType>
void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
int false_block = instr->FalseDestination(chunk_);
__ j(cc, chunk_->GetAssemblyLabel(false_block));
}
void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
__ int3();
}
void LCodeGen::DoBranch(LBranch* instr) {
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ testl(reg, reg);
EmitBranch(instr, not_zero);
} else if (r.IsSmi()) {
DCHECK(!info()->IsStub());
Register reg = ToRegister(instr->value());
__ testp(reg, reg);
EmitBranch(instr, not_zero);
} else if (r.IsDouble()) {
DCHECK(!info()->IsStub());
XMMRegister reg = ToDoubleRegister(instr->value());
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(reg, xmm_scratch);
EmitBranch(instr, not_equal);
} else {
DCHECK(r.IsTagged());
Register reg = ToRegister(instr->value());
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
DCHECK(!info()->IsStub());
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(instr, equal);
} else if (type.IsSmi()) {
DCHECK(!info()->IsStub());
__ SmiCompare(reg, Smi::kZero);
EmitBranch(instr, not_equal);
} else if (type.IsJSArray()) {
DCHECK(!info()->IsStub());
EmitBranch(instr, no_condition);
} else if (type.IsHeapNumber()) {
DCHECK(!info()->IsStub());
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
EmitBranch(instr, not_equal);
} else if (type.IsString()) {
DCHECK(!info()->IsStub());
__ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
EmitBranch(instr, not_equal);
} else {
ToBooleanHints expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny;
if (expected & ToBooleanHint::kUndefined) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kBoolean) {
// true -> true.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ j(equal, instr->TrueLabel(chunk_));
// false -> false.
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kNull) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ j(equal, instr->FalseLabel(chunk_));
}
if (expected & ToBooleanHint::kSmallInteger) {
// Smis: 0 -> false, all other -> true.
__ Cmp(reg, Smi::kZero);
__ j(equal, instr->FalseLabel(chunk_));
__ JumpIfSmi(reg, instr->TrueLabel(chunk_));
} else if (expected & ToBooleanHint::kNeedsMap) {
// If we need a map later and have a Smi -> deopt.
__ testb(reg, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr, DeoptimizeReason::kSmi);
}
const Register map = kScratchRegister;
if (expected & ToBooleanHint::kNeedsMap) {
__ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
if (expected & ToBooleanHint::kCanBeUndetectable) {
// Undetectable -> false.
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, instr->FalseLabel(chunk_));
}
}
if (expected & ToBooleanHint::kReceiver) {
// spec object -> true.
__ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
__ j(above_equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kString) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, ¬_string, Label::kNear);
__ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
__ j(not_zero, instr->TrueLabel(chunk_));
__ jmp(instr->FalseLabel(chunk_));
__ bind(¬_string);
}
if (expected & ToBooleanHint::kSymbol) {
// Symbol value -> true.
__ CmpInstanceType(map, SYMBOL_TYPE);
__ j(equal, instr->TrueLabel(chunk_));
}
if (expected & ToBooleanHint::kHeapNumber) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, ¬_heap_number, Label::kNear);
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
__ j(zero, instr->FalseLabel(chunk_));
__ jmp(instr->TrueLabel(chunk_));
__ bind(¬_heap_number);
}
if (expected != ToBooleanHint::kAny) {
// We've seen something for the first time -> deopt.
// This can only happen if we are not generic already.
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kUnexpectedObject);
}
}
}
}
void LCodeGen::EmitGoto(int block) {
if (!IsNextEmittedBlock(block)) {
__ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::NE:
case Token::NE_STRICT:
cond = not_equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
bool is_unsigned =
instr->is_double() ||
instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
Condition cc = TokenToCondition(instr->op(), is_unsigned);
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
? instr->TrueDestination(chunk_)
: instr->FalseDestination(chunk_);
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
__ j(parity_even, instr->FalseLabel(chunk_));
} else {
int32_t value;
if (right->IsConstantOperand()) {
value = ToInteger32(LConstantOperand::cast(right));
if (instr->hydrogen_value()->representation().IsSmi()) {
__ Cmp(ToRegister(left), Smi::FromInt(value));
} else {
__ cmpl(ToRegister(left), Immediate(value));
}
} else if (left->IsConstantOperand()) {
value = ToInteger32(LConstantOperand::cast(left));
if (instr->hydrogen_value()->representation().IsSmi()) {
if (right->IsRegister()) {
__ Cmp(ToRegister(right), Smi::FromInt(value));
} else {
__ Cmp(ToOperand(right), Smi::FromInt(value));
}
} else if (right->IsRegister()) {
__ cmpl(ToRegister(right), Immediate(value));
} else {
__ cmpl(ToOperand(right), Immediate(value));
}
// We commuted the operands, so commute the condition.
cc = CommuteCondition(cc);
} else if (instr->hydrogen_value()->representation().IsSmi()) {
if (right->IsRegister()) {
__ cmpp(ToRegister(left), ToRegister(right));
} else {
__ cmpp(ToRegister(left), ToOperand(right));
}
} else {
if (right->IsRegister()) {
__ cmpl(ToRegister(left), ToRegister(right));
} else {
__ cmpl(ToRegister(left), ToOperand(right));
}
}
}
EmitBranch(instr, cc);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->left());
if (instr->right()->IsConstantOperand()) {
Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
__ Cmp(left, right);
} else {
Register right = ToRegister(instr->right());
__ cmpp(left, right);
}
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
if (instr->hydrogen()->representation().IsTagged()) {
Register input_reg = ToRegister(instr->object());
__ Cmp(input_reg, factory()->the_hole_value());
EmitBranch(instr, equal);
return;
}
XMMRegister input_reg = ToDoubleRegister(instr->object());
__ Ucomisd(input_reg, input_reg);
EmitFalseBranch(instr, parity_odd);
__ subp(rsp, Immediate(kDoubleSize));
__ Movsd(MemOperand(rsp, 0), input_reg);
__ addp(rsp, Immediate(kDoubleSize));
int offset = sizeof(kHoleNanUpper32);
__ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
EmitBranch(instr, equal);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string,
SmiCheck check_needed = INLINE_SMI_CHECK) {
if (check_needed == INLINE_SMI_CHECK) {
__ JumpIfSmi(input, is_not_string);
}
Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
return cond;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
Condition true_cond = EmitIsString(
reg, temp, instr->FalseLabel(chunk_), check_needed);
EmitBranch(instr, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
Condition is_smi;
if (instr->value()->IsRegister()) {
Register input = ToRegister(instr->value());
is_smi = masm()->CheckSmi(input);
} else {
Operand input = ToOperand(instr->value());
is_smi = masm()->CheckSmi(input);
}
EmitBranch(instr, is_smi);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
__ testb(FieldOperand(temp, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
EmitBranch(instr, not_zero);
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->left()).is(rdx));
DCHECK(ToRegister(instr->right()).is(rax));
Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code();
CallCode(code, RelocInfo::CODE_TARGET, instr);
__ CompareRoot(rax, Heap::kTrueValueRootIndex);
EmitBranch(instr, equal);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
DCHECK(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return equal;
if (to == LAST_TYPE) return above_equal;
if (from == FIRST_TYPE) return below_equal;
UNREACHABLE();
return equal;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register input = ToRegister(instr->value());
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
__ JumpIfSmi(input, instr->FalseLabel(chunk_));
}
__ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
EmitBranch(instr, BranchCondition(instr->hydrogen()));
}
// Branches to a label or falls through with the answer in the z flag.
// Trashes the temp register.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String> class_name,
Register input,
Register temp,
Register temp2) {
DCHECK(!input.is(temp));
DCHECK(!input.is(temp2));
DCHECK(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
__ CmpObjectType(input, FIRST_FUNCTION_TYPE, temp);
STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE);
if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
__ j(above_equal, is_true);
} else {
__ j(above_equal, is_false);
}
// Check if the constructor in the map is a function.
__ GetMapConstructor(temp, temp, kScratchRegister);
// Objects with a non-function constructor have class 'Object'.
__ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
if (String::Equals(class_name, isolate()->factory()->Object_string())) {
__ j(not_equal, is_true);
} else {
__ j(not_equal, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ movp(temp, FieldOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is internalized since it's a literal.
// The name in the constructor is internalized because of the way the context
// is booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are internalized it is sufficient to use an
// identity comparison.
DCHECK(class_name->IsInternalizedString());
__ Cmp(temp, class_name);
// End with the answer in the z flag.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->value());
Register temp = ToRegister(instr->temp());
Register temp2 = ToRegister(instr->temp2());
Handle<String> class_name = instr->hydrogen()->class_name();
EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
class_name, input, temp, temp2);
EmitBranch(instr, equal);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->value());
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
EmitBranch(instr, equal);
}
void LCodeGen::DoHasInPrototypeChainAndBranch(
LHasInPrototypeChainAndBranch* instr) {
Register const object = ToRegister(instr->object());
Register const object_map = kScratchRegister;
Register const object_prototype = object_map;
Register const prototype = ToRegister(instr->prototype());
// The {object} must be a spec object. It's sufficient to know that {object}
// is not a smi, since all other non-spec objects have {null} prototypes and
// will be ruled out below.
if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
Condition is_smi = __ CheckSmi(object);
EmitFalseBranch(instr, is_smi);
}
// Loop through the {object}s prototype chain looking for the {prototype}.
__ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
Label loop;
__ bind(&loop);
// Deoptimize if the object needs to be access checked.
__ testb(FieldOperand(object_map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsAccessCheckNeeded));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kAccessCheck);
// Deoptimize for proxies.
__ CmpInstanceType(object_map, JS_PROXY_TYPE);
DeoptimizeIf(equal, instr, DeoptimizeReason::kProxy);
__ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
__ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
EmitFalseBranch(instr, equal);
__ cmpp(object_prototype, prototype);
EmitTrueBranch(instr, equal);
__ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
__ jmp(&loop);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
Token::Value op = instr->op();
Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = TokenToCondition(op, false);
Label true_value, done;
__ testp(rax, rax);
__ j(condition, &true_value, Label::kNear);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace && info()->IsOptimizing()) {
// Preserve the return value on the stack and rely on the runtime call
// to return the value in the same register. We're leaving the code
// managed by the register allocator and tearing down the frame, it's
// safe to write to the context register.
__ Push(rax);
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ CallRuntime(Runtime::kTraceExit);
}
if (info()->saves_caller_doubles()) {
RestoreCallerDoubles();
}
if (NeedsEagerFrame()) {
__ movp(rsp, rbp);
__ popq(rbp);
}
if (instr->has_constant_parameter_count()) {
__ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
rcx);
} else {
DCHECK(info()->IsStub()); // Functions would need to drop one more value.
Register reg = ToRegister(instr->parameter_count());
// The argument count parameter is a smi
__ SmiToInteger32(reg, reg);
Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
__ PopReturnAddressTo(return_addr_reg);
__ shlp(reg, Immediate(kPointerSizeLog2));
__ addp(rsp, reg);
__ jmp(return_addr_reg);
}
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ movp(result, ContextOperand(context, instr->slot_index()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
} else {
Label is_not_hole;
__ j(not_equal, &is_not_hole, Label::kNear);
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ bind(&is_not_hole);
}
}
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Operand target = ContextOperand(context, instr->slot_index());
Label skip_assignment;
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(target, Heap::kTheHoleValueRootIndex);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
} else {
__ j(not_equal, &skip_assignment);
}
}
__ movp(target, value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
SmiCheck check_needed =
instr->hydrogen()->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
int offset = Context::SlotOffset(instr->slot_index());
Register scratch = ToRegister(instr->temp());
__ RecordWriteContextSlot(context,
offset,
value,
scratch,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
__ bind(&skip_assignment);
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
HObjectAccess access = instr->hydrogen()->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
Register result = ToRegister(instr->result());
if (instr->object()->IsConstantOperand()) {
DCHECK(result.is(rax));
__ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
} else {
Register object = ToRegister(instr->object());
__ Load(result, MemOperand(object, offset), access.representation());
}
return;
}
Register object = ToRegister(instr->object());
if (instr->hydrogen()->representation().IsDouble()) {
DCHECK(access.IsInobject());
XMMRegister result = ToDoubleRegister(instr->result());
__ Movsd(result, FieldOperand(object, offset));
return;
}
Register result = ToRegister(instr->result());
if (!access.IsInobject()) {
__ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
object = result;
}
Representation representation = access.representation();
if (representation.IsSmi() && SmiValuesAre32Bits() &&
instr->hydrogen()->representation().IsInteger32()) {
if (FLAG_debug_code) {
Register scratch = kScratchRegister;
__ Load(scratch, FieldOperand(object, offset), representation);
__ AssertSmi(scratch);
}
// Read int value directly from upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
DCHECK(kSmiTagSize + kSmiShiftSize == 32);
offset += kPointerSize / 2;
representation = Representation::Integer32();
}
__ Load(result, FieldOperand(object, offset), representation);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Get the prototype or initial map from the function.
__ movp(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
// If the function does not have an initial map, we're done.
Label done;
__ CmpObjectType(result, MAP_TYPE, kScratchRegister);
__ j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
__ movp(result, FieldOperand(result, Map::kPrototypeOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
Register result = ToRegister(instr->result());
__ LoadRoot(result, instr->index());
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register result = ToRegister(instr->result());
if (instr->length()->IsConstantOperand() &&
instr->index()->IsConstantOperand()) {
int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
if (const_index >= 0 && const_index < const_length) {
StackArgumentsAccessor args(arguments, const_length,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(result, args.GetArgumentOperand(const_index));
} else if (FLAG_debug_code) {
__ int3();
}
} else {
Register length = ToRegister(instr->length());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
if (instr->index()->IsRegister()) {
__ subl(length, ToRegister(instr->index()));
} else {
__ subl(length, ToOperand(instr->index()));
}
StackArgumentsAccessor args(arguments, length,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ movp(result, args.GetArgumentOperand(0));
}
}
void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
Register key_reg = ToRegister(key);
Representation key_representation =
instr->hydrogen()->key()->representation();
if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
__ SmiToInteger64(key_reg, key_reg);
} else if (instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(key_reg, key_reg);
}
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == FLOAT32_ELEMENTS) {
XMMRegister result(ToDoubleRegister(instr->result()));
__ Cvtss2sd(result, operand);
} else if (elements_kind == FLOAT64_ELEMENTS) {
__ Movsd(ToDoubleRegister(instr->result()), operand);
} else {
Register result(ToRegister(instr->result()));
switch (elements_kind) {
case INT8_ELEMENTS:
__ movsxbl(result, operand);
break;
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ movzxbl(result, operand);
break;
case INT16_ELEMENTS:
__ movsxwl(result, operand);
break;
case UINT16_ELEMENTS:
__ movzxwl(result, operand);
break;
case INT32_ELEMENTS:
__ movl(result, operand);
break;
case UINT32_ELEMENTS:
__ movl(result, operand);
if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
__ testl(result, result);
DeoptimizeIf(negative, instr, DeoptimizeReason::kNegativeValue);
}
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
XMMRegister result(ToDoubleRegister(instr->result()));
LOperand* key = instr->key();
if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(ToRegister(key), ToRegister(key));
}
if (instr->hydrogen()->RequiresHoleCheck()) {
Operand hole_check_operand = BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset() + sizeof(kHoleNanLower32));
__ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
}
Operand double_load_operand = BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
__ Movsd(result, double_load_operand);
}
void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
HLoadKeyed* hinstr = instr->hydrogen();
Register result = ToRegister(instr->result());
LOperand* key = instr->key();
bool requires_hole_check = hinstr->RequiresHoleCheck();
Representation representation = hinstr->representation();
int offset = instr->base_offset();
if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(ToRegister(key), ToRegister(key));
}
if (representation.IsInteger32() && SmiValuesAre32Bits() &&
hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
DCHECK(!requires_hole_check);
if (FLAG_debug_code) {
Register scratch = kScratchRegister;
__ Load(scratch,
BuildFastArrayOperand(instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS,
offset),
Representation::Smi());
__ AssertSmi(scratch);
}
// Read int value directly from upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
DCHECK(kSmiTagSize + kSmiShiftSize == 32);
offset += kPointerSize / 2;
}
__ Load(result,
BuildFastArrayOperand(instr->elements(), key,
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS, offset),
representation);
// Check for the hole value.
if (requires_hole_check) {
if (IsFastSmiElementsKind(hinstr->elements_kind())) {
Condition smi = __ CheckSmi(result);
DeoptimizeIf(NegateCondition(smi), instr, DeoptimizeReason::kNotASmi);
} else {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr, DeoptimizeReason::kHole);
}
} else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
Label done;
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &done);
if (info()->IsStub()) {
// A stub can safely convert the hole to undefined only if the array
// protector cell contains (Smi) Isolate::kProtectorValid. Otherwise
// it needs to bail out.
__ LoadRoot(result, Heap::kArrayProtectorRootIndex);
__ Cmp(FieldOperand(result, PropertyCell::kValueOffset),
Smi::FromInt(Isolate::kProtectorValid));
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kHole);
}
__ Move(result, isolate()->factory()->undefined_value());
__ bind(&done);
}
}
void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
if (instr->is_fixed_typed_array()) {
DoLoadKeyedExternalArray(instr);
} else if (instr->hydrogen()->representation().IsDouble()) {
DoLoadKeyedFixedDoubleArray(instr);
} else {
DoLoadKeyedFixedArray(instr);
}
}
Operand LCodeGen::BuildFastArrayOperand(
LOperand* elements_pointer,
LOperand* key,
Representation key_representation,
ElementsKind elements_kind,
uint32_t offset) {
Register elements_pointer_reg = ToRegister(elements_pointer);
int shift_size = ElementsKindToShiftSize(elements_kind);
if (key->IsConstantOperand()) {
int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
if (constant_value & 0xF0000000) {
Abort(kArrayIndexConstantValueTooBig);
}
return Operand(elements_pointer_reg,
(constant_value << shift_size) + offset);
} else {
// Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
DCHECK(key_representation.IsInteger32());
ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
return Operand(elements_pointer_reg,
ToRegister(key),
scale_factor,
offset);
}
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register result = ToRegister(instr->result());
if (instr->hydrogen()->from_inlined()) {
__ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
} else if (instr->hydrogen()->arguments_adaptor()) {
// Check for arguments adapter frame.
Label done, adapted;
__ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ cmpp(Operand(result, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(equal, &adapted, Label::kNear);
// No arguments adaptor frame.
__ movp(result, rbp);
__ jmp(&done, Label::kNear);
// Arguments adaptor frame present.
__ bind(&adapted);
__ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ bind(&done);
} else {
__ movp(result, rbp);
}
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
if (instr->elements()->IsRegister()) {
__ cmpp(rbp, ToRegister(instr->elements()));
} else {
__ cmpp(rbp, ToOperand(instr->elements()));
}
__ movl(result, Immediate(scope()->num_parameters()));
__ j(equal, &done, Label::kNear);
// Arguments adaptor frame present. Get argument length from there.
__ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiToInteger32(result,
Operand(result,
ArgumentsAdaptorFrameConstants::kLengthOffset));
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
// If the receiver is null or undefined, we have to pass the global
// object as a receiver to normal functions. Values have to be
// passed unchanged to builtins and strict-mode functions.
Label global_object, receiver_ok;
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
if (!instr->hydrogen()->known_function()) {
// Do not transform the receiver to object for strict mode
// functions.
__ movp(kScratchRegister,
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(kScratchRegister,
SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &receiver_ok, dist);
// Do not transform the receiver to object for builtins.
__ testb(FieldOperand(kScratchRegister,
SharedFunctionInfo::kNativeByteOffset),
Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ j(not_equal, &receiver_ok, dist);
}
// Normal function. Replace undefined or null with global receiver.
__ CompareRoot(receiver, Heap::kNullValueRootIndex);
__ j(equal, &global_object, dist);
__ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
__ j(equal, &global_object, dist);
// The receiver should be a JS object.
Condition is_smi = __ CheckSmi(receiver);
DeoptimizeIf(is_smi, instr, DeoptimizeReason::kSmi);
__ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
DeoptimizeIf(below, instr, DeoptimizeReason::kNotAJavaScriptObject);
__ jmp(&receiver_ok, dist);
__ bind(&global_object);
__ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
__ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
__ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
__ bind(&receiver_ok);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
DCHECK(receiver.is(rax)); // Used for parameter count.
DCHECK(function.is(rdi)); // Required by InvokeFunction.
DCHECK(ToRegister(instr->result()).is(rax));
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmpp(length, Immediate(kArgumentsLimit));
DeoptimizeIf(above, instr, DeoptimizeReason::kTooManyArguments);
__ Push(receiver);
__ movp(receiver, length);
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ testl(length, length);
__ j(zero, &invoke, Label::kNear);
__ bind(&loop);
StackArgumentsAccessor args(elements, length,
ARGUMENTS_DONT_CONTAIN_RECEIVER);
__ Push(args.GetArgumentOperand(0));
__ decl(length);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
InvokeFlag flag = CALL_FUNCTION;
if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) {
DCHECK(!info()->saves_caller_doubles());
// TODO(ishell): drop current frame before pushing arguments to the stack.
flag = JUMP_FUNCTION;
ParameterCount actual(rax);
// It is safe to use rbx, rcx and r8 as scratch registers here given that
// 1) we are not going to return to caller function anyway,
// 2) rbx (expected number of arguments) will be initialized below.
PrepareForTailCall(actual, rbx, rcx, r8);
}
DCHECK(instr->HasPointerMap());
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(rax);
__ InvokeFunction(function, no_reg, actual, flag, safepoint_generator);
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->value();
EmitPushTaggedOperand(argument);
}
void LCodeGen::DoDrop(LDrop* instr) {
__ Drop(instr->count());
}
void LCodeGen::DoThisFunction(LThisFunction* instr) {
Register result = ToRegister(instr->result());
__ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
if (info()->IsOptimizing()) {
__ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
} else {
// If there is no frame, the context must be in rsi.
DCHECK(result.is(rsi));
}
}
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
__ Push(instr->hydrogen()->declarations());
__ Push(Smi::FromInt(instr->hydrogen()->flags()));
__ Push(instr->hydrogen()->feedback_vector());
CallRuntime(Runtime::kDeclareGlobals, instr);
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int formal_parameter_count, int arity,
bool is_tail_call, LInstruction* instr) {
bool dont_adapt_arguments =
formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
bool can_invoke_directly =
dont_adapt_arguments || formal_parameter_count == arity;
Register function_reg = rdi;
LPointerMap* pointers = instr->pointer_map();
if (can_invoke_directly) {
// Change context.
__ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
// Always initialize new target and number of actual arguments.
__ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
__ Set(rax, arity);
bool is_self_call = function.is_identical_to(info()->closure());
// Invoke function.
if (is_self_call) {
Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location()));
if (is_tail_call) {
__ Jump(self, RelocInfo::CODE_TARGET);
} else {
__ Call(self, RelocInfo::CODE_TARGET);
}
} else {
Operand target = FieldOperand(function_reg, JSFunction::kCodeEntryOffset);
if (is_tail_call) {
__ Jump(target);
} else {
__ Call(target);
}
}
if (!is_tail_call) {
// Set up deoptimization.
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
} else {
// We need to adapt arguments.
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(arity);
ParameterCount expected(formal_parameter_count);
InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
__ InvokeFunction(function_reg, no_reg, expected, actual, flag, generator);
}
}
void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
DCHECK(ToRegister(instr->result()).is(rax));
if (instr->hydrogen()->IsTailCall()) {
if (NeedsEagerFrame()) __ leave();
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
__ jmp(code, RelocInfo::CODE_TARGET);
} else {
DCHECK(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
__ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(target);
}
} else {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
if (instr->target()->IsConstantOperand()) {
LConstantOperand* target = LConstantOperand::cast(instr->target());
Handle<Code> code = Handle<Code>::cast(ToHandle(target));
generator.BeforeCall(__ CallSize(code));
__ call(code, RelocInfo::CODE_TARGET);
} else {
DCHECK(instr->target()->IsRegister());
Register target = ToRegister(instr->target());
generator.BeforeCall(__ CallSize(target));
__ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ call(target);
}
generator.AfterCall();
}
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
Label slow, allocated, done;
uint32_t available_regs = rax.bit() | rcx.bit() | rdx.bit() | rbx.bit();
available_regs &= ~input_reg.bit();
if (instr->context()->IsRegister()) {
// Make sure that the context isn't overwritten in the AllocateHeapNumber
// macro below.
available_regs &= ~ToRegister(instr->context()).bit();
}
Register tmp =
Register::from_code(base::bits::CountTrailingZeros32(available_regs));
available_regs &= ~tmp.bit();
Register tmp2 =
Register::from_code(base::bits::CountTrailingZeros32(available_regs));
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
__ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it. We do not need to patch the stack since |input| and
// |result| are the same register and |input| will be restored
// unchanged by popping safepoint registers.
__ testl(tmp, Immediate(HeapNumber::kSignMask));
__ j(zero, &done);
__ AllocateHeapNumber(tmp, tmp2, &slow);
__ jmp(&allocated, Label::kNear);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(
Runtime::kAllocateHeapNumber, 0, instr, instr->context());
// Set the pointer to the new heap number in tmp.
if (!tmp.is(rax)) __ movp(tmp, rax);
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input_reg, input_reg);
__ bind(&allocated);
__ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ shlq(tmp2, Immediate(1));
__ shrq(tmp2, Immediate(1));
__ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
__ StoreToSafepointRegisterSlot(input_reg, tmp);
__ bind(&done);
}
void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ testl(input_reg, input_reg);
Label is_positive;
__ j(not_sign, &is_positive, Label::kNear);
__ negl(input_reg); // Sets flags.
DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow);
__ bind(&is_positive);
}
void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
Register input_reg = ToRegister(instr->value());
__ testp(input_reg, input_reg);
Label is_positive;
__ j(not_sign, &is_positive, Label::kNear);
__ negp(input_reg); // Sets flags.
DeoptimizeIf(negative, instr, DeoptimizeReason::kOverflow);
__ bind(&is_positive);
}
void LCodeGen::DoMathAbs(LMathAbs* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
LInstruction* instr() override { return instr_; }
private:
LMathAbs* instr_;
};
DCHECK(instr->value()->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
XMMRegister scratch = double_scratch0();
XMMRegister input_reg = ToDoubleRegister(instr->value());
__ Xorpd(scratch, scratch);
__ Subsd(scratch, input_reg);
__ Andpd(input_reg, scratch);
} else if (r.IsInteger32()) {
EmitIntegerMathAbs(instr);
} else if (r.IsSmi()) {
EmitSmiMathAbs(instr);
} else { // Tagged case.
DeferredMathAbsTaggedHeapNumber* deferred =
new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
Register input_reg = ToRegister(instr->value());
// Smi check.
__ JumpIfNotSmi(input_reg, deferred->entry());
EmitSmiMathAbs(instr);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
XMMRegister output_reg = ToDoubleRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->value());
CpuFeatureScope scope(masm(), SSE4_1);
__ Roundsd(output_reg, input_reg, kRoundDown);
}
void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
XMMRegister xmm_scratch = double_scratch0();
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->value());
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatureScope scope(masm(), SSE4_1);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Deoptimize if minus zero.
__ Movq(output_reg, input_reg);
__ subq(output_reg, Immediate(1));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kMinusZero);
}
__ Roundsd(xmm_scratch, input_reg, kRoundDown);
__ Cvttsd2si(output_reg, xmm_scratch);
__ cmpl(output_reg, Immediate(0x1));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
} else {
Label negative_sign, done;
// Deoptimize on unordered.
__ Xorpd(xmm_scratch, xmm_scratch); // Zero the register.
__ Ucomisd(input_reg, xmm_scratch);
DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
__ j(below, &negative_sign, Label::kNear);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Check for negative zero.
Label positive_sign;
__ j(above, &positive_sign, Label::kNear);
__ Movmskpd(output_reg, input_reg);
__ testl(output_reg, Immediate(1));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
__ Set(output_reg, 0);
__ jmp(&done);
__ bind(&positive_sign);
}
// Use truncating instruction (OK because input is positive).
__ Cvttsd2si(output_reg, input_reg);
// Overflow is signalled with minint.
__ cmpl(output_reg, Immediate(0x1));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
__ jmp(&done, Label::kNear);
// Non-zero negative reaches here.
__ bind(&negative_sign);
// Truncate, then compare and compensate.
__ Cvttsd2si(output_reg, input_reg);
__ Cvtlsi2sd(xmm_scratch, output_reg);
__ Ucomisd(input_reg, xmm_scratch);
__ j(equal, &done, Label::kNear);
__ subl(output_reg, Immediate(1));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
__ bind(&done);
}
}
void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
XMMRegister xmm_scratch = double_scratch0();
XMMRegister output_reg = ToDoubleRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->value());
CpuFeatureScope scope(masm(), SSE4_1);
Label done;
__ Roundsd(output_reg, input_reg, kRoundUp);
__ Move(xmm_scratch, -0.5);
__ Addsd(xmm_scratch, output_reg);
__ Ucomisd(xmm_scratch, input_reg);
__ j(below_equal, &done, Label::kNear);
__ Move(xmm_scratch, 1.0);
__ Subsd(output_reg, xmm_scratch);
__ bind(&done);
}
void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
const XMMRegister xmm_scratch = double_scratch0();
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->value());
XMMRegister input_temp = ToDoubleRegister(instr->temp());
static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5
static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5
Label done, round_to_zero, below_one_half;
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ movq(kScratchRegister, one_half);
__ Movq(xmm_scratch, kScratchRegister);
__ Ucomisd(xmm_scratch, input_reg);
__ j(above, &below_one_half, Label::kNear);
// CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
__ Addsd(xmm_scratch, input_reg);
__ Cvttsd2si(output_reg, xmm_scratch);
// Overflow is signalled with minint.
__ cmpl(output_reg, Immediate(0x1));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
__ jmp(&done, dist);
__ bind(&below_one_half);
__ movq(kScratchRegister, minus_one_half);
__ Movq(xmm_scratch, kScratchRegister);
__ Ucomisd(xmm_scratch, input_reg);
__ j(below_equal, &round_to_zero, Label::kNear);
// CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
// compare and compensate.
__ Movapd(input_temp, input_reg); // Do not alter input_reg.
__ Subsd(input_temp, xmm_scratch);
__ Cvttsd2si(output_reg, input_temp);
// Catch minint due to overflow, and to prevent overflow when compensating.
__ cmpl(output_reg, Immediate(0x1));
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
__ Cvtlsi2sd(xmm_scratch, output_reg);
__ Ucomisd(xmm_scratch, input_temp);
__ j(equal, &done, dist);
__ subl(output_reg, Immediate(1));
// No overflow because we already ruled out minint.
__ jmp(&done, dist);
__ bind(&round_to_zero);
// We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
// we can ignore the difference between a result of -0 and +0.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ Movq(output_reg, input_reg);
__ testq(output_reg, output_reg);
DeoptimizeIf(negative, instr, DeoptimizeReason::kMinusZero);
}
__ Set(output_reg, 0);
__ bind(&done);
}
void LCodeGen::DoMathFround(LMathFround* instr) {
XMMRegister input_reg = ToDoubleRegister(instr->value());
XMMRegister output_reg = ToDoubleRegister(instr->result());
__ Cvtsd2ss(output_reg, input_reg);
__ Cvtss2sd(output_reg, output_reg);
}
void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
XMMRegister output = ToDoubleRegister(instr->result());
if (instr->value()->IsDoubleRegister()) {
XMMRegister input = ToDoubleRegister(instr->value());
__ Sqrtsd(output, input);
} else {
Operand input = ToOperand(instr->value());
__ Sqrtsd(output, input);
}
}
void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
XMMRegister xmm_scratch = double_scratch0();
XMMRegister input_reg = ToDoubleRegister(instr->value());
DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
// Note that according to ECMA-262 15.8.2.13:
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label done, sqrt;
// Check base for -Infinity. According to IEEE-754, double-precision
// -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
__ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
__ Movq(xmm_scratch, kScratchRegister);
__ Ucomisd(xmm_scratch, input_reg);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &sqrt, Label::kNear);
__ j(carry, &sqrt, Label::kNear);
// If input is -Infinity, return Infinity.
__ Xorpd(input_reg, input_reg);
__ Subsd(input_reg, xmm_scratch);
__ jmp(&done, Label::kNear);
// Square root.
__ bind(&sqrt);
__ Xorpd(xmm_scratch, xmm_scratch);
__ Addsd(input_reg, xmm_scratch); // Convert -0 to +0.
__ Sqrtsd(input_reg, input_reg);
__ bind(&done);
}
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
// Having marked this as a call, we can use any registers.
// Just make sure that the input/output registers are the expected ones.
Register tagged_exponent = MathPowTaggedDescriptor::exponent();
DCHECK(!instr->right()->IsRegister() ||
ToRegister(instr->right()).is(tagged_exponent));
DCHECK(!instr->right()->IsDoubleRegister() ||
ToDoubleRegister(instr->right()).is(xmm1));
DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
if (exponent_type.IsSmi()) {
MathPowStub stub(isolate(), MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsTagged()) {
Label no_deopt;
__ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
__ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
__ bind(&no_deopt);
MathPowStub stub(isolate(), MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsInteger32()) {
MathPowStub stub(isolate(), MathPowStub::INTEGER);
__ CallStub(&stub);
} else {
DCHECK(exponent_type.IsDouble());
MathPowStub stub(isolate(), MathPowStub::DOUBLE);
__ CallStub(&stub);
}
}
void LCodeGen::DoMathCos(LMathCos* instr) {
DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
__ PrepareCallCFunction(1);
__ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 1);
}
void LCodeGen::DoMathExp(LMathExp* instr) {
DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
__ PrepareCallCFunction(1);
__ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 1);
}
void LCodeGen::DoMathSin(LMathSin* instr) {
DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
__ PrepareCallCFunction(1);
__ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 1);
}
void LCodeGen::DoMathLog(LMathLog* instr) {
DCHECK(ToDoubleRegister(instr->value()).is(xmm0));
DCHECK(ToDoubleRegister(instr->result()).is(xmm0));
__ PrepareCallCFunction(1);
__ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 1);
}
void LCodeGen::DoMathClz32(LMathClz32* instr) {
Register input = ToRegister(instr->value());
Register result = ToRegister(instr->result());
__ Lzcntl(result, input);
}
void LCodeGen::PrepareForTailCall(const ParameterCount& actual,
Register scratch1, Register scratch2,
Register scratch3) {
#if DEBUG
if (actual.is_reg()) {
DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3));
} else {
DCHECK(!AreAliased(scratch1, scratch2, scratch3));
}
#endif
if (FLAG_code_comments) {
if (actual.is_reg()) {
Comment(";;; PrepareForTailCall, actual: %s {",
RegisterConfiguration::Crankshaft()->GetGeneralRegisterName(
actual.reg().code()));
} else {
Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate());
}
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ movp(scratch2, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ cmpp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &no_arguments_adaptor, Label::kNear);
// Drop current frame and load arguments count from arguments adaptor frame.
__ movp(rbp, scratch2);
__ SmiToInteger32(
caller_args_count_reg,
Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ jmp(&formal_parameter_count_loaded, Label::kNear);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count.
__ movp(caller_args_count_reg,
Immediate(info()->literal()->parameter_count()));
__ bind(&formal_parameter_count_loaded);
__ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3,
ReturnAddressState::kNotOnStack);
Comment(";;; }");
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
HInvokeFunction* hinstr = instr->hydrogen();
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->function()).is(rdi));
DCHECK(instr->HasPointerMap());
bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow;
if (is_tail_call) {
DCHECK(!info()->saves_caller_doubles());
ParameterCount actual(instr->arity());
// It is safe to use rbx, rcx and r8 as scratch registers here given that
// 1) we are not going to return to caller function anyway,
// 2) rbx (expected number of arguments) will be initialized below.
PrepareForTailCall(actual, rbx, rcx, r8);
}
Handle<JSFunction> known_function = hinstr->known_function();
if (known_function.is_null()) {
LPointerMap* pointers = instr->pointer_map();
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(instr->arity());
InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION;
__ InvokeFunction(rdi, no_reg, actual, flag, generator);
} else {
CallKnownFunction(known_function, hinstr->formal_parameter_count(),
instr->arity(), is_tail_call, instr);
}
}
void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->constructor()).is(rdi));
DCHECK(ToRegister(instr->result()).is(rax));
__ Set(rax, instr->arity());
__ Move(rbx, instr->hydrogen()->site());
ElementsKind kind = instr->hydrogen()->elements_kind();
AllocationSiteOverrideMode override_mode =
(AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
? DISABLE_ALLOCATION_SITES
: DONT_OVERRIDE;
if (instr->arity() == 0) {
ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->arity() == 1) {
Label done;
if (IsFastPackedElementsKind(kind)) {
Label packed_case;
// We might need a change here
// look at the first argument
__ movp(rcx, Operand(rsp, 0));
__ testp(rcx, rcx);
__ j(zero, &packed_case, Label::kNear);
ElementsKind holey_kind = GetHoleyElementsKind(kind);
ArraySingleArgumentConstructorStub stub(isolate(),
holey_kind,
override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ jmp(&done, Label::kNear);
__ bind(&packed_case);
}
ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ bind(&done);
} else {
ArrayNArgumentsConstructorStub stub(isolate());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
}
void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
Register function = ToRegister(instr->function());
Register code_object = ToRegister(instr->code_object());
__ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
__ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
}
void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
Register result = ToRegister(instr->result());
Register base = ToRegister(instr->base_object());
if (instr->offset()->IsConstantOperand()) {
LConstantOperand* offset = LConstantOperand::cast(instr->offset());
__ leap(result, Operand(base, ToInteger32(offset)));
} else {
Register offset = ToRegister(instr->offset());
__ leap(result, Operand(base, offset, times_1, 0));
}
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
HStoreNamedField* hinstr = instr->hydrogen();
Representation representation = instr->representation();
HObjectAccess access = hinstr->access();
int offset = access.offset();
if (access.IsExternalMemory()) {
DCHECK(!hinstr->NeedsWriteBarrier());
Register value = ToRegister(instr->value());
if (instr->object()->IsConstantOperand()) {
DCHECK(value.is(rax));
LConstantOperand* object = LConstantOperand::cast(instr->object());
__ store_rax(ToExternalReference(object));
} else {
Register object = ToRegister(instr->object());
__ Store(MemOperand(object, offset), value, representation);
}
return;
}
Register object = ToRegister(instr->object());
__ AssertNotSmi(object);
DCHECK(!representation.IsSmi() ||
!instr->value()->IsConstantOperand() ||
IsInteger32Constant(LConstantOperand::cast(instr->value())));
if (!FLAG_unbox_double_fields && representation.IsDouble()) {
DCHECK(access.IsInobject());
DCHECK(!hinstr->has_transition());
DCHECK(!hinstr->NeedsWriteBarrier());
XMMRegister value = ToDoubleRegister(instr->value());
__ Movsd(FieldOperand(object, offset), value);
return;
}
if (hinstr->has_transition()) {
Handle<Map> transition = hinstr->transition_map();
AddDeprecationDependency(transition);
if (!hinstr->NeedsWriteBarrierForMap()) {
__ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
} else {
Register temp = ToRegister(instr->temp());
__ Move(kScratchRegister, transition);
__ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
// Update the write barrier for the map field.
__ RecordWriteForMap(object,
kScratchRegister,
temp,
kSaveFPRegs);
}
}
// Do the store.
Register write_register = object;
if (!access.IsInobject()) {
write_register = ToRegister(instr->temp());
__ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
}
if (representation.IsSmi() && SmiValuesAre32Bits() &&
hinstr->value()->representation().IsInteger32()) {
DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
if (FLAG_debug_code) {
Register scratch = kScratchRegister;
__ Load(scratch, FieldOperand(write_register, offset), representation);
__ AssertSmi(scratch);
}
// Store int value directly to upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
DCHECK(kSmiTagSize + kSmiShiftSize == 32);
offset += kPointerSize / 2;
representation = Representation::Integer32();
}
Operand operand = FieldOperand(write_register, offset);
if (FLAG_unbox_double_fields && representation.IsDouble()) {
DCHECK(access.IsInobject());
XMMRegister value = ToDoubleRegister(instr->value());
__ Movsd(operand, value);
} else if (instr->value()->IsRegister()) {
Register value = ToRegister(instr->value());
__ Store(operand, value, representation);
} else {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (IsInteger32Constant(operand_value)) {
DCHECK(!hinstr->NeedsWriteBarrier());
int32_t value = ToInteger32(operand_value);
if (representation.IsSmi()) {
__ Move(operand, Smi::FromInt(value));
} else {
__ movl(operand, Immediate(value));
}
} else if (IsExternalConstant(operand_value)) {
DCHECK(!hinstr->NeedsWriteBarrier());
ExternalReference ptr = ToExternalReference(operand_value);
__ Move(kScratchRegister, ptr);
__ movp(operand, kScratchRegister);
} else {
Handle<Object> handle_value = ToHandle(operand_value);
DCHECK(!hinstr->NeedsWriteBarrier());
__ Move(operand, handle_value);
}
}
if (hinstr->NeedsWriteBarrier()) {
Register value = ToRegister(instr->value());
Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
// Update the write barrier for the object for in-object properties.
__ RecordWriteField(write_register,
offset,
value,
temp,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
hinstr->SmiCheckForWriteBarrier(),
hinstr->PointersToHereCheckForValue());
}
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
Representation representation = instr->hydrogen()->length()->representation();
DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
DCHECK(representation.IsSmiOrInteger32());
Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
if (instr->length()->IsConstantOperand()) {
int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
Register index = ToRegister(instr->index());
if (representation.IsSmi()) {
__ Cmp(index, Smi::FromInt(length));
} else {
__ cmpl(index, Immediate(length));
}
cc = CommuteCondition(cc);
} else if (instr->index()->IsConstantOperand()) {
int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
if (instr->length()->IsRegister()) {
Register length = ToRegister(instr->length());
if (representation.IsSmi()) {
__ Cmp(length, Smi::FromInt(index));
} else {
__ cmpl(length, Immediate(index));
}
} else {
Operand length = ToOperand(instr->length());
if (representation.IsSmi()) {
__ Cmp(length, Smi::FromInt(index));
} else {
__ cmpl(length, Immediate(index));
}
}
} else {
Register index = ToRegister(instr->index());
if (instr->length()->IsRegister()) {
Register length = ToRegister(instr->length());
if (representation.IsSmi()) {
__ cmpp(length, index);
} else {
__ cmpl(length, index);
}
} else {
Operand length = ToOperand(instr->length());
if (representation.IsSmi()) {
__ cmpp(length, index);
} else {
__ cmpl(length, index);
}
}
}
if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
Label done;
__ j(NegateCondition(cc), &done, Label::kNear);
__ int3();
__ bind(&done);
} else {
DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds);
}
}
void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
ElementsKind elements_kind = instr->elements_kind();
LOperand* key = instr->key();
if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
Register key_reg = ToRegister(key);
Representation key_representation =
instr->hydrogen()->key()->representation();
if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
__ SmiToInteger64(key_reg, key_reg);
} else if (instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(key_reg, key_reg);
}
}
Operand operand(BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
elements_kind,
instr->base_offset()));
if (elements_kind == FLOAT32_ELEMENTS) {
XMMRegister value(ToDoubleRegister(instr->value()));
__ Cvtsd2ss(value, value);
__ Movss(operand, value);
} else if (elements_kind == FLOAT64_ELEMENTS) {
__ Movsd(operand, ToDoubleRegister(instr->value()));
} else {
Register value(ToRegister(instr->value()));
switch (elements_kind) {
case INT8_ELEMENTS:
case UINT8_ELEMENTS:
case UINT8_CLAMPED_ELEMENTS:
__ movb(operand, value);
break;
case INT16_ELEMENTS:
case UINT16_ELEMENTS:
__ movw(operand, value);
break;
case INT32_ELEMENTS:
case UINT32_ELEMENTS:
__ movl(operand, value);
break;
case FLOAT32_ELEMENTS:
case FLOAT64_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case FAST_HOLEY_ELEMENTS:
case FAST_HOLEY_SMI_ELEMENTS:
case FAST_HOLEY_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
case FAST_STRING_WRAPPER_ELEMENTS:
case SLOW_STRING_WRAPPER_ELEMENTS:
case NO_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
XMMRegister value = ToDoubleRegister(instr->value());
LOperand* key = instr->key();
if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(ToRegister(key), ToRegister(key));
}
if (instr->NeedsCanonicalization()) {
XMMRegister xmm_scratch = double_scratch0();
// Turn potential sNaN value into qNaN.
__ Xorpd(xmm_scratch, xmm_scratch);
__ Subsd(value, xmm_scratch);
}
Operand double_store_operand = BuildFastArrayOperand(
instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_DOUBLE_ELEMENTS,
instr->base_offset());
__ Movsd(double_store_operand, value);
}
void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
HStoreKeyed* hinstr = instr->hydrogen();
LOperand* key = instr->key();
int offset = instr->base_offset();
Representation representation = hinstr->value()->representation();
if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
instr->hydrogen()->IsDehoisted()) {
// Sign extend key because it could be a 32 bit negative value
// and the dehoisted address computation happens in 64 bits
__ movsxlq(ToRegister(key), ToRegister(key));
}
if (representation.IsInteger32() && SmiValuesAre32Bits()) {
DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
if (FLAG_debug_code) {
Register scratch = kScratchRegister;
__ Load(scratch,
BuildFastArrayOperand(instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS,
offset),
Representation::Smi());
__ AssertSmi(scratch);
}
// Store int value directly to upper half of the smi.
STATIC_ASSERT(kSmiTag == 0);
DCHECK(kSmiTagSize + kSmiShiftSize == 32);
offset += kPointerSize / 2;
}
Operand operand =
BuildFastArrayOperand(instr->elements(),
key,
instr->hydrogen()->key()->representation(),
FAST_ELEMENTS,
offset);
if (instr->value()->IsRegister()) {
__ Store(operand, ToRegister(instr->value()), representation);
} else {
LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
if (IsInteger32Constant(operand_value)) {
int32_t value = ToInteger32(operand_value);
if (representation.IsSmi()) {
__ Move(operand, Smi::FromInt(value));
} else {
__ movl(operand, Immediate(value));
}
} else {
Handle<Object> handle_value = ToHandle(operand_value);
__ Move(operand, handle_value);
}
}
if (hinstr->NeedsWriteBarrier()) {
Register elements = ToRegister(instr->elements());
DCHECK(instr->value()->IsRegister());
Register value = ToRegister(instr->value());
DCHECK(!key->IsConstantOperand());
SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
// Compute address of modified element and store it into key register.
Register key_reg(ToRegister(key));
__ leap(key_reg, operand);
__ RecordWrite(elements,
key_reg,
value,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed,
hinstr->PointersToHereCheckForValue());
}
}
void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
if (instr->is_fixed_typed_array()) {
DoStoreKeyedExternalArray(instr);
} else if (instr->hydrogen()->value()->representation().IsDouble()) {
DoStoreKeyedFixedDoubleArray(instr);
} else {
DoStoreKeyedFixedArray(instr);
}
}
void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
class DeferredMaybeGrowElements final : public LDeferredCode {
public:
DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
: LDeferredCode(codegen), instr_(instr) {}
void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
LInstruction* instr() override { return instr_; }
private:
LMaybeGrowElements* instr_;
};
Register result = rax;
DeferredMaybeGrowElements* deferred =
new (zone()) DeferredMaybeGrowElements(this, instr);
LOperand* key = instr->key();
LOperand* current_capacity = instr->current_capacity();
DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
DCHECK(key->IsConstantOperand() || key->IsRegister());
DCHECK(current_capacity->IsConstantOperand() ||
current_capacity->IsRegister());
if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
int32_t constant_capacity =
ToInteger32(LConstantOperand::cast(current_capacity));
if (constant_key >= constant_capacity) {
// Deferred case.
__ jmp(deferred->entry());
}
} else if (key->IsConstantOperand()) {
int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
__ cmpl(ToRegister(current_capacity), Immediate(constant_key));
__ j(less_equal, deferred->entry());
} else if (current_capacity->IsConstantOperand()) {
int32_t constant_capacity =
ToInteger32(LConstantOperand::cast(current_capacity));
__ cmpl(ToRegister(key), Immediate(constant_capacity));
__ j(greater_equal, deferred->entry());
} else {
__ cmpl(ToRegister(key), ToRegister(current_capacity));
__ j(greater_equal, deferred->entry());
}
if (instr->elements()->IsRegister()) {
__ movp(result, ToRegister(instr->elements()));
} else {
__ movp(result, ToOperand(instr->elements()));
}
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register result = rax;
__ Move(result, Smi::kZero);
// We have to call a stub.
{
PushSafepointRegistersScope scope(this);
if (instr->object()->IsConstantOperand()) {
LConstantOperand* constant_object =
LConstantOperand::cast(instr->object());
if (IsSmiConstant(constant_object)) {
Smi* immediate = ToSmi(constant_object);
__ Move(result, immediate);
} else {
Handle<Object> handle_value = ToHandle(constant_object);
__ Move(result, handle_value);
}
} else if (instr->object()->IsRegister()) {
__ Move(result, ToRegister(instr->object()));
} else {
__ movp(result, ToOperand(instr->object()));
}
LOperand* key = instr->key();
if (key->IsConstantOperand()) {
__ Move(rbx, ToSmi(LConstantOperand::cast(key)));
} else {
__ Move(rbx, ToRegister(key));
__ Integer32ToSmi(rbx, rbx);
}
GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind());
__ CallStub(&stub);
RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
__ StoreToSafepointRegisterSlot(result, result);
}
// Deopt on smi, which means the elements array changed to dictionary mode.
Condition is_smi = __ CheckSmi(result);
DeoptimizeIf(is_smi, instr, DeoptimizeReason::kSmi);
}
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
Register object_reg = ToRegister(instr->object());
Handle<Map> from_map = instr->original_map();
Handle<Map> to_map = instr->transitioned_map();
ElementsKind from_kind = instr->from_kind();
ElementsKind to_kind = instr->to_kind();
Label not_applicable;
__ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
__ j(not_equal, ¬_applicable);
if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
Register new_map_reg = ToRegister(instr->new_map_temp());
__ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
__ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
// Write barrier.
__ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
kDontSaveFPRegs);
} else {
DCHECK(object_reg.is(rax));
DCHECK(ToRegister(instr->context()).is(rsi));
PushSafepointRegistersScope scope(this);
__ Move(rbx, to_map);
TransitionElementsKindStub stub(isolate(), from_kind, to_kind);
__ CallStub(&stub);
RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
}
__ bind(¬_applicable);
}
void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
Register object = ToRegister(instr->object());
Register temp = ToRegister(instr->temp());
Label no_memento_found;
__ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
DeoptimizeIf(equal, instr, DeoptimizeReason::kMementoFound);
__ bind(&no_memento_found);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->left()).is(rdx));
DCHECK(ToRegister(instr->right()).is(rax));
StringAddStub stub(isolate(),
instr->hydrogen()->flags(),
instr->hydrogen()->pretenure_flag());
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt final : public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
LInstruction* instr() override { return instr_; }
private:
LStringCharCodeAt* instr_;
};
DeferredStringCharCodeAt* deferred =
new(zone()) DeferredStringCharCodeAt(this, instr);
StringCharLoadGenerator::Generate(masm(),
ToRegister(instr->string()),
ToRegister(instr->index()),
ToRegister(instr->result()),
deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Set(result, 0);
PushSafepointRegistersScope scope(this);
__ Push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (instr->index()->IsConstantOperand()) {
int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
__ Push(Smi::FromInt(const_index));
} else {
Register index = ToRegister(instr->index());
__ Integer32ToSmi(index, index);
__ Push(index);
}
CallRuntimeFromDeferred(
Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
__ AssertSmi(rax);
__ SmiToInteger32(rax, rax);
__ StoreToSafepointRegisterSlot(result, rax);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode final : public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredStringCharFromCode(instr_);
}
LInstruction* instr() override { return instr_; }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new(zone()) DeferredStringCharFromCode(this, instr);
DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
DCHECK(!char_code.is(result));
__ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
__ j(above, deferred->entry());
__ movsxlq(char_code, char_code);
__ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
__ movp(result, FieldOperand(result,
char_code, times_pointer_size,
FixedArray::kHeaderSize));
__ CompareRoot(result, Heap::kUndefinedValueRootIndex);
__ j(equal, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Set(result, 0);
PushSafepointRegistersScope scope(this);
__ Integer32ToSmi(char_code, char_code);
__ Push(char_code);
CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
instr->context());
__ StoreToSafepointRegisterSlot(result, rax);
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->value();
DCHECK(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
DCHECK(output->IsDoubleRegister());
if (input->IsRegister()) {
__ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
} else {
__ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
}
}
void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
LOperand* input = instr->value();
LOperand* output = instr->result();
__ LoadUint32(ToDoubleRegister(output), ToRegister(input));
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI final : public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
instr_->temp2(), SIGNED_INT32);
}
LInstruction* instr() override { return instr_; }
private:
LNumberTagI* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
if (SmiValuesAre32Bits()) {
__ Integer32ToSmi(reg, reg);
} else {
DCHECK(SmiValuesAre31Bits());
DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
__ Integer32ToSmi(reg, reg);
__ j(overflow, deferred->entry());
__ bind(deferred->exit());
}
}
void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
class DeferredNumberTagU final : public LDeferredCode {
public:
DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override {
codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
instr_->temp2(), UNSIGNED_INT32);
}
LInstruction* instr() override { return instr_; }
private:
LNumberTagU* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
__ cmpl(reg, Immediate(Smi::kMaxValue));
__ j(above, deferred->entry());
__ Integer32ToSmi(reg, reg);
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
LOperand* value,
LOperand* temp1,
LOperand* temp2,
IntegerSignedness signedness) {
Label done, slow;
Register reg = ToRegister(value);
Register tmp = ToRegister(temp1);
XMMRegister temp_xmm = ToDoubleRegister(temp2);
// Load value into temp_xmm which will be preserved across potential call to
// runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
// XMM registers on x64).
if (signedness == SIGNED_INT32) {
DCHECK(SmiValuesAre31Bits());
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
__ SmiToInteger32(reg, reg);
__ xorl(reg, Immediate(0x80000000));
__ Cvtlsi2sd(temp_xmm, reg);
} else {
DCHECK(signedness == UNSIGNED_INT32);
__ LoadUint32(temp_xmm, reg);
}
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, &slow);
__ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
{
// Put a valid pointer value in the stack slot where the result
// register is stored, as this register is in the pointer map, but contains
// an integer value.
__ Set(reg, 0);
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
// Reset the context register.
if (!reg.is(rsi)) {
__ Set(rsi, 0);
}
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(reg, rax);
}
// Done. Put the value in temp_xmm into the value of the allocated heap
// number.
__ bind(&done);
__ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD final : public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
LInstruction* instr() override { return instr_; }
private:
LNumberTagD* instr_;
};
XMMRegister input_reg = ToDoubleRegister(instr->value());
Register reg = ToRegister(instr->result());
Register tmp = ToRegister(instr->temp());
DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ Move(reg, Smi::kZero);
{
PushSafepointRegistersScope scope(this);
// Reset the context register.
if (!reg.is(rsi)) {
__ Move(rsi, 0);
}
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
__ movp(kScratchRegister, rax);
}
__ movp(reg, kScratchRegister);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
HChange* hchange = instr->hydrogen();
Register input = ToRegister(instr->value());
Register output = ToRegister(instr->result());
if (hchange->CheckFlag(HValue::kCanOverflow) &&
hchange->value()->CheckFlag(HValue::kUint32)) {
Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
DeoptimizeIf(NegateCondition(is_smi), instr, DeoptimizeReason::kOverflow);
}
__ Integer32ToSmi(output, input);
if (hchange->CheckFlag(HValue::kCanOverflow) &&
!hchange->value()->CheckFlag(HValue::kUint32)) {
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
DCHECK(instr->value()->Equals(instr->result()));
Register input = ToRegister(instr->value());
if (instr->needs_check()) {
Condition is_smi = __ CheckSmi(input);
DeoptimizeIf(NegateCondition(is_smi), instr, DeoptimizeReason::kNotASmi);
} else {
__ AssertSmi(input);
}
__ SmiToInteger32(input, input);
}
void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
XMMRegister result_reg, NumberUntagDMode mode) {
bool can_convert_undefined_to_nan = instr->truncating();
bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
Label convert, load_smi, done;
if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
// Smi check.
__ JumpIfSmi(input_reg, &load_smi, Label::kNear);
// Heap number map check.
__ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
// On x64 it is safe to load at heap number offset before evaluating the map
// check, since all heap objects are at least two words long.
__ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
if (can_convert_undefined_to_nan) {
__ j(not_equal, &convert, Label::kNear);
} else {
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
}
if (deoptimize_on_minus_zero) {
XMMRegister xmm_scratch = double_scratch0();
__ Xorpd(xmm_scratch, xmm_scratch);
__ Ucomisd(xmm_scratch, result_reg);
__ j(not_equal, &done, Label::kNear);
__ Movmskpd(kScratchRegister, result_reg);
__ testl(kScratchRegister, Immediate(1));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
}
__ jmp(&done, Label::kNear);
if (can_convert_undefined_to_nan) {
__ bind(&convert);
// Convert undefined (and hole) to NaN. Compute NaN as 0/0.
__ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
DeoptimizeIf(not_equal, instr,
DeoptimizeReason::kNotAHeapNumberUndefined);
__ Xorpd(result_reg, result_reg);
__ Divsd(result_reg, result_reg);
__ jmp(&done, Label::kNear);
}
} else {
DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
}
// Smi to XMM conversion
__ bind(&load_smi);
__ SmiToInteger32(kScratchRegister, input_reg);
__ Cvtlsi2sd(result_reg, kScratchRegister);
__ bind(&done);
}
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
Register input_reg = ToRegister(instr->value());
if (instr->truncating()) {
Register input_map_reg = kScratchRegister;
Label truncate;
Label::Distance truncate_distance =
DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ movp(input_map_reg, FieldOperand(input_reg, HeapObject::kMapOffset));
__ JumpIfRoot(input_map_reg, Heap::kHeapNumberMapRootIndex, &truncate,
truncate_distance);
__ CmpInstanceType(input_map_reg, ODDBALL_TYPE);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotANumberOrOddball);
__ bind(&truncate);
__ TruncateHeapNumberToI(input_reg, input_reg);
} else {
XMMRegister scratch = ToDoubleRegister(instr->temp());
DCHECK(!scratch.is(double_scratch0()));
__ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumber);
__ Movsd(double_scratch0(),
FieldOperand(input_reg, HeapNumber::kValueOffset));
__ Cvttsd2si(input_reg, double_scratch0());
__ Cvtlsi2sd(scratch, input_reg);
__ Ucomisd(double_scratch0(), scratch);
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kLostPrecision);
DeoptimizeIf(parity_even, instr, DeoptimizeReason::kNaN);
if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
__ testl(input_reg, input_reg);
__ j(not_zero, done);
__ Movmskpd(input_reg, double_scratch0());
__ andl(input_reg, Immediate(1));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kMinusZero);
}
}
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
class DeferredTaggedToI final : public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
LInstruction* instr() override { return instr_; }
private:
LTaggedToI* instr_;
};
LOperand* input = instr->value();
DCHECK(input->IsRegister());
DCHECK(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
if (instr->hydrogen()->value()->representation().IsSmi()) {
__ SmiToInteger32(input_reg, input_reg);
} else {
DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiToInteger32(input_reg, input_reg);
__ bind(deferred->exit());
}
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->value();
DCHECK(input->IsRegister());
LOperand* result = instr->result();
DCHECK(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
XMMRegister result_reg = ToDoubleRegister(result);
HValue* value = instr->hydrogen()->value();
NumberUntagDMode mode = value->representation().IsSmi()
? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
EmitNumberUntagD(instr, input_reg, result_reg, mode);
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
LOperand* input = instr->value();
DCHECK(input->IsDoubleRegister());
LOperand* result = instr->result();
DCHECK(result->IsRegister());
XMMRegister input_reg = ToDoubleRegister(input);
Register result_reg = ToRegister(result);
if (instr->truncating()) {
__ TruncateDoubleToI(result_reg, input_reg);
} else {
Label lost_precision, is_nan, minus_zero, done;
XMMRegister xmm_scratch = double_scratch0();
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ DoubleToI(result_reg, input_reg, xmm_scratch,
instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
&is_nan, &minus_zero, dist);
__ jmp(&done, dist);
__ bind(&lost_precision);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
__ bind(&is_nan);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
__ bind(&minus_zero);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
__ bind(&done);
}
}
void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
LOperand* input = instr->value();
DCHECK(input->IsDoubleRegister());
LOperand* result = instr->result();
DCHECK(result->IsRegister());
XMMRegister input_reg = ToDoubleRegister(input);
Register result_reg = ToRegister(result);
Label lost_precision, is_nan, minus_zero, done;
XMMRegister xmm_scratch = double_scratch0();
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ DoubleToI(result_reg, input_reg, xmm_scratch,
instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
&minus_zero, dist);
__ jmp(&done, dist);
__ bind(&lost_precision);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kLostPrecision);
__ bind(&is_nan);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kNaN);
__ bind(&minus_zero);
DeoptimizeIf(no_condition, instr, DeoptimizeReason::kMinusZero);
__ bind(&done);
__ Integer32ToSmi(result_reg, result_reg);
DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow);
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->value();
Condition cc = masm()->CheckSmi(ToRegister(input));
DeoptimizeIf(NegateCondition(cc), instr, DeoptimizeReason::kNotASmi);
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
if (!instr->hydrogen()->value()->type().IsHeapObject()) {
LOperand* input = instr->value();
Condition cc = masm()->CheckSmi(ToRegister(input));
DeoptimizeIf(cc, instr, DeoptimizeReason::kSmi);
}
}
void LCodeGen::DoCheckArrayBufferNotNeutered(
LCheckArrayBufferNotNeutered* instr) {
Register view = ToRegister(instr->view());
__ movp(kScratchRegister,
FieldOperand(view, JSArrayBufferView::kBufferOffset));
__ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
DeoptimizeIf(not_zero, instr, DeoptimizeReason::kOutOfBounds);
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->value());
__ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
if (instr->hydrogen()->is_interval_check()) {
InstanceType first;
InstanceType last;
instr->hydrogen()->GetCheckInterval(&first, &last);
__ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(first)));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
} else {
DeoptimizeIf(below, instr, DeoptimizeReason::kWrongInstanceType);
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(last)));
DeoptimizeIf(above, instr, DeoptimizeReason::kWrongInstanceType);
}
}
} else {
uint8_t mask;
uint8_t tag;
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
if (base::bits::IsPowerOfTwo32(mask)) {
DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
__ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
Immediate(mask));
DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
DeoptimizeReason::kWrongInstanceType);
} else {
__ movzxbl(kScratchRegister,
FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
__ andb(kScratchRegister, Immediate(mask));
__ cmpb(kScratchRegister, Immediate(tag));
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongInstanceType);
}
}
}
void LCodeGen::DoCheckValue(LCheckValue* instr) {
Register reg = ToRegister(instr->value());
__ Cmp(reg, instr->hydrogen()->object().handle());
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kValueMismatch);
}
void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
Label deopt, done;
// If the map is not deprecated the migration attempt does not make sense.
__ Push(object);
__ movp(object, FieldOperand(object, HeapObject::kMapOffset));
__ testl(FieldOperand(object, Map::kBitField3Offset),
Immediate(Map::Deprecated::kMask));
__ Pop(object);
__ j(zero, &deopt);
{
PushSafepointRegistersScope scope(this);
__ Push(object);
__ Set(rsi, 0);
__ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
RecordSafepointWithRegisters(
instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
__ testp(rax, Immediate(kSmiTagMask));
}
__ j(not_zero, &done);
__ bind(&deopt);
DeoptimizeIf(always, instr, DeoptimizeReason::kInstanceMigrationFailed);
__ bind(&done);
}
void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
class DeferredCheckMaps final : public LDeferredCode {
public:
DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
: LDeferredCode(codegen), instr_(instr), object_(object) {
SetExit(check_maps());
}
void Generate() override {
codegen()->DoDeferredInstanceMigration(instr_, object_);
}
Label* check_maps() { return &check_maps_; }
LInstruction* instr() override { return instr_; }
private:
LCheckMaps* instr_;
Label check_maps_;
Register object_;
};
if (instr->hydrogen()->IsStabilityCheck()) {
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
for (int i = 0; i < maps->size(); ++i) {
AddStabilityDependency(maps->at(i).handle());
}
return;
}
LOperand* input = instr->value();
DCHECK(input->IsRegister());
Register reg = ToRegister(input);
DeferredCheckMaps* deferred = NULL;
if (instr->hydrogen()->HasMigrationTarget()) {
deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
__ bind(deferred->check_maps());
}
const UniqueSet<Map>* maps = instr->hydrogen()->maps();
Label success;
for (int i = 0; i < maps->size() - 1; i++) {
Handle<Map> map = maps->at(i).handle();
__ CompareMap(reg, map);
__ j(equal, &success, Label::kNear);
}
Handle<Map> map = maps->at(maps->size() - 1).handle();
__ CompareMap(reg, map);
if (instr->hydrogen()->HasMigrationTarget()) {
__ j(not_equal, deferred->entry());
} else {
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
}
__ bind(&success);
}
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
XMMRegister xmm_scratch = double_scratch0();
Register result_reg = ToRegister(instr->result());
__ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
}
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
DCHECK(instr->unclamped()->Equals(instr->result()));
Register value_reg = ToRegister(instr->result());
__ ClampUint8(value_reg);
}
void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
DCHECK(instr->unclamped()->Equals(instr->result()));
Register input_reg = ToRegister(instr->unclamped());
XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
XMMRegister xmm_scratch = double_scratch0();
Label is_smi, done, heap_number;
Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
__ JumpIfSmi(input_reg, &is_smi, dist);
// Check for heap number
__ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(equal, &heap_number, Label::kNear);
// Check for undefined. Undefined is converted to zero for clamping
// conversions.
__ Cmp(input_reg, factory()->undefined_value());
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kNotAHeapNumberUndefined);
__ xorl(input_reg, input_reg);
__ jmp(&done, Label::kNear);
// Heap number
__ bind(&heap_number);
__ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
__ jmp(&done, Label::kNear);
// smi
__ bind(&is_smi);
__ SmiToInteger32(input_reg, input_reg);
__ ClampUint8(input_reg);
__ bind(&done);
}
void LCodeGen::DoAllocate(LAllocate* instr) {
class DeferredAllocate final : public LDeferredCode {
public:
DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override { codegen()->DoDeferredAllocate(instr_); }
LInstruction* instr() override { return instr_; }
private:
LAllocate* instr_;
};
DeferredAllocate* deferred =
new(zone()) DeferredAllocate(this, instr);
Register result = ToRegister(instr->result());
Register temp = ToRegister(instr->temp());
// Allocate memory for the object.
AllocationFlags flags = NO_ALLOCATION_FLAGS;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
if (instr->hydrogen()->IsAllocationFoldingDominator()) {
flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR);
}
DCHECK(!instr->hydrogen()->IsAllocationFolded());
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
CHECK(size <= kMaxRegularHeapObjectSize);
__ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
} else {
Register size = ToRegister(instr->size());
__ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
}
__ bind(deferred->exit());
if (instr->hydrogen()->MustPrefillWithFiller()) {
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
__ movl(temp, Immediate((size / kPointerSize) - 1));
} else {
temp = ToRegister(instr->size());
__ sarp(temp, Immediate(kPointerSizeLog2));
__ decl(temp);
}
Label loop;
__ bind(&loop);
__ Move(FieldOperand(result, temp, times_pointer_size, 0),
isolate()->factory()->one_pointer_filler_map());
__ decl(temp);
__ j(not_zero, &loop);
}
}
void LCodeGen::DoFastAllocate(LFastAllocate* instr) {
DCHECK(instr->hydrogen()->IsAllocationFolded());
DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator());
Register result = ToRegister(instr->result());
Register temp = ToRegister(instr->temp());
AllocationFlags flags = ALLOCATION_FOLDED;
if (instr->hydrogen()->MustAllocateDoubleAligned()) {
flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
}
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
if (instr->size()->IsConstantOperand()) {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
CHECK(size <= kMaxRegularHeapObjectSize);
__ FastAllocate(size, result, temp, flags);
} else {
Register size = ToRegister(instr->size());
__ FastAllocate(size, result, temp, flags);
}
}
void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Move(result, Smi::kZero);
PushSafepointRegistersScope scope(this);
if (instr->size()->IsRegister()) {
Register size = ToRegister(instr->size());
DCHECK(!size.is(result));
__ Integer32ToSmi(size, size);
__ Push(size);
} else {
int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
__ Push(Smi::FromInt(size));
}
int flags = 0;
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
flags = AllocateTargetSpace::update(flags, OLD_SPACE);
} else {
flags = AllocateTargetSpace::update(flags, NEW_SPACE);
}
__ Push(Smi::FromInt(flags));
CallRuntimeFromDeferred(
Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
__ StoreToSafepointRegisterSlot(result, rax);
if (instr->hydrogen()->IsAllocationFoldingDominator()) {
AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS;
if (instr->hydrogen()->IsOldSpaceAllocation()) {
DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE);
}
// If the allocation folding dominator allocate triggered a GC, allocation
// happend in the runtime. We have to reset the top pointer to virtually
// undo the allocation.
ExternalReference allocation_top =
AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags);
__ subp(rax, Immediate(kHeapObjectTag));
__ Store(allocation_top, rax);
__ addp(rax, Immediate(kHeapObjectTag));
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
DCHECK(ToRegister(instr->value()).is(rbx));
Label end, do_call;
Register value_register = ToRegister(instr->value());
__ JumpIfNotSmi(value_register, &do_call);
__ Move(rax, isolate()->factory()->number_string());
__ jmp(&end);
__ bind(&do_call);
Callable callable = CodeFactory::Typeof(isolate());
CallCode(callable.code(), RelocInfo::CODE_TARGET, instr);
__ bind(&end);
}
void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
DCHECK(!operand->IsDoubleRegister());
if (operand->IsConstantOperand()) {
__ Push(ToHandle(LConstantOperand::cast(operand)));
} else if (operand->IsRegister()) {
__ Push(ToRegister(operand));
} else {
__ Push(ToOperand(operand));
}
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->value());
Condition final_branch_condition = EmitTypeofIs(instr, input);
if (final_branch_condition != no_condition) {
EmitBranch(instr, final_branch_condition);
}
}
Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
Label* true_label = instr->TrueLabel(chunk_);
Label* false_label = instr->FalseLabel(chunk_);
Handle<String> type_name = instr->type_literal();
int left_block = instr->TrueDestination(chunk_);
int right_block = instr->FalseDestination(chunk_);
int next_block = GetNextEmittedBlock();
Label::Distance true_distance = left_block == next_block ? Label::kNear
: Label::kFar;
Label::Distance false_distance = right_block == next_block ? Label::kNear
: Label::kFar;
Condition final_branch_condition = no_condition;
Factory* factory = isolate()->factory();
if (String::Equals(type_name, factory->number_string())) {
__ JumpIfSmi(input, true_label, true_distance);
__ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory->string_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
final_branch_condition = below;
} else if (String::Equals(type_name, factory->symbol_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CmpObjectType(input, SYMBOL_TYPE, input);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory->boolean_string())) {
__ CompareRoot(input, Heap::kTrueValueRootIndex);
__ j(equal, true_label, true_distance);
__ CompareRoot(input, Heap::kFalseValueRootIndex);
final_branch_condition = equal;
} else if (String::Equals(type_name, factory->undefined_string())) {
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ j(equal, false_label, false_distance);
__ JumpIfSmi(input, false_label, false_distance);
// Check for undetectable objects => true.
__ movp(input, FieldOperand(input, HeapObject::kMapOffset));
__ testb(FieldOperand(input, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
final_branch_condition = not_zero;
} else if (String::Equals(type_name, factory->function_string())) {
__ JumpIfSmi(input, false_label, false_distance);
// Check for callable and not undetectable objects => true.
__ movp(input, FieldOperand(input, HeapObject::kMapOffset));
__ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
__ andb(input,
Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
__ cmpb(input, Immediate(1 << Map::kIsCallable));
final_branch_condition = equal;
} else if (String::Equals(type_name, factory->object_string())) {
__ JumpIfSmi(input, false_label, false_distance);
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ j(equal, true_label, true_distance);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
__ j(below, false_label, false_distance);
// Check for callable or undetectable objects => false.
__ testb(FieldOperand(input, Map::kBitFieldOffset),
Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
final_branch_condition = zero;
} else {
__ jmp(false_label, false_distance);
}
return final_branch_condition;
}
void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
if (info()->ShouldEnsureSpaceForLazyDeopt()) {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
__ Nop(padding_size);
}
}
last_lazy_deopt_pc_ = masm()->pc_offset();
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
last_lazy_deopt_pc_ = masm()->pc_offset();
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
Deoptimizer::BailoutType type = instr->hydrogen()->type();
// TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
// needed return address), even though the implementation of LAZY and EAGER is
// now identical. When LAZY is eventually completely folded into EAGER, remove
// the special case below.
if (info()->IsStub() && type == Deoptimizer::EAGER) {
type = Deoptimizer::LAZY;
}
DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
}
void LCodeGen::DoDummy(LDummy* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDummyUse(LDummyUse* instr) {
// Nothing to see here, move on!
}
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
PushSafepointRegistersScope scope(this);
__ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
class DeferredStackCheck final : public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
: LDeferredCode(codegen), instr_(instr) { }
void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
LInstruction* instr() override { return instr_; }
private:
LStackCheck* instr_;
};
DCHECK(instr->HasEnvironment());
LEnvironment* env = instr->environment();
// There is no LLazyBailout instruction for stack-checks. We have to
// prepare for lazy deoptimization explicitly here.
if (instr->hydrogen()->is_function_entry()) {
// Perform stack overflow check.
Label done;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &done, Label::kNear);
DCHECK(instr->context()->IsRegister());
DCHECK(ToRegister(instr->context()).is(rsi));
CallCode(isolate()->builtins()->StackCheck(),
RelocInfo::CODE_TARGET,
instr);
__ bind(&done);
} else {
DCHECK(instr->hydrogen()->is_backwards_branch());
// Perform stack overflow check if this goto needs it before jumping.
DeferredStackCheck* deferred_stack_check =
new(zone()) DeferredStackCheck(this, instr);
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(below, deferred_stack_check->entry());
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
__ bind(instr->done_label());
deferred_stack_check->SetExit(instr->done_label());
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
// Don't record a deoptimization index for the safepoint here.
// This will be done explicitly when emitting call and the safepoint in
// the deferred code.
}
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
DCHECK(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
GenerateOsrPrologue();
}
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
DCHECK(ToRegister(instr->context()).is(rsi));
Label use_cache, call_runtime;
__ CheckEnumCache(&call_runtime);
__ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
__ jmp(&use_cache, Label::kNear);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ Push(rax);
CallRuntime(Runtime::kForInEnumerate, instr);
__ bind(&use_cache);
}
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
Register map = ToRegister(instr->map());
Register result = ToRegister(instr->result());
Label load_cache, done;
__ EnumLength(result, map);
__ Cmp(result, Smi::kZero);
__ j(not_equal, &load_cache, Label::kNear);
__ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
__ jmp(&done, Label::kNear);
__ bind(&load_cache);
__ LoadInstanceDescriptors(map, result);
__ movp(result,
FieldOperand(result, DescriptorArray::kEnumCacheOffset));
__ movp(result,
FieldOperand(result, FixedArray::SizeFor(instr->idx())));
__ bind(&done);
Condition cc = masm()->CheckSmi(result);
DeoptimizeIf(cc, instr, DeoptimizeReason::kNoCache);
}
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
Register object = ToRegister(instr->value());
__ cmpp(ToRegister(instr->map()),
FieldOperand(object, HeapObject::kMapOffset));
DeoptimizeIf(not_equal, instr, DeoptimizeReason::kWrongMap);
}
void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
Register object,
Register index) {
PushSafepointRegistersScope scope(this);
__ Push(object);
__ Push(index);
__ xorp(rsi, rsi);
__ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
RecordSafepointWithRegisters(
instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
__ StoreToSafepointRegisterSlot(object, rax);
}
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
class DeferredLoadMutableDouble final : public LDeferredCode {
public:
DeferredLoadMutableDouble(LCodeGen* codegen,
LLoadFieldByIndex* instr,
Register object,
Register index)
: LDeferredCode(codegen),
instr_(instr),
object_(object),
index_(index) {
}
void Generate() override {
codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
}
LInstruction* instr() override { return instr_; }
private:
LLoadFieldByIndex* instr_;
Register object_;
Register index_;
};
Register object = ToRegister(instr->object());
Register index = ToRegister(instr->index());
DeferredLoadMutableDouble* deferred;
deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
Label out_of_object, done;
__ Move(kScratchRegister, Smi::FromInt(1));
__ testp(index, kScratchRegister);
__ j(not_zero, deferred->entry());
__ sarp(index, Immediate(1));
__ SmiToInteger32(index, index);
__ cmpl(index, Immediate(0));
__ j(less, &out_of_object, Label::kNear);
__ movp(object, FieldOperand(object,
index,
times_pointer_size,
JSObject::kHeaderSize));
__ jmp(&done, Label::kNear);
__ bind(&out_of_object);
__ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
__ negl(index);
// Index is now equal to out of object property index plus 1.
__ movp(object, FieldOperand(object,
index,
times_pointer_size,
FixedArray::kHeaderSize - kPointerSize));
__ bind(deferred->exit());
__ bind(&done);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X64