// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/simd-scalar-lowering.h"
#include "src/compiler/diamond.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/objects-inl.h"
#include "src/wasm/wasm-module.h"
namespace v8 {
namespace internal {
namespace compiler {
SimdScalarLowering::SimdScalarLowering(
Graph* graph, MachineOperatorBuilder* machine,
CommonOperatorBuilder* common, Zone* zone,
Signature<MachineRepresentation>* signature)
: zone_(zone),
graph_(graph),
machine_(machine),
common_(common),
state_(graph, 3),
stack_(zone),
replacements_(nullptr),
signature_(signature),
placeholder_(
graph->NewNode(common->Parameter(-2, "placeholder"), graph->start())),
parameter_count_after_lowering_(-1) {
DCHECK_NOT_NULL(graph);
DCHECK_NOT_NULL(graph->end());
replacements_ = zone->NewArray<Replacement>(graph->NodeCount());
memset(replacements_, 0, sizeof(Replacement) * graph->NodeCount());
}
void SimdScalarLowering::LowerGraph() {
stack_.push_back({graph()->end(), 0});
state_.Set(graph()->end(), State::kOnStack);
replacements_[graph()->end()->id()].type = SimdType::kInt32;
while (!stack_.empty()) {
NodeState& top = stack_.back();
if (top.input_index == top.node->InputCount()) {
// All inputs of top have already been lowered, now lower top.
stack_.pop_back();
state_.Set(top.node, State::kVisited);
LowerNode(top.node);
} else {
// Push the next input onto the stack.
Node* input = top.node->InputAt(top.input_index++);
if (state_.Get(input) == State::kUnvisited) {
SetLoweredType(input, top.node);
if (input->opcode() == IrOpcode::kPhi) {
// To break cycles with phi nodes we push phis on a separate stack so
// that they are processed after all other nodes.
PreparePhiReplacement(input);
stack_.push_front({input, 0});
} else if (input->opcode() == IrOpcode::kEffectPhi ||
input->opcode() == IrOpcode::kLoop) {
stack_.push_front({input, 0});
} else {
stack_.push_back({input, 0});
}
state_.Set(input, State::kOnStack);
}
}
}
}
#define FOREACH_INT32X4_OPCODE(V) \
V(Int32x4Add) \
V(Int32x4ExtractLane) \
V(CreateInt32x4) \
V(Int32x4ReplaceLane)
#define FOREACH_FLOAT32X4_OPCODE(V) \
V(Float32x4Add) \
V(Float32x4ExtractLane) \
V(CreateFloat32x4) \
V(Float32x4ReplaceLane)
void SimdScalarLowering::SetLoweredType(Node* node, Node* output) {
switch (node->opcode()) {
#define CASE_STMT(name) case IrOpcode::k##name:
FOREACH_INT32X4_OPCODE(CASE_STMT)
case IrOpcode::kReturn:
case IrOpcode::kParameter:
case IrOpcode::kCall: {
replacements_[node->id()].type = SimdType::kInt32;
break;
}
FOREACH_FLOAT32X4_OPCODE(CASE_STMT) {
replacements_[node->id()].type = SimdType::kFloat32;
break;
}
#undef CASE_STMT
default:
replacements_[node->id()].type = replacements_[output->id()].type;
}
}
static int GetParameterIndexAfterLowering(
Signature<MachineRepresentation>* signature, int old_index) {
// In function calls, the simd128 types are passed as 4 Int32 types. The
// parameters are typecast to the types as needed for various operations.
int result = old_index;
for (int i = 0; i < old_index; ++i) {
if (signature->GetParam(i) == MachineRepresentation::kSimd128) {
result += 3;
}
}
return result;
}
int SimdScalarLowering::GetParameterCountAfterLowering() {
if (parameter_count_after_lowering_ == -1) {
// GetParameterIndexAfterLowering(parameter_count) returns the parameter
// count after lowering.
parameter_count_after_lowering_ = GetParameterIndexAfterLowering(
signature(), static_cast<int>(signature()->parameter_count()));
}
return parameter_count_after_lowering_;
}
static int GetReturnCountAfterLowering(
Signature<MachineRepresentation>* signature) {
int result = static_cast<int>(signature->return_count());
for (int i = 0; i < static_cast<int>(signature->return_count()); ++i) {
if (signature->GetReturn(i) == MachineRepresentation::kSimd128) {
result += 3;
}
}
return result;
}
void SimdScalarLowering::GetIndexNodes(Node* index, Node** new_indices) {
new_indices[0] = index;
for (size_t i = 1; i < kMaxLanes; ++i) {
new_indices[i] = graph()->NewNode(machine()->Int32Add(), index,
graph()->NewNode(common()->Int32Constant(
static_cast<int>(i) * kLaneWidth)));
}
}
void SimdScalarLowering::LowerLoadOp(MachineRepresentation rep, Node* node,
const Operator* load_op) {
if (rep == MachineRepresentation::kSimd128) {
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* indices[kMaxLanes];
GetIndexNodes(index, indices);
Node* rep_nodes[kMaxLanes];
rep_nodes[0] = node;
NodeProperties::ChangeOp(rep_nodes[0], load_op);
if (node->InputCount() > 2) {
DCHECK(node->InputCount() > 3);
Node* effect_input = node->InputAt(2);
Node* control_input = node->InputAt(3);
rep_nodes[3] = graph()->NewNode(load_op, base, indices[3], effect_input,
control_input);
rep_nodes[2] = graph()->NewNode(load_op, base, indices[2], rep_nodes[3],
control_input);
rep_nodes[1] = graph()->NewNode(load_op, base, indices[1], rep_nodes[2],
control_input);
rep_nodes[0]->ReplaceInput(2, rep_nodes[1]);
} else {
for (size_t i = 1; i < kMaxLanes; ++i) {
rep_nodes[i] = graph()->NewNode(load_op, base, indices[i]);
}
}
ReplaceNode(node, rep_nodes);
} else {
DefaultLowering(node);
}
}
void SimdScalarLowering::LowerStoreOp(MachineRepresentation rep, Node* node,
const Operator* store_op,
SimdType rep_type) {
if (rep == MachineRepresentation::kSimd128) {
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* indices[kMaxLanes];
GetIndexNodes(index, indices);
DCHECK(node->InputCount() > 2);
Node* value = node->InputAt(2);
DCHECK(HasReplacement(1, value));
Node* rep_nodes[kMaxLanes];
rep_nodes[0] = node;
Node** rep_inputs = GetReplacementsWithType(value, rep_type);
rep_nodes[0]->ReplaceInput(2, rep_inputs[0]);
NodeProperties::ChangeOp(node, store_op);
if (node->InputCount() > 3) {
DCHECK(node->InputCount() > 4);
Node* effect_input = node->InputAt(3);
Node* control_input = node->InputAt(4);
rep_nodes[3] = graph()->NewNode(store_op, base, indices[3], rep_inputs[3],
effect_input, control_input);
rep_nodes[2] = graph()->NewNode(store_op, base, indices[2], rep_inputs[2],
rep_nodes[3], control_input);
rep_nodes[1] = graph()->NewNode(store_op, base, indices[1], rep_inputs[1],
rep_nodes[2], control_input);
rep_nodes[0]->ReplaceInput(3, rep_nodes[1]);
} else {
for (size_t i = 1; i < kMaxLanes; ++i) {
rep_nodes[i] =
graph()->NewNode(store_op, base, indices[i], rep_inputs[i]);
}
}
ReplaceNode(node, rep_nodes);
} else {
DefaultLowering(node);
}
}
void SimdScalarLowering::LowerBinaryOp(Node* node, SimdType rep_type,
const Operator* op) {
DCHECK(node->InputCount() == 2);
Node** rep_left = GetReplacementsWithType(node->InputAt(0), rep_type);
Node** rep_right = GetReplacementsWithType(node->InputAt(1), rep_type);
Node* rep_node[kMaxLanes];
for (int i = 0; i < kMaxLanes; ++i) {
rep_node[i] = graph()->NewNode(op, rep_left[i], rep_right[i]);
}
ReplaceNode(node, rep_node);
}
void SimdScalarLowering::LowerNode(Node* node) {
SimdType rep_type = ReplacementType(node);
switch (node->opcode()) {
case IrOpcode::kStart: {
int parameter_count = GetParameterCountAfterLowering();
// Only exchange the node if the parameter count actually changed.
if (parameter_count != static_cast<int>(signature()->parameter_count())) {
int delta =
parameter_count - static_cast<int>(signature()->parameter_count());
int new_output_count = node->op()->ValueOutputCount() + delta;
NodeProperties::ChangeOp(node, common()->Start(new_output_count));
}
break;
}
case IrOpcode::kParameter: {
DCHECK(node->InputCount() == 1);
// Only exchange the node if the parameter count actually changed. We do
// not even have to do the default lowering because the the start node,
// the only input of a parameter node, only changes if the parameter count
// changes.
if (GetParameterCountAfterLowering() !=
static_cast<int>(signature()->parameter_count())) {
int old_index = ParameterIndexOf(node->op());
int new_index = GetParameterIndexAfterLowering(signature(), old_index);
if (old_index == new_index) {
NodeProperties::ChangeOp(node, common()->Parameter(new_index));
Node* new_node[kMaxLanes];
for (int i = 0; i < kMaxLanes; ++i) {
new_node[i] = nullptr;
}
new_node[0] = node;
if (signature()->GetParam(old_index) ==
MachineRepresentation::kSimd128) {
for (int i = 1; i < kMaxLanes; ++i) {
new_node[i] = graph()->NewNode(common()->Parameter(new_index + i),
graph()->start());
}
}
ReplaceNode(node, new_node);
}
}
break;
}
case IrOpcode::kLoad: {
MachineRepresentation rep =
LoadRepresentationOf(node->op()).representation();
const Operator* load_op;
if (rep_type == SimdType::kInt32) {
load_op = machine()->Load(MachineType::Int32());
} else if (rep_type == SimdType::kFloat32) {
load_op = machine()->Load(MachineType::Float32());
}
LowerLoadOp(rep, node, load_op);
break;
}
case IrOpcode::kUnalignedLoad: {
MachineRepresentation rep =
UnalignedLoadRepresentationOf(node->op()).representation();
const Operator* load_op;
if (rep_type == SimdType::kInt32) {
load_op = machine()->UnalignedLoad(MachineType::Int32());
} else if (rep_type == SimdType::kFloat32) {
load_op = machine()->UnalignedLoad(MachineType::Float32());
}
LowerLoadOp(rep, node, load_op);
break;
}
case IrOpcode::kStore: {
MachineRepresentation rep =
StoreRepresentationOf(node->op()).representation();
WriteBarrierKind write_barrier_kind =
StoreRepresentationOf(node->op()).write_barrier_kind();
const Operator* store_op;
if (rep_type == SimdType::kInt32) {
store_op = machine()->Store(StoreRepresentation(
MachineRepresentation::kWord32, write_barrier_kind));
} else {
store_op = machine()->Store(StoreRepresentation(
MachineRepresentation::kFloat32, write_barrier_kind));
}
LowerStoreOp(rep, node, store_op, rep_type);
break;
}
case IrOpcode::kUnalignedStore: {
MachineRepresentation rep = UnalignedStoreRepresentationOf(node->op());
const Operator* store_op;
if (rep_type == SimdType::kInt32) {
store_op = machine()->UnalignedStore(MachineRepresentation::kWord32);
} else {
store_op = machine()->UnalignedStore(MachineRepresentation::kFloat32);
}
LowerStoreOp(rep, node, store_op, rep_type);
break;
}
case IrOpcode::kReturn: {
DefaultLowering(node);
int new_return_count = GetReturnCountAfterLowering(signature());
if (static_cast<int>(signature()->return_count()) != new_return_count) {
NodeProperties::ChangeOp(node, common()->Return(new_return_count));
}
break;
}
case IrOpcode::kCall: {
// TODO(turbofan): Make WASM code const-correct wrt. CallDescriptor.
CallDescriptor* descriptor =
const_cast<CallDescriptor*>(CallDescriptorOf(node->op()));
if (DefaultLowering(node) ||
(descriptor->ReturnCount() == 1 &&
descriptor->GetReturnType(0) == MachineType::Simd128())) {
// We have to adjust the call descriptor.
const Operator* op =
common()->Call(wasm::ModuleEnv::GetI32WasmCallDescriptorForSimd(
zone(), descriptor));
NodeProperties::ChangeOp(node, op);
}
if (descriptor->ReturnCount() == 1 &&
descriptor->GetReturnType(0) == MachineType::Simd128()) {
// We access the additional return values through projections.
Node* rep_node[kMaxLanes];
for (int i = 0; i < kMaxLanes; ++i) {
rep_node[i] =
graph()->NewNode(common()->Projection(i), node, graph()->start());
}
ReplaceNode(node, rep_node);
}
break;
}
case IrOpcode::kPhi: {
MachineRepresentation rep = PhiRepresentationOf(node->op());
if (rep == MachineRepresentation::kSimd128) {
// The replacement nodes have already been created, we only have to
// replace placeholder nodes.
Node** rep_node = GetReplacements(node);
for (int i = 0; i < node->op()->ValueInputCount(); ++i) {
Node** rep_input =
GetReplacementsWithType(node->InputAt(i), rep_type);
for (int j = 0; j < kMaxLanes; j++) {
rep_node[j]->ReplaceInput(i, rep_input[j]);
}
}
} else {
DefaultLowering(node);
}
break;
}
case IrOpcode::kInt32x4Add: {
LowerBinaryOp(node, rep_type, machine()->Int32Add());
break;
}
case IrOpcode::kFloat32x4Add: {
LowerBinaryOp(node, rep_type, machine()->Float32Add());
break;
}
case IrOpcode::kCreateInt32x4:
case IrOpcode::kCreateFloat32x4: {
Node* rep_node[kMaxLanes];
for (int i = 0; i < kMaxLanes; ++i) {
if (HasReplacement(0, node->InputAt(i))) {
rep_node[i] = GetReplacements(node->InputAt(i))[0];
} else {
rep_node[i] = node->InputAt(i);
}
}
ReplaceNode(node, rep_node);
break;
}
case IrOpcode::kInt32x4ExtractLane:
case IrOpcode::kFloat32x4ExtractLane: {
int32_t lane = OpParameter<int32_t>(node);
Node* rep_node[kMaxLanes] = {
GetReplacementsWithType(node->InputAt(0), rep_type)[lane], nullptr,
nullptr, nullptr};
ReplaceNode(node, rep_node);
break;
}
case IrOpcode::kInt32x4ReplaceLane:
case IrOpcode::kFloat32x4ReplaceLane: {
DCHECK_EQ(2, node->InputCount());
Node* repNode = node->InputAt(1);
int32_t lane = OpParameter<int32_t>(node);
DCHECK(lane >= 0 && lane <= 3);
Node** rep_node = GetReplacementsWithType(node->InputAt(0), rep_type);
if (HasReplacement(0, repNode)) {
rep_node[lane] = GetReplacements(repNode)[0];
} else {
rep_node[lane] = repNode;
}
ReplaceNode(node, rep_node);
break;
}
default: { DefaultLowering(node); }
}
}
bool SimdScalarLowering::DefaultLowering(Node* node) {
bool something_changed = false;
for (int i = NodeProperties::PastValueIndex(node) - 1; i >= 0; i--) {
Node* input = node->InputAt(i);
if (HasReplacement(0, input)) {
something_changed = true;
node->ReplaceInput(i, GetReplacements(input)[0]);
}
if (HasReplacement(1, input)) {
something_changed = true;
for (int j = 1; j < kMaxLanes; j++) {
node->InsertInput(zone(), i + j, GetReplacements(input)[j]);
}
}
}
return something_changed;
}
void SimdScalarLowering::ReplaceNode(Node* old, Node** new_node) {
// if new_low == nullptr, then also new_high == nullptr.
DCHECK(new_node[0] != nullptr ||
(new_node[1] == nullptr && new_node[2] == nullptr &&
new_node[3] == nullptr));
for (int i = 0; i < kMaxLanes; ++i) {
replacements_[old->id()].node[i] = new_node[i];
}
}
bool SimdScalarLowering::HasReplacement(size_t index, Node* node) {
return replacements_[node->id()].node[index] != nullptr;
}
SimdScalarLowering::SimdType SimdScalarLowering::ReplacementType(Node* node) {
return replacements_[node->id()].type;
}
Node** SimdScalarLowering::GetReplacements(Node* node) {
Node** result = replacements_[node->id()].node;
DCHECK(result);
return result;
}
Node** SimdScalarLowering::GetReplacementsWithType(Node* node, SimdType type) {
Node** replacements = GetReplacements(node);
if (ReplacementType(node) == type) {
return GetReplacements(node);
}
Node** result = zone()->NewArray<Node*>(kMaxLanes);
if (ReplacementType(node) == SimdType::kInt32 && type == SimdType::kFloat32) {
for (int i = 0; i < kMaxLanes; ++i) {
if (replacements[i] != nullptr) {
result[i] = graph()->NewNode(machine()->BitcastInt32ToFloat32(),
replacements[i]);
} else {
result[i] = nullptr;
}
}
} else {
for (int i = 0; i < kMaxLanes; ++i) {
if (replacements[i] != nullptr) {
result[i] = graph()->NewNode(machine()->BitcastFloat32ToInt32(),
replacements[i]);
} else {
result[i] = nullptr;
}
}
}
return result;
}
void SimdScalarLowering::PreparePhiReplacement(Node* phi) {
MachineRepresentation rep = PhiRepresentationOf(phi->op());
if (rep == MachineRepresentation::kSimd128) {
// We have to create the replacements for a phi node before we actually
// lower the phi to break potential cycles in the graph. The replacements of
// input nodes do not exist yet, so we use a placeholder node to pass the
// graph verifier.
int value_count = phi->op()->ValueInputCount();
SimdType type = ReplacementType(phi);
Node** inputs_rep[kMaxLanes];
for (int i = 0; i < kMaxLanes; ++i) {
inputs_rep[i] = zone()->NewArray<Node*>(value_count + 1);
inputs_rep[i][value_count] = NodeProperties::GetControlInput(phi, 0);
}
for (int i = 0; i < value_count; ++i) {
for (int j = 0; j < kMaxLanes; j++) {
inputs_rep[j][i] = placeholder_;
}
}
Node* rep_nodes[kMaxLanes];
for (int i = 0; i < kMaxLanes; ++i) {
if (type == SimdType::kInt32) {
rep_nodes[i] = graph()->NewNode(
common()->Phi(MachineRepresentation::kWord32, value_count),
value_count + 1, inputs_rep[i], false);
} else if (type == SimdType::kFloat32) {
rep_nodes[i] = graph()->NewNode(
common()->Phi(MachineRepresentation::kFloat32, value_count),
value_count + 1, inputs_rep[i], false);
} else {
UNREACHABLE();
}
}
ReplaceNode(phi, rep_nodes);
}
}
} // namespace compiler
} // namespace internal
} // namespace v8