// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_X87
#include "src/code-factory.h"
#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/x87/frames-x87.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address,
ExitFrameType exit_frame_type) {
// ----------- S t a t e -------------
// -- eax : number of arguments excluding receiver
// -- edi : target
// -- edx : new.target
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[4 * argc] : first argument
// -- esp[4 * (argc +1)] : receiver
// -----------------------------------
__ AssertFunction(edi);
// Make sure we operate in the context of the called function (for example
// ConstructStubs implemented in C++ will be run in the context of the caller
// instead of the callee, due to the way that [[Construct]] is defined for
// ordinary functions).
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// JumpToExternalReference expects eax to contain the number of arguments
// including the receiver and the extra arguments.
const int num_extra_args = 3;
__ add(eax, Immediate(num_extra_args + 1));
// Insert extra arguments.
__ PopReturnAddressTo(ecx);
__ SmiTag(eax);
__ Push(eax);
__ SmiUntag(eax);
__ Push(edi);
__ Push(edx);
__ PushReturnAddressFrom(ecx);
__ JumpToExternalReference(ExternalReference(address, masm->isolate()),
exit_frame_type == BUILTIN_EXIT);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
Runtime::FunctionId function_id) {
// ----------- S t a t e -------------
// -- eax : argument count (preserved for callee)
// -- edx : new target (preserved for callee)
// -- edi : target function (preserved for callee)
// -----------------------------------
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the number of arguments to the callee.
__ SmiTag(eax);
__ push(eax);
// Push a copy of the target function and the new target.
__ push(edi);
__ push(edx);
// Function is also the parameter to the runtime call.
__ push(edi);
__ CallRuntime(function_id, 1);
__ mov(ebx, eax);
// Restore target function and new target.
__ pop(edx);
__ pop(edi);
__ pop(eax);
__ SmiUntag(eax);
}
__ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
__ jmp(ebx);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kCodeOffset));
__ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
__ jmp(ebx);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
ExternalReference stack_limit =
ExternalReference::address_of_stack_limit(masm->isolate());
__ cmp(esp, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok, Label::kNear);
GenerateTailCallToReturnedCode(masm, Runtime::kTryInstallOptimizedCode);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
namespace {
void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function,
bool create_implicit_receiver,
bool check_derived_construct) {
// ----------- S t a t e -------------
// -- eax: number of arguments
// -- esi: context
// -- edi: constructor function
// -- edx: new target
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
// Preserve the incoming parameters on the stack.
__ SmiTag(eax);
__ push(esi);
__ push(eax);
if (create_implicit_receiver) {
// Allocate the new receiver object.
__ Push(edi);
__ Push(edx);
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ mov(ebx, eax);
__ Pop(edx);
__ Pop(edi);
// ----------- S t a t e -------------
// -- edi: constructor function
// -- ebx: newly allocated object
// -- edx: new target
// -----------------------------------
// Retrieve smi-tagged arguments count from the stack.
__ mov(eax, Operand(esp, 0));
}
__ SmiUntag(eax);
if (create_implicit_receiver) {
// Push the allocated receiver to the stack. We need two copies
// because we may have to return the original one and the calling
// conventions dictate that the called function pops the receiver.
__ push(ebx);
__ push(ebx);
} else {
__ PushRoot(Heap::kTheHoleValueRootIndex);
}
// Set up pointer to last argument.
__ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
// Copy arguments and receiver to the expression stack.
Label loop, entry;
__ mov(ecx, eax);
__ jmp(&entry);
__ bind(&loop);
__ push(Operand(ebx, ecx, times_4, 0));
__ bind(&entry);
__ dec(ecx);
__ j(greater_equal, &loop);
// Call the function.
ParameterCount actual(eax);
__ InvokeFunction(edi, edx, actual, CALL_FUNCTION,
CheckDebugStepCallWrapper());
// Store offset of return address for deoptimizer.
if (create_implicit_receiver && !is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
if (create_implicit_receiver) {
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
__ JumpIfSmi(eax, &use_receiver, Label::kNear);
// If the type of the result (stored in its map) is less than
// FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
__ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
__ j(above_equal, &exit, Label::kNear);
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ mov(eax, Operand(esp, 0));
// Restore the arguments count and leave the construct frame. The
// arguments count is stored below the receiver.
__ bind(&exit);
__ mov(ebx, Operand(esp, 1 * kPointerSize));
} else {
__ mov(ebx, Operand(esp, 0));
}
// Leave construct frame.
}
// ES6 9.2.2. Step 13+
// Check that the result is not a Smi, indicating that the constructor result
// from a derived class is neither undefined nor an Object.
if (check_derived_construct) {
Label dont_throw;
__ JumpIfNotSmi(eax, &dont_throw);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowDerivedConstructorReturnedNonObject);
}
__ bind(&dont_throw);
}
// Remove caller arguments from the stack and return.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
if (create_implicit_receiver) {
__ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
}
__ ret(0);
}
} // namespace
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, true, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, false);
}
void Builtins::Generate_JSBuiltinsConstructStubForDerived(
MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, false, true);
}
void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}
enum IsTagged { kEaxIsSmiTagged, kEaxIsUntaggedInt };
// Clobbers ecx, edx, edi; preserves all other registers.
static void Generate_CheckStackOverflow(MacroAssembler* masm,
IsTagged eax_is_tagged) {
// eax : the number of items to be pushed to the stack
//
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(edi, Operand::StaticVariable(real_stack_limit));
// Make ecx the space we have left. The stack might already be overflowed
// here which will cause ecx to become negative.
__ mov(ecx, esp);
__ sub(ecx, edi);
// Make edx the space we need for the array when it is unrolled onto the
// stack.
__ mov(edx, eax);
int smi_tag = eax_is_tagged == kEaxIsSmiTagged ? kSmiTagSize : 0;
__ shl(edx, kPointerSizeLog2 - smi_tag);
// Check if the arguments will overflow the stack.
__ cmp(ecx, edx);
__ j(greater, &okay); // Signed comparison.
// Out of stack space.
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&okay);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Setup the context (we need to use the caller context from the isolate).
ExternalReference context_address(Isolate::kContextAddress,
masm->isolate());
__ mov(esi, Operand::StaticVariable(context_address));
// Load the previous frame pointer (ebx) to access C arguments
__ mov(ebx, Operand(ebp, 0));
// Push the function and the receiver onto the stack.
__ push(Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
__ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
// Load the number of arguments and setup pointer to the arguments.
__ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
__ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
// Check if we have enough stack space to push all arguments.
// Expects argument count in eax. Clobbers ecx, edx, edi.
Generate_CheckStackOverflow(masm, kEaxIsUntaggedInt);
// Copy arguments to the stack in a loop.
Label loop, entry;
__ Move(ecx, Immediate(0));
__ jmp(&entry, Label::kNear);
__ bind(&loop);
__ mov(edx, Operand(ebx, ecx, times_4, 0)); // push parameter from argv
__ push(Operand(edx, 0)); // dereference handle
__ inc(ecx);
__ bind(&entry);
__ cmp(ecx, eax);
__ j(not_equal, &loop);
// Load the previous frame pointer (ebx) to access C arguments
__ mov(ebx, Operand(ebp, 0));
// Get the new.target and function from the frame.
__ mov(edx, Operand(ebx, EntryFrameConstants::kNewTargetArgOffset));
__ mov(edi, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
// Invoke the code.
Handle<Code> builtin = is_construct
? masm->isolate()->builtins()->Construct()
: masm->isolate()->builtins()->Call();
__ Call(builtin, RelocInfo::CODE_TARGET);
// Exit the internal frame. Notice that this also removes the empty.
// context and the function left on the stack by the code
// invocation.
}
__ ret(kPointerSize); // Remove receiver.
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the value to pass to the generator
// -- ebx : the JSGeneratorObject to resume
// -- edx : the resume mode (tagged)
// -- esp[0] : return address
// -----------------------------------
__ AssertGeneratorObject(ebx);
// Store input value into generator object.
__ mov(FieldOperand(ebx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
__ RecordWriteField(ebx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
kDontSaveFPRegs);
// Store resume mode into generator object.
__ mov(FieldOperand(ebx, JSGeneratorObject::kResumeModeOffset), edx);
// Load suspended function and context.
__ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Flood function if we are stepping.
Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
Label stepping_prepared;
ExternalReference debug_hook =
ExternalReference::debug_hook_on_function_call_address(masm->isolate());
__ cmpb(Operand::StaticVariable(debug_hook), Immediate(0));
__ j(not_equal, &prepare_step_in_if_stepping);
// Flood function if we need to continue stepping in the suspended generator.
ExternalReference debug_suspended_generator =
ExternalReference::debug_suspended_generator_address(masm->isolate());
__ cmp(ebx, Operand::StaticVariable(debug_suspended_generator));
__ j(equal, &prepare_step_in_suspended_generator);
__ bind(&stepping_prepared);
// Pop return address.
__ PopReturnAddressTo(eax);
// Push receiver.
__ Push(FieldOperand(ebx, JSGeneratorObject::kReceiverOffset));
// ----------- S t a t e -------------
// -- eax : return address
// -- ebx : the JSGeneratorObject to resume
// -- edx : the resume mode (tagged)
// -- edi : generator function
// -- esi : generator context
// -- esp[0] : generator receiver
// -----------------------------------
// Push holes for arguments to generator function. Since the parser forced
// context allocation for any variables in generators, the actual argument
// values have already been copied into the context and these dummy values
// will never be used.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx,
FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset));
{
Label done_loop, loop;
__ bind(&loop);
__ sub(ecx, Immediate(Smi::FromInt(1)));
__ j(carry, &done_loop, Label::kNear);
__ PushRoot(Heap::kTheHoleValueRootIndex);
__ jmp(&loop);
__ bind(&done_loop);
}
// Underlying function needs to have bytecode available.
if (FLAG_debug_code) {
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
__ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
__ Assert(equal, kMissingBytecodeArray);
}
// Resume (Ignition/TurboFan) generator object.
{
__ PushReturnAddressFrom(eax);
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(eax,
FieldOperand(eax, SharedFunctionInfo::kFormalParameterCountOffset));
// We abuse new.target both to indicate that this is a resume call and to
// pass in the generator object. In ordinary calls, new.target is always
// undefined because generator functions are non-constructable.
__ mov(edx, ebx);
__ jmp(FieldOperand(edi, JSFunction::kCodeEntryOffset));
}
__ bind(&prepare_step_in_if_stepping);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(ebx);
__ Push(edx);
__ Push(edi);
__ CallRuntime(Runtime::kDebugOnFunctionCall);
__ Pop(edx);
__ Pop(ebx);
__ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
__ bind(&prepare_step_in_suspended_generator);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(ebx);
__ Push(edx);
__ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
__ Pop(edx);
__ Pop(ebx);
__ mov(edi, FieldOperand(ebx, JSGeneratorObject::kFunctionOffset));
}
__ jmp(&stepping_prepared);
}
static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
Register scratch2) {
Register args_count = scratch1;
Register return_pc = scratch2;
// Get the arguments + reciever count.
__ mov(args_count,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(args_count,
FieldOperand(args_count, BytecodeArray::kParameterSizeOffset));
// Leave the frame (also dropping the register file).
__ leave();
// Drop receiver + arguments.
__ pop(return_pc);
__ add(esp, args_count);
__ push(return_pc);
}
// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right. The actual argument count matches the formal parameter
// count expected by the function.
//
// The live registers are:
// o edi: the JS function object being called
// o edx: the new target
// o esi: our context
// o ebp: the caller's frame pointer
// o esp: stack pointer (pointing to return address)
//
// The function builds an interpreter frame. See InterpreterFrameConstants in
// frames.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS function.
__ push(edx); // Callee's new target.
// Get the bytecode array from the function object (or from the DebugInfo if
// it is present) and load it into kInterpreterBytecodeArrayRegister.
__ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
Label load_debug_bytecode_array, bytecode_array_loaded;
__ JumpIfNotSmi(FieldOperand(eax, SharedFunctionInfo::kDebugInfoOffset),
&load_debug_bytecode_array);
__ mov(kInterpreterBytecodeArrayRegister,
FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
__ bind(&bytecode_array_loaded);
// Check whether we should continue to use the interpreter.
Label switch_to_different_code_kind;
__ Move(ecx, masm->CodeObject()); // Self-reference to this code.
__ cmp(ecx, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
__ j(not_equal, &switch_to_different_code_kind);
// Increment invocation count for the function.
__ EmitLoadFeedbackVector(ecx);
__ add(
FieldOperand(ecx, FeedbackVector::kInvocationCountIndex * kPointerSize +
FeedbackVector::kHeaderSize),
Immediate(Smi::FromInt(1)));
// Check function data field is actually a BytecodeArray object.
if (FLAG_debug_code) {
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
eax);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Reset code age.
__ mov_b(FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kBytecodeAgeOffset),
Immediate(BytecodeArray::kNoAgeBytecodeAge));
// Push bytecode array.
__ push(kInterpreterBytecodeArrayRegister);
// Push Smi tagged initial bytecode array offset.
__ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
// Allocate the local and temporary register file on the stack.
{
// Load frame size from the BytecodeArray object.
__ mov(ebx, FieldOperand(kInterpreterBytecodeArrayRegister,
BytecodeArray::kFrameSizeOffset));
// Do a stack check to ensure we don't go over the limit.
Label ok;
__ mov(ecx, esp);
__ sub(ecx, ebx);
ExternalReference stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ cmp(ecx, Operand::StaticVariable(stack_limit));
__ j(above_equal, &ok);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ bind(&ok);
// If ok, push undefined as the initial value for all register file entries.
Label loop_header;
Label loop_check;
__ mov(eax, Immediate(masm->isolate()->factory()->undefined_value()));
__ jmp(&loop_check);
__ bind(&loop_header);
// TODO(rmcilroy): Consider doing more than one push per loop iteration.
__ push(eax);
// Continue loop if not done.
__ bind(&loop_check);
__ sub(ebx, Immediate(kPointerSize));
__ j(greater_equal, &loop_header);
}
// Load accumulator, bytecode offset and dispatch table into registers.
__ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex);
__ mov(kInterpreterBytecodeOffsetRegister,
Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
__ mov(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Dispatch to the first bytecode handler for the function.
__ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(ebx, Operand(kInterpreterDispatchTableRegister, ebx,
times_pointer_size, 0));
__ call(ebx);
masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
// The return value is in eax.
LeaveInterpreterFrame(masm, ebx, ecx);
__ ret(0);
// Load debug copy of the bytecode array.
__ bind(&load_debug_bytecode_array);
Register debug_info = kInterpreterBytecodeArrayRegister;
__ mov(debug_info, FieldOperand(eax, SharedFunctionInfo::kDebugInfoOffset));
__ mov(kInterpreterBytecodeArrayRegister,
FieldOperand(debug_info, DebugInfo::kDebugBytecodeArrayIndex));
__ jmp(&bytecode_array_loaded);
// If the shared code is no longer this entry trampoline, then the underlying
// function has been switched to a different kind of code and we heal the
// closure by switching the code entry field over to the new code as well.
__ bind(&switch_to_different_code_kind);
__ pop(edx); // Callee's new target.
__ pop(edi); // Callee's JS function.
__ pop(esi); // Callee's context.
__ leave(); // Leave the frame so we can tail call.
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset));
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ mov(FieldOperand(edi, JSFunction::kCodeEntryOffset), ecx);
__ RecordWriteCodeEntryField(edi, ecx, ebx);
__ jmp(ecx);
}
static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args,
Register scratch1, Register scratch2,
Label* stack_overflow,
bool include_receiver = false) {
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(scratch1, Operand::StaticVariable(real_stack_limit));
// Make scratch2 the space we have left. The stack might already be overflowed
// here which will cause scratch2 to become negative.
__ mov(scratch2, esp);
__ sub(scratch2, scratch1);
// Make scratch1 the space we need for the array when it is unrolled onto the
// stack.
__ mov(scratch1, num_args);
if (include_receiver) {
__ add(scratch1, Immediate(1));
}
__ shl(scratch1, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmp(scratch2, scratch1);
__ j(less_equal, stack_overflow); // Signed comparison.
}
static void Generate_InterpreterPushArgs(MacroAssembler* masm,
Register array_limit,
Register start_address) {
// ----------- S t a t e -------------
// -- start_address : Pointer to the last argument in the args array.
// -- array_limit : Pointer to one before the first argument in the
// args array.
// -----------------------------------
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ Push(Operand(start_address, 0));
__ sub(start_address, Immediate(kPointerSize));
__ bind(&loop_check);
__ cmp(start_address, array_limit);
__ j(greater, &loop_header, Label::kNear);
}
// static
void Builtins::Generate_InterpreterPushArgsAndCallImpl(
MacroAssembler* masm, TailCallMode tail_call_mode,
InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- ebx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -- edi : the target to call (can be any Object).
// -----------------------------------
Label stack_overflow;
// Compute the expected number of arguments.
__ mov(ecx, eax);
__ add(ecx, Immediate(1)); // Add one for receiver.
// Add a stack check before pushing the arguments. We need an extra register
// to perform a stack check. So push it onto the stack temporarily. This
// might cause stack overflow, but it will be detected by the check.
__ Push(edi);
Generate_StackOverflowCheck(masm, ecx, edx, edi, &stack_overflow);
__ Pop(edi);
// Pop return address to allow tail-call after pushing arguments.
__ Pop(edx);
// Find the address of the last argument.
__ shl(ecx, kPointerSizeLog2);
__ neg(ecx);
__ add(ecx, ebx);
Generate_InterpreterPushArgs(masm, ecx, ebx);
// Call the target.
__ Push(edx); // Re-push return address.
if (mode == InterpreterPushArgsMode::kJSFunction) {
__ Jump(masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
__ Jump(masm->isolate()->builtins()->CallWithSpread(),
RelocInfo::CODE_TARGET);
} else {
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
tail_call_mode),
RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
// Pop the temporary registers, so that return address is on top of stack.
__ Pop(edi);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
namespace {
// This function modified start_addr, and only reads the contents of num_args
// register. scratch1 and scratch2 are used as temporary registers. Their
// original values are restored after the use.
void Generate_InterpreterPushArgsAndReturnAddress(
MacroAssembler* masm, Register num_args, Register start_addr,
Register scratch1, Register scratch2, bool receiver_in_args,
int num_slots_above_ret_addr, Label* stack_overflow) {
// We have to move return address and the temporary registers above it
// before we can copy arguments onto the stack. To achieve this:
// Step 1: Increment the stack pointer by num_args + 1 (for receiver).
// Step 2: Move the return address and values above it to the top of stack.
// Step 3: Copy the arguments into the correct locations.
// current stack =====> required stack layout
// | | | scratch1 | (2) <-- esp(1)
// | | | .... | (2)
// | | | scratch-n | (2)
// | | | return addr | (2)
// | | | arg N | (3)
// | scratch1 | <-- esp | .... |
// | .... | | arg 0 |
// | scratch-n | | arg 0 |
// | return addr | | receiver slot |
// Check for stack overflow before we increment the stack pointer.
Generate_StackOverflowCheck(masm, num_args, scratch1, scratch2,
stack_overflow, true);
// Step 1 - Update the stack pointer. scratch1 already contains the required
// increment to the stack. i.e. num_args + 1 stack slots. This is computed in
// the Generate_StackOverflowCheck.
#ifdef _MSC_VER
// TODO(mythria): Move it to macro assembler.
// In windows, we cannot increment the stack size by more than one page
// (mimimum page size is 4KB) without accessing at least one byte on the
// page. Check this:
// https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx.
const int page_size = 4 * 1024;
Label check_offset, update_stack_pointer;
__ bind(&check_offset);
__ cmp(scratch1, page_size);
__ j(less, &update_stack_pointer);
__ sub(esp, Immediate(page_size));
// Just to touch the page, before we increment further.
__ mov(Operand(esp, 0), Immediate(0));
__ sub(scratch1, Immediate(page_size));
__ jmp(&check_offset);
__ bind(&update_stack_pointer);
#endif
__ sub(esp, scratch1);
// Step 2 move return_address and slots above it to the correct locations.
// Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
// basically when the source and destination overlap. We at least need one
// extra slot for receiver, so no extra checks are required to avoid copy.
for (int i = 0; i < num_slots_above_ret_addr + 1; i++) {
__ mov(scratch1,
Operand(esp, num_args, times_pointer_size, (i + 1) * kPointerSize));
__ mov(Operand(esp, i * kPointerSize), scratch1);
}
// Step 3 copy arguments to correct locations.
if (receiver_in_args) {
__ mov(scratch1, num_args);
__ add(scratch1, Immediate(1));
} else {
// Slot meant for receiver contains return address. Reset it so that
// we will not incorrectly interpret return address as an object.
__ mov(Operand(esp, num_args, times_pointer_size,
(num_slots_above_ret_addr + 1) * kPointerSize),
Immediate(0));
__ mov(scratch1, num_args);
}
Label loop_header, loop_check;
__ jmp(&loop_check);
__ bind(&loop_header);
__ mov(scratch2, Operand(start_addr, 0));
__ mov(Operand(esp, scratch1, times_pointer_size,
num_slots_above_ret_addr * kPointerSize),
scratch2);
__ sub(start_addr, Immediate(kPointerSize));
__ sub(scratch1, Immediate(1));
__ bind(&loop_check);
__ cmp(scratch1, Immediate(0));
__ j(greater, &loop_header, Label::kNear);
}
} // end anonymous namespace
// static
void Builtins::Generate_InterpreterPushArgsAndConstructImpl(
MacroAssembler* masm, InterpreterPushArgsMode mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target
// -- edi : the constructor
// -- ebx : allocation site feedback (if available or undefined)
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// We need two scratch registers. Push edi and edx onto stack.
__ Push(edi);
__ Push(edx);
// Push arguments and move return address to the top of stack.
// The eax register is readonly. The ecx register will be modified. The edx
// and edi registers will be modified but restored to their original values.
Generate_InterpreterPushArgsAndReturnAddress(masm, eax, ecx, edx, edi, false,
2, &stack_overflow);
// Restore edi and edx
__ Pop(edx);
__ Pop(edi);
__ AssertUndefinedOrAllocationSite(ebx);
if (mode == InterpreterPushArgsMode::kJSFunction) {
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ AssertFunction(edi);
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ jmp(ecx);
} else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
// Call the constructor with unmodified eax, edi, edx values.
__ Jump(masm->isolate()->builtins()->ConstructWithSpread(),
RelocInfo::CODE_TARGET);
} else {
DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
// Call the constructor with unmodified eax, edi, edx values.
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
__ bind(&stack_overflow);
{
// Pop the temporary registers, so that return address is on top of stack.
__ Pop(edx);
__ Pop(edi);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
// static
void Builtins::Generate_InterpreterPushArgsAndConstructArray(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the target to call checked to be Array function.
// -- ebx : the allocation site feedback
// -- ecx : the address of the first argument to be pushed. Subsequent
// arguments should be consecutive above this, in the same order as
// they are to be pushed onto the stack.
// -----------------------------------
Label stack_overflow;
// We need two scratch registers. Register edi is available, push edx onto
// stack.
__ Push(edx);
// Push arguments and move return address to the top of stack.
// The eax register is readonly. The ecx register will be modified. The edx
// and edi registers will be modified but restored to their original values.
Generate_InterpreterPushArgsAndReturnAddress(masm, eax, ecx, edx, edi, true,
1, &stack_overflow);
// Restore edx.
__ Pop(edx);
// Array constructor expects constructor in edi. It is same as edx here.
__ Move(edi, edx);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
__ bind(&stack_overflow);
{
// Pop the temporary registers, so that return address is on top of stack.
__ Pop(edx);
__ TailCallRuntime(Runtime::kThrowStackOverflow);
// This should be unreachable.
__ int3();
}
}
static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
// Set the return address to the correct point in the interpreter entry
// trampoline.
Smi* interpreter_entry_return_pc_offset(
masm->isolate()->heap()->interpreter_entry_return_pc_offset());
DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero);
__ LoadHeapObject(ebx,
masm->isolate()->builtins()->InterpreterEntryTrampoline());
__ add(ebx, Immediate(interpreter_entry_return_pc_offset->value() +
Code::kHeaderSize - kHeapObjectTag));
__ push(ebx);
// Initialize the dispatch table register.
__ mov(kInterpreterDispatchTableRegister,
Immediate(ExternalReference::interpreter_dispatch_table_address(
masm->isolate())));
// Get the bytecode array pointer from the frame.
__ mov(kInterpreterBytecodeArrayRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
if (FLAG_debug_code) {
// Check function data field is actually a BytecodeArray object.
__ AssertNotSmi(kInterpreterBytecodeArrayRegister);
__ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
ebx);
__ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
}
// Get the target bytecode offset from the frame.
__ mov(kInterpreterBytecodeOffsetRegister,
Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ SmiUntag(kInterpreterBytecodeOffsetRegister);
// Dispatch to the target bytecode.
__ movzx_b(ebx, Operand(kInterpreterBytecodeArrayRegister,
kInterpreterBytecodeOffsetRegister, times_1, 0));
__ mov(ebx, Operand(kInterpreterDispatchTableRegister, ebx,
times_pointer_size, 0));
__ jmp(ebx);
}
void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
// Advance the current bytecode offset stored within the given interpreter
// stack frame. This simulates what all bytecode handlers do upon completion
// of the underlying operation.
__ mov(ebx, Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
__ mov(edx, Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
__ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(kInterpreterAccumulatorRegister);
__ Push(ebx); // First argument is the bytecode array.
__ Push(edx); // Second argument is the bytecode offset.
__ CallRuntime(Runtime::kInterpreterAdvanceBytecodeOffset);
__ Move(edx, eax); // Result is the new bytecode offset.
__ Pop(kInterpreterAccumulatorRegister);
}
__ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), edx);
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
Generate_InterpreterEnterBytecode(masm);
}
void Builtins::Generate_CompileLazy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argument count (preserved for callee)
// -- edx : new target (preserved for callee)
// -- edi : target function (preserved for callee)
// -----------------------------------
// First lookup code, maybe we don't need to compile!
Label gotta_call_runtime, gotta_call_runtime_no_stack;
Label try_shared;
Label loop_top, loop_bottom;
Register closure = edi;
Register new_target = edx;
Register argument_count = eax;
// Do we have a valid feedback vector?
__ mov(ebx, FieldOperand(closure, JSFunction::kFeedbackVectorOffset));
__ mov(ebx, FieldOperand(ebx, Cell::kValueOffset));
__ cmp(ebx, masm->isolate()->factory()->undefined_value());
__ j(equal, &gotta_call_runtime_no_stack);
__ push(argument_count);
__ push(new_target);
__ push(closure);
Register map = argument_count;
Register index = ebx;
__ mov(map, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
__ mov(map, FieldOperand(map, SharedFunctionInfo::kOptimizedCodeMapOffset));
__ mov(index, FieldOperand(map, FixedArray::kLengthOffset));
__ cmp(index, Immediate(Smi::FromInt(2)));
__ j(less, &try_shared);
// edx : native context
// ebx : length / index
// eax : optimized code map
// stack[0] : new target
// stack[4] : closure
Register native_context = edx;
__ mov(native_context, NativeContextOperand());
__ bind(&loop_top);
Register temp = edi;
// Does the native context match?
__ mov(temp, FieldOperand(map, index, times_half_pointer_size,
SharedFunctionInfo::kOffsetToPreviousContext));
__ mov(temp, FieldOperand(temp, WeakCell::kValueOffset));
__ cmp(temp, native_context);
__ j(not_equal, &loop_bottom);
// Code available?
Register entry = ecx;
__ mov(entry, FieldOperand(map, index, times_half_pointer_size,
SharedFunctionInfo::kOffsetToPreviousCachedCode));
__ mov(entry, FieldOperand(entry, WeakCell::kValueOffset));
__ JumpIfSmi(entry, &try_shared);
// Found code. Get it into the closure and return.
__ pop(closure);
// Store code entry in the closure.
__ lea(entry, FieldOperand(entry, Code::kHeaderSize));
__ mov(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
__ RecordWriteCodeEntryField(closure, entry, eax);
// Link the closure into the optimized function list.
// ecx : code entry
// edx : native context
// edi : closure
__ mov(ebx,
ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST));
__ mov(FieldOperand(closure, JSFunction::kNextFunctionLinkOffset), ebx);
__ RecordWriteField(closure, JSFunction::kNextFunctionLinkOffset, ebx, eax,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
const int function_list_offset =
Context::SlotOffset(Context::OPTIMIZED_FUNCTIONS_LIST);
__ mov(ContextOperand(native_context, Context::OPTIMIZED_FUNCTIONS_LIST),
closure);
// Save closure before the write barrier.
__ mov(ebx, closure);
__ RecordWriteContextSlot(native_context, function_list_offset, closure, eax,
kDontSaveFPRegs);
__ mov(closure, ebx);
__ pop(new_target);
__ pop(argument_count);
__ jmp(entry);
__ bind(&loop_bottom);
__ sub(index, Immediate(Smi::FromInt(SharedFunctionInfo::kEntryLength)));
__ cmp(index, Immediate(Smi::FromInt(1)));
__ j(greater, &loop_top);
// We found no code.
__ jmp(&gotta_call_runtime);
__ bind(&try_shared);
__ pop(closure);
__ pop(new_target);
__ pop(argument_count);
__ mov(entry, FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
// Is the shared function marked for tier up?
__ test_b(FieldOperand(entry, SharedFunctionInfo::kMarkedForTierUpByteOffset),
Immediate(1 << SharedFunctionInfo::kMarkedForTierUpBitWithinByte));
__ j(not_zero, &gotta_call_runtime_no_stack);
// If SFI points to anything other than CompileLazy, install that.
__ mov(entry, FieldOperand(entry, SharedFunctionInfo::kCodeOffset));
__ Move(ebx, masm->CodeObject());
__ cmp(entry, ebx);
__ j(equal, &gotta_call_runtime_no_stack);
// Install the SFI's code entry.
__ lea(entry, FieldOperand(entry, Code::kHeaderSize));
__ mov(FieldOperand(closure, JSFunction::kCodeEntryOffset), entry);
__ RecordWriteCodeEntryField(closure, entry, ebx);
__ jmp(entry);
__ bind(&gotta_call_runtime);
__ pop(closure);
__ pop(new_target);
__ pop(argument_count);
__ bind(&gotta_call_runtime_no_stack);
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
void Builtins::Generate_CompileBaseline(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileBaseline);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm,
Runtime::kCompileOptimized_NotConcurrent);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
GenerateTailCallToReturnedCode(masm, Runtime::kCompileOptimized_Concurrent);
}
void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argument count (preserved for callee)
// -- edx : new target (preserved for callee)
// -- edi : target function (preserved for callee)
// -----------------------------------
Label failed;
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve argument count for later compare.
__ mov(ecx, eax);
// Push the number of arguments to the callee.
__ SmiTag(eax);
__ push(eax);
// Push a copy of the target function and the new target.
__ push(edi);
__ push(edx);
// The function.
__ push(edi);
// Copy arguments from caller (stdlib, foreign, heap).
Label args_done;
for (int j = 0; j < 4; ++j) {
Label over;
if (j < 3) {
__ cmp(ecx, Immediate(j));
__ j(not_equal, &over, Label::kNear);
}
for (int i = j - 1; i >= 0; --i) {
__ Push(Operand(
ebp, StandardFrameConstants::kCallerSPOffset + i * kPointerSize));
}
for (int i = 0; i < 3 - j; ++i) {
__ PushRoot(Heap::kUndefinedValueRootIndex);
}
if (j < 3) {
__ jmp(&args_done, Label::kNear);
__ bind(&over);
}
}
__ bind(&args_done);
// Call runtime, on success unwind frame, and parent frame.
__ CallRuntime(Runtime::kInstantiateAsmJs, 4);
// A smi 0 is returned on failure, an object on success.
__ JumpIfSmi(eax, &failed, Label::kNear);
__ Drop(2);
__ Pop(ecx);
__ SmiUntag(ecx);
scope.GenerateLeaveFrame();
__ PopReturnAddressTo(ebx);
__ inc(ecx);
__ lea(esp, Operand(esp, ecx, times_pointer_size, 0));
__ PushReturnAddressFrom(ebx);
__ ret(0);
__ bind(&failed);
// Restore target function and new target.
__ pop(edx);
__ pop(edi);
__ pop(eax);
__ SmiUntag(eax);
}
// On failure, tail call back to regular js.
GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Re-execute the code that was patched back to the young age when
// the stub returns.
__ sub(Operand(esp, 0), Immediate(5));
__ pushad();
__ mov(eax, Operand(esp, 8 * kPointerSize));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2, ebx);
__ mov(Operand(esp, 1 * kPointerSize),
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 0), eax);
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
}
__ popad();
__ ret(0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgain(MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
__ pushad();
__ mov(eax, Operand(esp, 8 * kPointerSize));
__ sub(eax, Immediate(Assembler::kCallInstructionLength));
{ // NOLINT
FrameScope scope(masm, StackFrame::MANUAL);
__ PrepareCallCFunction(2, ebx);
__ mov(Operand(esp, 1 * kPointerSize),
Immediate(ExternalReference::isolate_address(masm->isolate())));
__ mov(Operand(esp, 0), eax);
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
}
__ popad();
// Perform prologue operations usually performed by the young code stub.
__ pop(eax); // Pop return address into scratch register.
__ push(ebp); // Caller's frame pointer.
__ mov(ebp, esp);
__ push(esi); // Callee's context.
__ push(edi); // Callee's JS Function.
__ push(eax); // Push return address after frame prologue.
// Jump to point after the code-age stub.
__ ret(0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) {
Generate_MarkCodeAsExecutedOnce(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ pushad();
__ CallRuntime(Runtime::kNotifyStubFailure, save_doubles);
__ popad();
// Tear down internal frame.
}
__ pop(MemOperand(esp, 0)); // Ignore state offset
__ ret(0); // Return to IC Miss stub, continuation still on stack.
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass deoptimization type to the runtime system.
__ push(Immediate(Smi::FromInt(static_cast<int>(type))));
__ CallRuntime(Runtime::kNotifyDeoptimized);
// Tear down internal frame.
}
// Get the full codegen state from the stack and untag it.
__ mov(ecx, Operand(esp, 1 * kPointerSize));
__ SmiUntag(ecx);
// Switch on the state.
Label not_no_registers, not_tos_eax;
__ cmp(ecx, static_cast<int>(Deoptimizer::BailoutState::NO_REGISTERS));
__ j(not_equal, ¬_no_registers, Label::kNear);
__ ret(1 * kPointerSize); // Remove state.
__ bind(¬_no_registers);
DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
__ mov(eax, Operand(esp, 2 * kPointerSize));
__ cmp(ecx, static_cast<int>(Deoptimizer::BailoutState::TOS_REGISTER));
__ j(not_equal, ¬_tos_eax, Label::kNear);
__ ret(2 * kPointerSize); // Remove state, eax.
__ bind(¬_tos_eax);
__ Abort(kNoCasesLeft);
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : argArray
// -- esp[8] : thisArg
// -- esp[12] : receiver
// -----------------------------------
// 1. Load receiver into edi, argArray into eax (if present), remove all
// arguments from the stack (including the receiver), and push thisArg (if
// present) instead.
{
Label no_arg_array, no_this_arg;
__ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
__ mov(ebx, edx);
__ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
__ test(eax, eax);
__ j(zero, &no_this_arg, Label::kNear);
{
__ mov(edx, Operand(esp, eax, times_pointer_size, 0));
__ cmp(eax, Immediate(1));
__ j(equal, &no_arg_array, Label::kNear);
__ mov(ebx, Operand(esp, eax, times_pointer_size, -kPointerSize));
__ bind(&no_arg_array);
}
__ bind(&no_this_arg);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ Push(edx);
__ PushReturnAddressFrom(ecx);
__ Move(eax, ebx);
}
// ----------- S t a t e -------------
// -- eax : argArray
// -- edi : receiver
// -- esp[0] : return address
// -- esp[4] : thisArg
// -----------------------------------
// 2. Make sure the receiver is actually callable.
Label receiver_not_callable;
__ JumpIfSmi(edi, &receiver_not_callable, Label::kNear);
__ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &receiver_not_callable, Label::kNear);
// 3. Tail call with no arguments if argArray is null or undefined.
Label no_arguments;
__ JumpIfRoot(eax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear);
__ JumpIfRoot(eax, Heap::kUndefinedValueRootIndex, &no_arguments,
Label::kNear);
// 4a. Apply the receiver to the given argArray (passing undefined for
// new.target).
__ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The argArray is either null or undefined, so we tail call without any
// arguments to the receiver.
__ bind(&no_arguments);
{
__ Set(eax, 0);
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
// 4c. The receiver is not callable, throw an appropriate TypeError.
__ bind(&receiver_not_callable);
{
__ mov(Operand(esp, kPointerSize), edi);
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
// Stack Layout:
// esp[0] : Return address
// esp[8] : Argument n
// esp[16] : Argument n-1
// ...
// esp[8 * n] : Argument 1
// esp[8 * (n + 1)] : Receiver (callable to call)
//
// eax contains the number of arguments, n, not counting the receiver.
//
// 1. Make sure we have at least one argument.
{
Label done;
__ test(eax, eax);
__ j(not_zero, &done, Label::kNear);
__ PopReturnAddressTo(ebx);
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(ebx);
__ inc(eax);
__ bind(&done);
}
// 2. Get the callable to call (passed as receiver) from the stack.
__ mov(edi, Operand(esp, eax, times_pointer_size, kPointerSize));
// 3. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
{
Label loop;
__ mov(ecx, eax);
__ bind(&loop);
__ mov(ebx, Operand(esp, ecx, times_pointer_size, 0));
__ mov(Operand(esp, ecx, times_pointer_size, kPointerSize), ebx);
__ dec(ecx);
__ j(not_sign, &loop); // While non-negative (to copy return address).
__ pop(ebx); // Discard copy of return address.
__ dec(eax); // One fewer argument (first argument is new receiver).
}
// 4. Call the callable.
__ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : argumentsList
// -- esp[8] : thisArgument
// -- esp[12] : target
// -- esp[16] : receiver
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into eax (if present),
// remove all arguments from the stack (including the receiver), and push
// thisArgument (if present) instead.
{
Label done;
__ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
__ mov(edx, edi);
__ mov(ebx, edi);
__ cmp(eax, Immediate(1));
__ j(below, &done, Label::kNear);
__ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
__ j(equal, &done, Label::kNear);
__ mov(edx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
__ cmp(eax, Immediate(3));
__ j(below, &done, Label::kNear);
__ mov(ebx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
__ bind(&done);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ Push(edx);
__ PushReturnAddressFrom(ecx);
__ Move(eax, ebx);
}
// ----------- S t a t e -------------
// -- eax : argumentsList
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : thisArgument
// -----------------------------------
// 2. Make sure the target is actually callable.
Label target_not_callable;
__ JumpIfSmi(edi, &target_not_callable, Label::kNear);
__ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &target_not_callable, Label::kNear);
// 3a. Apply the target to the given argumentsList (passing undefined for
// new.target).
__ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 3b. The target is not callable, throw an appropriate TypeError.
__ bind(&target_not_callable);
{
__ mov(Operand(esp, kPointerSize), edi);
__ TailCallRuntime(Runtime::kThrowApplyNonFunction);
}
}
void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : new.target (optional)
// -- esp[8] : argumentsList
// -- esp[12] : target
// -- esp[16] : receiver
// -----------------------------------
// 1. Load target into edi (if present), argumentsList into eax (if present),
// new.target into edx (if present, otherwise use target), remove all
// arguments from the stack (including the receiver), and push thisArgument
// (if present) instead.
{
Label done;
__ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
__ mov(edx, edi);
__ mov(ebx, edi);
__ cmp(eax, Immediate(1));
__ j(below, &done, Label::kNear);
__ mov(edi, Operand(esp, eax, times_pointer_size, -0 * kPointerSize));
__ mov(edx, edi);
__ j(equal, &done, Label::kNear);
__ mov(ebx, Operand(esp, eax, times_pointer_size, -1 * kPointerSize));
__ cmp(eax, Immediate(3));
__ j(below, &done, Label::kNear);
__ mov(edx, Operand(esp, eax, times_pointer_size, -2 * kPointerSize));
__ bind(&done);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ PushRoot(Heap::kUndefinedValueRootIndex);
__ PushReturnAddressFrom(ecx);
__ Move(eax, ebx);
}
// ----------- S t a t e -------------
// -- eax : argumentsList
// -- edx : new.target
// -- edi : target
// -- esp[0] : return address
// -- esp[4] : receiver (undefined)
// -----------------------------------
// 2. Make sure the target is actually a constructor.
Label target_not_constructor;
__ JumpIfSmi(edi, &target_not_constructor, Label::kNear);
__ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &target_not_constructor, Label::kNear);
// 3. Make sure the target is actually a constructor.
Label new_target_not_constructor;
__ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &new_target_not_constructor, Label::kNear);
// 4a. Construct the target with the given new.target and argumentsList.
__ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET);
// 4b. The target is not a constructor, throw an appropriate TypeError.
__ bind(&target_not_constructor);
{
__ mov(Operand(esp, kPointerSize), edi);
__ TailCallRuntime(Runtime::kThrowNotConstructor);
}
// 4c. The new.target is not a constructor, throw an appropriate TypeError.
__ bind(&new_target_not_constructor);
{
__ mov(Operand(esp, kPointerSize), edx);
__ TailCallRuntime(Runtime::kThrowNotConstructor);
}
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
// Get the InternalArray function.
__ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
}
// Run the native code for the InternalArray function called as a normal
// function.
// tail call a stub
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argc
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_array_code;
// Get the Array function.
__ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
__ mov(edx, edi);
if (FLAG_debug_code) {
// Initial map for the builtin Array function should be a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ test(ebx, Immediate(kSmiTagMask));
__ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ Assert(equal, kUnexpectedInitialMapForArrayFunction);
}
// Run the native code for the Array function called as a normal function.
// tail call a stub
__ mov(ebx, masm->isolate()->factory()->undefined_value());
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
// static
void Builtins::Generate_MathMaxMin(MacroAssembler* masm, MathMaxMinKind kind) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : function
// -- esi : context
// -- esp[0] : return address
// -- esp[(argc - n) * 8] : arg[n] (zero-based)
// -- esp[(argc + 1) * 8] : receiver
// -----------------------------------
Condition const cc = (kind == MathMaxMinKind::kMin) ? below : above;
Heap::RootListIndex const root_index =
(kind == MathMaxMinKind::kMin) ? Heap::kInfinityValueRootIndex
: Heap::kMinusInfinityValueRootIndex;
const int reg_sel = (kind == MathMaxMinKind::kMin) ? 1 : 0;
// Load the accumulator with the default return value (either -Infinity or
// +Infinity), with the tagged value in edx and the double value in stx_0.
__ LoadRoot(edx, root_index);
__ fld_d(FieldOperand(edx, HeapNumber::kValueOffset));
__ Move(ecx, eax);
Label done_loop, loop;
__ bind(&loop);
{
// Check if all parameters done.
__ test(ecx, ecx);
__ j(zero, &done_loop);
// Load the next parameter tagged value into ebx.
__ mov(ebx, Operand(esp, ecx, times_pointer_size, 0));
// Load the double value of the parameter into stx_1, maybe converting the
// parameter to a number first using the ToNumber builtin if necessary.
Label convert, convert_smi, convert_number, done_convert;
__ bind(&convert);
__ JumpIfSmi(ebx, &convert_smi);
__ JumpIfRoot(FieldOperand(ebx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex, &convert_number);
{
// Parameter is not a Number, use the ToNumber builtin to convert it.
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(eax);
__ SmiTag(ecx);
__ EnterBuiltinFrame(esi, edi, eax);
__ Push(ecx);
__ Push(edx);
__ mov(eax, ebx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ mov(ebx, eax);
__ Pop(edx);
__ Pop(ecx);
__ LeaveBuiltinFrame(esi, edi, eax);
__ SmiUntag(ecx);
__ SmiUntag(eax);
{
// Restore the double accumulator value (stX_0).
Label restore_smi, done_restore;
__ JumpIfSmi(edx, &restore_smi, Label::kNear);
__ fld_d(FieldOperand(edx, HeapNumber::kValueOffset));
__ jmp(&done_restore, Label::kNear);
__ bind(&restore_smi);
__ SmiUntag(edx);
__ push(edx);
__ fild_s(Operand(esp, 0));
__ pop(edx);
__ SmiTag(edx);
__ bind(&done_restore);
}
}
__ jmp(&convert);
__ bind(&convert_number);
// Load another value into stx_1
__ fld_d(FieldOperand(ebx, HeapNumber::kValueOffset));
__ fxch();
__ jmp(&done_convert, Label::kNear);
__ bind(&convert_smi);
__ SmiUntag(ebx);
__ push(ebx);
__ fild_s(Operand(esp, 0));
__ pop(ebx);
__ fxch();
__ SmiTag(ebx);
__ bind(&done_convert);
// Perform the actual comparison with the accumulator value on the left hand
// side (stx_0) and the next parameter value on the right hand side (stx_1).
Label compare_equal, compare_nan, compare_swap, done_compare;
// Duplicates the 2 float data for FCmp
__ fld(1);
__ fld(1);
__ FCmp();
__ j(parity_even, &compare_nan, Label::kNear);
__ j(cc, &done_compare, Label::kNear);
__ j(equal, &compare_equal, Label::kNear);
// Result is on the right hand side(stx_0).
__ bind(&compare_swap);
__ fxch();
__ mov(edx, ebx);
__ jmp(&done_compare, Label::kNear);
// At least one side is NaN, which means that the result will be NaN too.
__ bind(&compare_nan);
// Set the result on the right hand side (stx_0) to nan
__ fstp(0);
__ LoadRoot(edx, Heap::kNanValueRootIndex);
__ fld_d(FieldOperand(edx, HeapNumber::kValueOffset));
__ jmp(&done_compare, Label::kNear);
// Left and right hand side are equal, check for -0 vs. +0.
__ bind(&compare_equal);
// Check the sign of the value in reg_sel
__ fld(reg_sel);
__ FXamSign();
__ j(not_zero, &compare_swap);
__ bind(&done_compare);
// The right result is on the right hand side(stx_0)
// and can remove the useless stx_1 now.
__ fxch();
__ fstp(0);
__ dec(ecx);
__ jmp(&loop);
}
__ bind(&done_loop);
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(ecx);
__ mov(eax, edx);
__ Ret();
}
// static
void Builtins::Generate_NumberConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- esi : context
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// 1. Load the first argument into ebx.
Label no_arguments;
{
__ test(eax, eax);
__ j(zero, &no_arguments, Label::kNear);
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
}
// 2a. Convert the first argument to a number.
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(eax);
__ EnterBuiltinFrame(esi, edi, eax);
__ mov(eax, ebx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(esi, edi, ebx); // Argc popped to ebx.
__ SmiUntag(ebx);
}
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(ecx);
__ Ret();
}
// 2b. No arguments, return +0 (already in eax).
__ bind(&no_arguments);
__ ret(1 * kPointerSize);
}
// static
void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- edx : new target
// -- esi : context
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Store argc in r8.
__ mov(ecx, eax);
__ SmiTag(ecx);
// 2. Load the first argument into ebx.
{
Label no_arguments, done;
__ test(eax, eax);
__ j(zero, &no_arguments, Label::kNear);
__ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ Move(ebx, Smi::kZero);
__ bind(&done);
}
// 3. Make sure ebx is a number.
{
Label done_convert;
__ JumpIfSmi(ebx, &done_convert);
__ CompareRoot(FieldOperand(ebx, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
__ j(equal, &done_convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(esi, edi, ecx);
__ Push(edx);
__ Move(eax, ebx);
__ Call(masm->isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET);
__ Move(ebx, eax);
__ Pop(edx);
__ LeaveBuiltinFrame(esi, edi, ecx);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, done_alloc, new_object;
__ cmp(edx, edi);
__ j(not_equal, &new_object);
// 5. Allocate a JSValue wrapper for the number.
__ AllocateJSValue(eax, edi, ebx, esi, &done_alloc);
__ jmp(&drop_frame_and_ret);
__ bind(&done_alloc);
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); // Restore esi.
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterBuiltinFrame(esi, edi, ecx);
__ Push(ebx); // the first argument
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ Pop(FieldOperand(eax, JSValue::kValueOffset));
__ LeaveBuiltinFrame(esi, edi, ecx);
}
__ bind(&drop_frame_and_ret);
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(esi);
__ SmiUntag(ecx);
__ lea(esp, Operand(esp, ecx, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(esi);
__ Ret();
}
}
// static
void Builtins::Generate_StringConstructor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- esi : context
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// 1. Load the first argument into eax.
Label no_arguments;
{
__ mov(ebx, eax); // Store argc in ebx.
__ test(eax, eax);
__ j(zero, &no_arguments, Label::kNear);
__ mov(eax, Operand(esp, eax, times_pointer_size, 0));
}
// 2a. At least one argument, return eax if it's a string, otherwise
// dispatch to appropriate conversion.
Label drop_frame_and_ret, to_string, symbol_descriptive_string;
{
__ JumpIfSmi(eax, &to_string, Label::kNear);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE);
__ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx);
__ j(above, &to_string, Label::kNear);
__ j(equal, &symbol_descriptive_string, Label::kNear);
__ jmp(&drop_frame_and_ret, Label::kNear);
}
// 2b. No arguments, return the empty string (and pop the receiver).
__ bind(&no_arguments);
{
__ LoadRoot(eax, Heap::kempty_stringRootIndex);
__ ret(1 * kPointerSize);
}
// 3a. Convert eax to a string.
__ bind(&to_string);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(ebx);
__ EnterBuiltinFrame(esi, edi, ebx);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ LeaveBuiltinFrame(esi, edi, ebx);
__ SmiUntag(ebx);
}
__ jmp(&drop_frame_and_ret, Label::kNear);
// 3b. Convert symbol in eax to a string.
__ bind(&symbol_descriptive_string);
{
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
__ Push(eax);
__ PushReturnAddressFrom(ecx);
__ TailCallRuntime(Runtime::kSymbolDescriptiveString);
}
__ bind(&drop_frame_and_ret);
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(ecx);
__ Ret();
}
}
// static
void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments
// -- edi : constructor function
// -- edx : new target
// -- esi : context
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// 1. Make sure we operate in the context of the called function.
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
__ mov(ebx, eax);
// 2. Load the first argument into eax.
{
Label no_arguments, done;
__ test(ebx, ebx);
__ j(zero, &no_arguments, Label::kNear);
__ mov(eax, Operand(esp, ebx, times_pointer_size, 0));
__ jmp(&done, Label::kNear);
__ bind(&no_arguments);
__ LoadRoot(eax, Heap::kempty_stringRootIndex);
__ bind(&done);
}
// 3. Make sure eax is a string.
{
Label convert, done_convert;
__ JumpIfSmi(eax, &convert, Label::kNear);
__ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx);
__ j(below, &done_convert);
__ bind(&convert);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(ebx);
__ EnterBuiltinFrame(esi, edi, ebx);
__ Push(edx);
__ Call(masm->isolate()->builtins()->ToString(), RelocInfo::CODE_TARGET);
__ Pop(edx);
__ LeaveBuiltinFrame(esi, edi, ebx);
__ SmiUntag(ebx);
}
__ bind(&done_convert);
}
// 4. Check if new target and constructor differ.
Label drop_frame_and_ret, done_alloc, new_object;
__ cmp(edx, edi);
__ j(not_equal, &new_object);
// 5. Allocate a JSValue wrapper for the string.
// AllocateJSValue can't handle src == dst register. Reuse esi and restore it
// as needed after the call.
__ mov(esi, eax);
__ AllocateJSValue(eax, edi, esi, ecx, &done_alloc);
__ jmp(&drop_frame_and_ret);
__ bind(&done_alloc);
{
// Restore eax to the first argument and esi to the context.
__ mov(eax, esi);
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
}
// 6. Fallback to the runtime to create new object.
__ bind(&new_object);
{
FrameScope scope(masm, StackFrame::MANUAL);
__ SmiTag(ebx);
__ EnterBuiltinFrame(esi, edi, ebx);
__ Push(eax); // the first argument
__ Call(CodeFactory::FastNewObject(masm->isolate()).code(),
RelocInfo::CODE_TARGET);
__ Pop(FieldOperand(eax, JSValue::kValueOffset));
__ LeaveBuiltinFrame(esi, edi, ebx);
__ SmiUntag(ebx);
}
__ bind(&drop_frame_and_ret);
{
// Drop all arguments including the receiver.
__ PopReturnAddressTo(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, kPointerSize));
__ PushReturnAddressFrom(ecx);
__ Ret();
}
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
__ push(ebp);
__ mov(ebp, esp);
// Store the arguments adaptor context sentinel.
__ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Push the function on the stack.
__ push(edi);
// Preserve the number of arguments on the stack. Must preserve eax,
// ebx and ecx because these registers are used when copying the
// arguments and the receiver.
STATIC_ASSERT(kSmiTagSize == 1);
__ lea(edi, Operand(eax, eax, times_1, kSmiTag));
__ push(edi);
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// Retrieve the number of arguments from the stack.
__ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
// Leave the frame.
__ leave();
// Remove caller arguments from the stack.
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize)); // 1 ~ receiver
__ push(ecx);
}
// static
void Builtins::Generate_Apply(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : argumentsList
// -- edi : target
// -- edx : new.target (checked to be constructor or undefined)
// -- esp[0] : return address.
// -- esp[4] : thisArgument
// -----------------------------------
// Create the list of arguments from the array-like argumentsList.
{
Label create_arguments, create_array, create_holey_array, create_runtime,
done_create;
__ JumpIfSmi(eax, &create_runtime);
// Load the map of argumentsList into ecx.
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
// Load native context into ebx.
__ mov(ebx, NativeContextOperand());
// Check if argumentsList is an (unmodified) arguments object.
__ cmp(ecx, ContextOperand(ebx, Context::SLOPPY_ARGUMENTS_MAP_INDEX));
__ j(equal, &create_arguments);
__ cmp(ecx, ContextOperand(ebx, Context::STRICT_ARGUMENTS_MAP_INDEX));
__ j(equal, &create_arguments);
// Check if argumentsList is a fast JSArray.
__ CmpInstanceType(ecx, JS_ARRAY_TYPE);
__ j(equal, &create_array);
// Ask the runtime to create the list (actually a FixedArray).
__ bind(&create_runtime);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edi);
__ Push(edx);
__ Push(eax);
__ CallRuntime(Runtime::kCreateListFromArrayLike);
__ Pop(edx);
__ Pop(edi);
__ mov(ebx, FieldOperand(eax, FixedArray::kLengthOffset));
__ SmiUntag(ebx);
}
__ jmp(&done_create);
// Try to create the list from an arguments object.
__ bind(&create_arguments);
__ mov(ebx, FieldOperand(eax, JSArgumentsObject::kLengthOffset));
__ mov(ecx, FieldOperand(eax, JSObject::kElementsOffset));
__ cmp(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ j(not_equal, &create_runtime);
__ SmiUntag(ebx);
__ mov(eax, ecx);
__ jmp(&done_create);
// For holey JSArrays we need to check that the array prototype chain
// protector is intact and our prototype is the Array.prototype actually.
__ bind(&create_holey_array);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset));
__ cmp(ecx, ContextOperand(ebx, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ j(not_equal, &create_runtime);
__ LoadRoot(ecx, Heap::kArrayProtectorRootIndex);
__ cmp(FieldOperand(ecx, PropertyCell::kValueOffset),
Immediate(Smi::FromInt(Isolate::kProtectorValid)));
__ j(not_equal, &create_runtime);
__ mov(ebx, FieldOperand(eax, JSArray::kLengthOffset));
__ SmiUntag(ebx);
__ mov(eax, FieldOperand(eax, JSArray::kElementsOffset));
__ jmp(&done_create);
// Try to create the list from a JSArray object.
__ bind(&create_array);
__ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(ecx);
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
__ cmp(ecx, Immediate(FAST_HOLEY_SMI_ELEMENTS));
__ j(equal, &create_holey_array, Label::kNear);
__ cmp(ecx, Immediate(FAST_HOLEY_ELEMENTS));
__ j(equal, &create_holey_array, Label::kNear);
__ j(above, &create_runtime);
__ mov(ebx, FieldOperand(eax, JSArray::kLengthOffset));
__ SmiUntag(ebx);
__ mov(eax, FieldOperand(eax, JSArray::kElementsOffset));
__ bind(&done_create);
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
ExternalReference real_stack_limit =
ExternalReference::address_of_real_stack_limit(masm->isolate());
__ mov(ecx, Operand::StaticVariable(real_stack_limit));
// Make ecx the space we have left. The stack might already be overflowed
// here which will cause ecx to become negative.
__ neg(ecx);
__ add(ecx, esp);
__ sar(ecx, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmp(ecx, ebx);
__ j(greater, &done, Label::kNear); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// ----------- S t a t e -------------
// -- edi : target
// -- eax : args (a FixedArray built from argumentsList)
// -- ebx : len (number of elements to push from args)
// -- edx : new.target (checked to be constructor or undefined)
// -- esp[0] : return address.
// -- esp[4] : thisArgument
// -----------------------------------
// Push arguments onto the stack (thisArgument is already on the stack).
{
// Save edx/edi to stX0/stX1.
__ push(edx);
__ push(edi);
__ fld_s(MemOperand(esp, 0));
__ fld_s(MemOperand(esp, 4));
__ lea(esp, Operand(esp, 2 * kFloatSize));
__ PopReturnAddressTo(edx);
__ Move(ecx, Immediate(0));
Label done, push, loop;
__ bind(&loop);
__ cmp(ecx, ebx);
__ j(equal, &done, Label::kNear);
// Turn the hole into undefined as we go.
__ mov(edi,
FieldOperand(eax, ecx, times_pointer_size, FixedArray::kHeaderSize));
__ CompareRoot(edi, Heap::kTheHoleValueRootIndex);
__ j(not_equal, &push, Label::kNear);
__ LoadRoot(edi, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(edi);
__ inc(ecx);
__ jmp(&loop);
__ bind(&done);
__ PushReturnAddressFrom(edx);
// Restore edx/edi from stX0/stX1.
__ lea(esp, Operand(esp, -2 * kFloatSize));
__ fstp_s(MemOperand(esp, 0));
__ fstp_s(MemOperand(esp, 4));
__ pop(edx);
__ pop(edi);
__ Move(eax, ebx);
}
// Dispatch to Call or Construct depending on whether new.target is undefined.
{
__ CompareRoot(edx, Heap::kUndefinedValueRootIndex);
__ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
}
namespace {
// Drops top JavaScript frame and an arguments adaptor frame below it (if
// present) preserving all the arguments prepared for current call.
// Does nothing if debugger is currently active.
// ES6 14.6.3. PrepareForTailCall
//
// Stack structure for the function g() tail calling f():
//
// ------- Caller frame: -------
// | ...
// | g()'s arg M
// | ...
// | g()'s arg 1
// | g()'s receiver arg
// | g()'s caller pc
// ------- g()'s frame: -------
// | g()'s caller fp <- fp
// | g()'s context
// | function pointer: g
// | -------------------------
// | ...
// | ...
// | f()'s arg N
// | ...
// | f()'s arg 1
// | f()'s receiver arg
// | f()'s caller pc <- sp
// ----------------------
//
void PrepareForTailCall(MacroAssembler* masm, Register args_reg,
Register scratch1, Register scratch2,
Register scratch3) {
DCHECK(!AreAliased(args_reg, scratch1, scratch2, scratch3));
Comment cmnt(masm, "[ PrepareForTailCall");
// Prepare for tail call only if ES2015 tail call elimination is enabled.
Label done;
ExternalReference is_tail_call_elimination_enabled =
ExternalReference::is_tail_call_elimination_enabled_address(
masm->isolate());
__ movzx_b(scratch1,
Operand::StaticVariable(is_tail_call_elimination_enabled));
__ cmp(scratch1, Immediate(0));
__ j(equal, &done, Label::kNear);
// Drop possible interpreter handler/stub frame.
{
Label no_interpreter_frame;
__ cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(Smi::FromInt(StackFrame::STUB)));
__ j(not_equal, &no_interpreter_frame, Label::kNear);
__ mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ bind(&no_interpreter_frame);
}
// Check if next frame is an arguments adaptor frame.
Register caller_args_count_reg = scratch1;
Label no_arguments_adaptor, formal_parameter_count_loaded;
__ mov(scratch2, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ cmp(Operand(scratch2, CommonFrameConstants::kContextOrFrameTypeOffset),
Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ j(not_equal, &no_arguments_adaptor, Label::kNear);
// Drop current frame and load arguments count from arguments adaptor frame.
__ mov(ebp, scratch2);
__ mov(caller_args_count_reg,
Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ SmiUntag(caller_args_count_reg);
__ jmp(&formal_parameter_count_loaded, Label::kNear);
__ bind(&no_arguments_adaptor);
// Load caller's formal parameter count
__ mov(scratch1, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
__ mov(scratch1,
FieldOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
__ mov(
caller_args_count_reg,
FieldOperand(scratch1, SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(caller_args_count_reg);
__ bind(&formal_parameter_count_loaded);
ParameterCount callee_args_count(args_reg);
__ PrepareForTailCall(callee_args_count, caller_args_count_reg, scratch2,
scratch3, ReturnAddressState::kOnStack, 0);
__ bind(&done);
}
} // namespace
// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the function to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(edi);
// See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
// Check that the function is not a "classConstructor".
Label class_constructor;
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ test_b(FieldOperand(edx, SharedFunctionInfo::kFunctionKindByteOffset),
Immediate(SharedFunctionInfo::kClassConstructorBitsWithinByte));
__ j(not_zero, &class_constructor);
// Enter the context of the function; ToObject has to run in the function
// context, and we also need to take the global proxy from the function
// context in case of conversion.
STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset ==
SharedFunctionInfo::kStrictModeByteOffset);
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// We need to convert the receiver for non-native sloppy mode functions.
Label done_convert;
__ test_b(FieldOperand(edx, SharedFunctionInfo::kNativeByteOffset),
Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) |
(1 << SharedFunctionInfo::kStrictModeBitWithinByte)));
__ j(not_zero, &done_convert);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
if (mode == ConvertReceiverMode::kNullOrUndefined) {
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
} else {
Label convert_to_object, convert_receiver;
__ mov(ecx, Operand(esp, eax, times_pointer_size, kPointerSize));
__ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
__ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ebx);
__ j(above_equal, &done_convert);
if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
Label convert_global_proxy;
__ JumpIfRoot(ecx, Heap::kUndefinedValueRootIndex,
&convert_global_proxy, Label::kNear);
__ JumpIfNotRoot(ecx, Heap::kNullValueRootIndex, &convert_to_object,
Label::kNear);
__ bind(&convert_global_proxy);
{
// Patch receiver to global proxy.
__ LoadGlobalProxy(ecx);
}
__ jmp(&convert_receiver);
}
__ bind(&convert_to_object);
{
// Convert receiver using ToObject.
// TODO(bmeurer): Inline the allocation here to avoid building the frame
// in the fast case? (fall back to AllocateInNewSpace?)
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(eax);
__ Push(eax);
__ Push(edi);
__ mov(eax, ecx);
__ Push(esi);
__ Call(masm->isolate()->builtins()->ToObject(),
RelocInfo::CODE_TARGET);
__ Pop(esi);
__ mov(ecx, eax);
__ Pop(edi);
__ Pop(eax);
__ SmiUntag(eax);
}
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ bind(&convert_receiver);
}
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ecx);
}
__ bind(&done_convert);
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the shared function info.
// -- edi : the function to call (checked to be a JSFunction)
// -- esi : the function context.
// -----------------------------------
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, eax, ebx, ecx, edx);
// Reload shared function info.
__ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
}
__ mov(ebx,
FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
__ SmiUntag(ebx);
ParameterCount actual(eax);
ParameterCount expected(ebx);
__ InvokeFunctionCode(edi, no_reg, expected, actual, JUMP_FUNCTION,
CheckDebugStepCallWrapper());
// The function is a "classConstructor", need to raise an exception.
__ bind(&class_constructor);
{
FrameScope frame(masm, StackFrame::INTERNAL);
__ push(edi);
__ CallRuntime(Runtime::kThrowConstructorNonCallableError);
}
}
namespace {
void Generate_PushBoundArguments(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -----------------------------------
// Load [[BoundArguments]] into ecx and length of that into ebx.
Label no_bound_arguments;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(ebx);
__ test(ebx, ebx);
__ j(zero, &no_bound_arguments);
{
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : new.target (only in case of [[Construct]])
// -- edi : target (checked to be a JSBoundFunction)
// -- ecx : the [[BoundArguments]] (implemented as FixedArray)
// -- ebx : the number of [[BoundArguments]]
// -----------------------------------
// Reserve stack space for the [[BoundArguments]].
{
Label done;
__ lea(ecx, Operand(ebx, times_pointer_size, 0));
__ sub(esp, ecx);
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack
// limit".
__ CompareRoot(esp, ecx, Heap::kRealStackLimitRootIndex);
__ j(greater, &done, Label::kNear); // Signed comparison.
// Restore the stack pointer.
__ lea(esp, Operand(esp, ebx, times_pointer_size, 0));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterFrame(StackFrame::INTERNAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
}
__ bind(&done);
}
// Adjust effective number of arguments to include return address.
__ inc(eax);
// Relocate arguments and return address down the stack.
{
Label loop;
__ Set(ecx, 0);
__ lea(ebx, Operand(esp, ebx, times_pointer_size, 0));
__ bind(&loop);
__ fld_s(Operand(ebx, ecx, times_pointer_size, 0));
__ fstp_s(Operand(esp, ecx, times_pointer_size, 0));
__ inc(ecx);
__ cmp(ecx, eax);
__ j(less, &loop);
}
// Copy [[BoundArguments]] to the stack (below the arguments).
{
Label loop;
__ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
__ mov(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ SmiUntag(ebx);
__ bind(&loop);
__ dec(ebx);
__ fld_s(
FieldOperand(ecx, ebx, times_pointer_size, FixedArray::kHeaderSize));
__ fstp_s(Operand(esp, eax, times_pointer_size, 0));
__ lea(eax, Operand(eax, 1));
__ j(greater, &loop);
}
// Adjust effective number of arguments (eax contains the number of
// arguments from the call plus return address plus the number of
// [[BoundArguments]]), so we need to subtract one for the return address.
__ dec(eax);
}
__ bind(&no_bound_arguments);
}
} // namespace
// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the function to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(edi);
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, eax, ebx, ecx, edx);
}
// Patch the receiver to [[BoundThis]].
__ mov(ebx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), ebx);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Call the [[BoundTargetFunction]] via the Call builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ mov(ecx, Operand::StaticVariable(ExternalReference(
Builtins::kCall_ReceiverIsAny, masm->isolate())));
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ jmp(ecx);
}
// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode,
TailCallMode tail_call_mode) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the target to call (can be any Object).
// -----------------------------------
Label non_callable, non_function, non_smi;
__ JumpIfSmi(edi, &non_callable);
__ bind(&non_smi);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(equal, masm->isolate()->builtins()->CallFunction(mode, tail_call_mode),
RelocInfo::CODE_TARGET);
__ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->CallBoundFunction(tail_call_mode),
RelocInfo::CODE_TARGET);
// Check if target has a [[Call]] internal method.
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsCallable));
__ j(zero, &non_callable);
__ CmpInstanceType(ecx, JS_PROXY_TYPE);
__ j(not_equal, &non_function);
// 0. Prepare for tail call if necessary.
if (tail_call_mode == TailCallMode::kAllow) {
PrepareForTailCall(masm, eax, ebx, ecx, edx);
}
// 1. Runtime fallback for Proxy [[Call]].
__ PopReturnAddressTo(ecx);
__ Push(edi);
__ PushReturnAddressFrom(ecx);
// Increase the arguments size to include the pushed function and the
// existing receiver on the stack.
__ add(eax, Immediate(2));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyCall, masm->isolate()));
// 2. Call to something else, which might have a [[Call]] internal method (if
// not we raise an exception).
__ bind(&non_function);
// Overwrite the original receiver with the (original) target.
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
// Let the "call_as_function_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, edi);
__ Jump(masm->isolate()->builtins()->CallFunction(
ConvertReceiverMode::kNotNullOrUndefined, tail_call_mode),
RelocInfo::CODE_TARGET);
// 3. Call to something that is not callable.
__ bind(&non_callable);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(edi);
__ CallRuntime(Runtime::kThrowCalledNonCallable);
}
}
static void CheckSpreadAndPushToStack(MacroAssembler* masm) {
// Free up some registers.
// Save edx/edi to stX0/stX1.
__ push(edx);
__ push(edi);
__ fld_s(MemOperand(esp, 0));
__ fld_s(MemOperand(esp, 4));
__ lea(esp, Operand(esp, 2 * kFloatSize));
Register argc = eax;
Register scratch = ecx;
Register scratch2 = edi;
Register spread = ebx;
Register spread_map = edx;
Register spread_len = edx;
Label runtime_call, push_args;
__ mov(spread, Operand(esp, kPointerSize));
__ JumpIfSmi(spread, &runtime_call);
__ mov(spread_map, FieldOperand(spread, HeapObject::kMapOffset));
// Check that the spread is an array.
__ CmpInstanceType(spread_map, JS_ARRAY_TYPE);
__ j(not_equal, &runtime_call);
// Check that we have the original ArrayPrototype.
__ mov(scratch, FieldOperand(spread_map, Map::kPrototypeOffset));
__ mov(scratch2, NativeContextOperand());
__ cmp(scratch,
ContextOperand(scratch2, Context::INITIAL_ARRAY_PROTOTYPE_INDEX));
__ j(not_equal, &runtime_call);
// Check that the ArrayPrototype hasn't been modified in a way that would
// affect iteration.
__ LoadRoot(scratch, Heap::kArrayIteratorProtectorRootIndex);
__ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
Immediate(Smi::FromInt(Isolate::kProtectorValid)));
__ j(not_equal, &runtime_call);
// Check that the map of the initial array iterator hasn't changed.
__ mov(scratch2, NativeContextOperand());
__ mov(scratch,
ContextOperand(scratch2,
Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX));
__ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset));
__ cmp(scratch,
ContextOperand(scratch2,
Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX));
__ j(not_equal, &runtime_call);
// For FastPacked kinds, iteration will have the same effect as simply
// accessing each property in order.
Label no_protector_check;
__ mov(scratch, FieldOperand(spread_map, Map::kBitField2Offset));
__ DecodeField<Map::ElementsKindBits>(scratch);
__ cmp(scratch, Immediate(FAST_HOLEY_ELEMENTS));
__ j(above, &runtime_call);
// For non-FastHoley kinds, we can skip the protector check.
__ cmp(scratch, Immediate(FAST_SMI_ELEMENTS));
__ j(equal, &no_protector_check);
__ cmp(scratch, Immediate(FAST_ELEMENTS));
__ j(equal, &no_protector_check);
// Check the ArrayProtector cell.
__ LoadRoot(scratch, Heap::kArrayProtectorRootIndex);
__ cmp(FieldOperand(scratch, PropertyCell::kValueOffset),
Immediate(Smi::FromInt(Isolate::kProtectorValid)));
__ j(not_equal, &runtime_call);
__ bind(&no_protector_check);
// Load the FixedArray backing store, but use the length from the array.
__ mov(spread_len, FieldOperand(spread, JSArray::kLengthOffset));
__ SmiUntag(spread_len);
__ mov(spread, FieldOperand(spread, JSArray::kElementsOffset));
__ jmp(&push_args);
__ bind(&runtime_call);
{
// Call the builtin for the result of the spread.
FrameScope scope(masm, StackFrame::INTERNAL);
// Need to save these on the stack.
// Restore edx/edi from stX0/stX1.
__ lea(esp, Operand(esp, -2 * kFloatSize));
__ fstp_s(MemOperand(esp, 0));
__ fstp_s(MemOperand(esp, 4));
__ pop(edx);
__ pop(edi);
__ Push(edi);
__ Push(edx);
__ SmiTag(argc);
__ Push(argc);
__ Push(spread);
__ CallRuntime(Runtime::kSpreadIterableFixed);
__ mov(spread, eax);
__ Pop(argc);
__ SmiUntag(argc);
__ Pop(edx);
__ Pop(edi);
// Free up some registers.
// Save edx/edi to stX0/stX1.
__ push(edx);
__ push(edi);
__ fld_s(MemOperand(esp, 0));
__ fld_s(MemOperand(esp, 4));
__ lea(esp, Operand(esp, 2 * kFloatSize));
}
{
// Calculate the new nargs including the result of the spread.
__ mov(spread_len, FieldOperand(spread, FixedArray::kLengthOffset));
__ SmiUntag(spread_len);
__ bind(&push_args);
// argc += spread_len - 1. Subtract 1 for the spread itself.
__ lea(argc, Operand(argc, spread_len, times_1, -1));
}
// Check for stack overflow.
{
// Check the stack for overflow. We are not trying to catch interruptions
// (i.e. debug break and preemption) here, so check the "real stack limit".
Label done;
__ LoadRoot(scratch, Heap::kRealStackLimitRootIndex);
// Make scratch the space we have left. The stack might already be
// overflowed here which will cause scratch to become negative.
__ neg(scratch);
__ add(scratch, esp);
__ sar(scratch, kPointerSizeLog2);
// Check if the arguments will overflow the stack.
__ cmp(scratch, spread_len);
__ j(greater, &done, Label::kNear); // Signed comparison.
__ TailCallRuntime(Runtime::kThrowStackOverflow);
__ bind(&done);
}
// Put the evaluated spread onto the stack as additional arguments.
{
Register return_address = edi;
// Pop the return address and spread argument.
__ PopReturnAddressTo(return_address);
__ Pop(scratch);
Register scratch2 = esi;
// Save esi to stX0, edx/edi in stX1/stX2 now.
__ push(esi);
__ fld_s(MemOperand(esp, 0));
__ lea(esp, Operand(esp, 1 * kFloatSize));
__ mov(scratch, Immediate(0));
Label done, push, loop;
__ bind(&loop);
__ cmp(scratch, spread_len);
__ j(equal, &done, Label::kNear);
__ mov(scratch2, FieldOperand(spread, scratch, times_pointer_size,
FixedArray::kHeaderSize));
__ JumpIfNotRoot(scratch2, Heap::kTheHoleValueRootIndex, &push);
__ LoadRoot(scratch2, Heap::kUndefinedValueRootIndex);
__ bind(&push);
__ Push(scratch2);
__ inc(scratch);
__ jmp(&loop);
__ bind(&done);
__ PushReturnAddressFrom(return_address);
// Now Restore esi from stX0, edx/edi from stX1/stX2.
__ lea(esp, Operand(esp, -3 * kFloatSize));
__ fstp_s(MemOperand(esp, 0));
__ fstp_s(MemOperand(esp, 4));
__ fstp_s(MemOperand(esp, 8));
__ pop(esi);
__ pop(edx);
__ pop(edi);
}
}
// static
void Builtins::Generate_CallWithSpread(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the target to call (can be any Object)
// -----------------------------------
// CheckSpreadAndPushToStack will push edx to save it.
__ LoadRoot(edx, Heap::kUndefinedValueRootIndex);
CheckSpreadAndPushToStack(masm);
__ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny,
TailCallMode::kDisallow),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSFunction)
// -----------------------------------
__ AssertFunction(edi);
// Calling convention for function specific ConstructStubs require
// ebx to contain either an AllocationSite or undefined.
__ LoadRoot(ebx, Heap::kUndefinedValueRootIndex);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kConstructStubOffset));
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ jmp(ecx);
}
// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (checked to be a constructor)
// -- edi : the constructor to call (checked to be a JSBoundFunction)
// -----------------------------------
__ AssertBoundFunction(edi);
// Push the [[BoundArguments]] onto the stack.
Generate_PushBoundArguments(masm);
// Patch new.target to [[BoundTargetFunction]] if new.target equals target.
{
Label done;
__ cmp(edi, edx);
__ j(not_equal, &done, Label::kNear);
__ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ bind(&done);
}
// Construct the [[BoundTargetFunction]] via the Construct builtin.
__ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
__ mov(ecx, Operand::StaticVariable(
ExternalReference(Builtins::kConstruct, masm->isolate())));
__ lea(ecx, FieldOperand(ecx, Code::kHeaderSize));
__ jmp(ecx);
}
// static
void Builtins::Generate_ConstructProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edi : the constructor to call (checked to be a JSProxy)
// -- edx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -----------------------------------
// Call into the Runtime for Proxy [[Construct]].
__ PopReturnAddressTo(ecx);
__ Push(edi);
__ Push(edx);
__ PushReturnAddressFrom(ecx);
// Include the pushed new_target, constructor and the receiver.
__ add(eax, Immediate(3));
// Tail-call to the runtime.
__ JumpToExternalReference(
ExternalReference(Runtime::kJSProxyConstruct, masm->isolate()));
}
// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- edi : the constructor to call (can be any Object)
// -----------------------------------
// Check if target is a Smi.
Label non_constructor;
__ JumpIfSmi(edi, &non_constructor, Label::kNear);
// Dispatch based on instance type.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
__ j(equal, masm->isolate()->builtins()->ConstructFunction(),
RelocInfo::CODE_TARGET);
// Check if target has a [[Construct]] internal method.
__ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsConstructor));
__ j(zero, &non_constructor, Label::kNear);
// Only dispatch to bound functions after checking whether they are
// constructors.
__ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(),
RelocInfo::CODE_TARGET);
// Only dispatch to proxies after checking whether they are constructors.
__ CmpInstanceType(ecx, JS_PROXY_TYPE);
__ j(equal, masm->isolate()->builtins()->ConstructProxy(),
RelocInfo::CODE_TARGET);
// Called Construct on an exotic Object with a [[Construct]] internal method.
{
// Overwrite the original receiver with the (original) target.
__ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi);
// Let the "call_as_constructor_delegate" take care of the rest.
__ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, edi);
__ Jump(masm->isolate()->builtins()->CallFunction(),
RelocInfo::CODE_TARGET);
}
// Called Construct on an Object that doesn't have a [[Construct]] internal
// method.
__ bind(&non_constructor);
__ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(),
RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_ConstructWithSpread(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : the number of arguments (not including the receiver)
// -- edx : the new target (either the same as the constructor or
// the JSFunction on which new was invoked initially)
// -- edi : the constructor to call (can be any Object)
// -----------------------------------
CheckSpreadAndPushToStack(masm);
__ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
// static
void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edx : requested object size (untagged)
// -- esp[0] : return address
// -----------------------------------
__ SmiTag(edx);
__ PopReturnAddressTo(ecx);
__ Push(edx);
__ PushReturnAddressFrom(ecx);
__ Move(esi, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInNewSpace);
}
// static
void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edx : requested object size (untagged)
// -- esp[0] : return address
// -----------------------------------
__ SmiTag(edx);
__ PopReturnAddressTo(ecx);
__ Push(edx);
__ Push(Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE)));
__ PushReturnAddressFrom(ecx);
__ Move(esi, Smi::kZero);
__ TailCallRuntime(Runtime::kAllocateInTargetSpace);
}
// static
void Builtins::Generate_Abort(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- edx : message_id as Smi
// -- esp[0] : return address
// -----------------------------------
__ PopReturnAddressTo(ecx);
__ Push(edx);
__ PushReturnAddressFrom(ecx);
__ Move(esi, Smi::kZero);
__ TailCallRuntime(Runtime::kAbort);
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : actual number of arguments
// -- ebx : expected number of arguments
// -- edx : new target (passed through to callee)
// -- edi : function (passed through to callee)
// -----------------------------------
Label invoke, dont_adapt_arguments, stack_overflow;
__ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
Label enough, too_few;
__ cmp(eax, ebx);
__ j(less, &too_few);
__ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
__ j(equal, &dont_adapt_arguments);
{ // Enough parameters: Actual >= expected.
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// edi is used as a scratch register. It should be restored from the frame
// when needed.
Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
// Copy receiver and all expected arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
__ mov(eax, -1); // account for receiver
Label copy;
__ bind(©);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kPointerSize));
__ cmp(eax, ebx);
__ j(less, ©);
// eax now contains the expected number of arguments.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// edi is used as a scratch register. It should be restored from the frame
// when needed.
Generate_StackOverflowCheck(masm, ebx, ecx, edi, &stack_overflow);
// Remember expected arguments in ecx.
__ mov(ecx, ebx);
// Copy receiver and all actual arguments.
const int offset = StandardFrameConstants::kCallerSPOffset;
__ lea(edi, Operand(ebp, eax, times_4, offset));
// ebx = expected - actual.
__ sub(ebx, eax);
// eax = -actual - 1
__ neg(eax);
__ sub(eax, Immediate(1));
Label copy;
__ bind(©);
__ inc(eax);
__ push(Operand(edi, 0));
__ sub(edi, Immediate(kPointerSize));
__ test(eax, eax);
__ j(not_zero, ©);
// Fill remaining expected arguments with undefined values.
Label fill;
__ bind(&fill);
__ inc(eax);
__ push(Immediate(masm->isolate()->factory()->undefined_value()));
__ cmp(eax, ebx);
__ j(less, &fill);
// Restore expected arguments.
__ mov(eax, ecx);
}
// Call the entry point.
__ bind(&invoke);
// Restore function pointer.
__ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
// eax : expected number of arguments
// edx : new target (passed through to callee)
// edi : function (passed through to callee)
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ call(ecx);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Leave frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ ret(0);
// -------------------------------------------
// Dont adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ mov(ecx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
__ jmp(ecx);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
__ CallRuntime(Runtime::kThrowStackOverflow);
__ int3();
}
}
static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver,
Register function_template_info,
Register scratch0, Register scratch1,
Label* receiver_check_failed) {
// If there is no signature, return the holder.
__ CompareRoot(FieldOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset),
Heap::kUndefinedValueRootIndex);
Label receiver_check_passed;
__ j(equal, &receiver_check_passed, Label::kNear);
// Walk the prototype chain.
__ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
Label prototype_loop_start;
__ bind(&prototype_loop_start);
// Get the constructor, if any.
__ GetMapConstructor(scratch0, scratch0, scratch1);
__ CmpInstanceType(scratch1, JS_FUNCTION_TYPE);
Label next_prototype;
__ j(not_equal, &next_prototype, Label::kNear);
// Get the constructor's signature.
__ mov(scratch0,
FieldOperand(scratch0, JSFunction::kSharedFunctionInfoOffset));
__ mov(scratch0,
FieldOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset));
// Loop through the chain of inheriting function templates.
Label function_template_loop;
__ bind(&function_template_loop);
// If the signatures match, we have a compatible receiver.
__ cmp(scratch0, FieldOperand(function_template_info,
FunctionTemplateInfo::kSignatureOffset));
__ j(equal, &receiver_check_passed, Label::kNear);
// If the current type is not a FunctionTemplateInfo, load the next prototype
// in the chain.
__ JumpIfSmi(scratch0, &next_prototype, Label::kNear);
__ CmpObjectType(scratch0, FUNCTION_TEMPLATE_INFO_TYPE, scratch1);
__ j(not_equal, &next_prototype, Label::kNear);
// Otherwise load the parent function template and iterate.
__ mov(scratch0,
FieldOperand(scratch0, FunctionTemplateInfo::kParentTemplateOffset));
__ jmp(&function_template_loop, Label::kNear);
// Load the next prototype.
__ bind(&next_prototype);
__ mov(receiver, FieldOperand(receiver, HeapObject::kMapOffset));
__ test(FieldOperand(receiver, Map::kBitField3Offset),
Immediate(Map::HasHiddenPrototype::kMask));
__ j(zero, receiver_check_failed);
__ mov(receiver, FieldOperand(receiver, Map::kPrototypeOffset));
__ mov(scratch0, FieldOperand(receiver, HeapObject::kMapOffset));
// Iterate.
__ jmp(&prototype_loop_start, Label::kNear);
__ bind(&receiver_check_passed);
}
void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : number of arguments (not including the receiver)
// -- edi : callee
// -- esi : context
// -- esp[0] : return address
// -- esp[4] : last argument
// -- ...
// -- esp[eax * 4] : first argument
// -- esp[(eax + 1) * 4] : receiver
// -----------------------------------
// Load the FunctionTemplateInfo.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFunctionDataOffset));
// Do the compatible receiver check.
Label receiver_check_failed;
__ mov(ecx, Operand(esp, eax, times_pointer_size, kPCOnStackSize));
__ Push(eax);
CompatibleReceiverCheck(masm, ecx, ebx, edx, eax, &receiver_check_failed);
__ Pop(eax);
// Get the callback offset from the FunctionTemplateInfo, and jump to the
// beginning of the code.
__ mov(edx, FieldOperand(ebx, FunctionTemplateInfo::kCallCodeOffset));
__ mov(edx, FieldOperand(edx, CallHandlerInfo::kFastHandlerOffset));
__ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(edx);
// Compatible receiver check failed: pop return address, arguments and
// receiver and throw an Illegal Invocation exception.
__ bind(&receiver_check_failed);
__ Pop(eax);
__ PopReturnAddressTo(ebx);
__ lea(eax, Operand(eax, times_pointer_size, 1 * kPointerSize));
__ add(esp, eax);
__ PushReturnAddressFrom(ebx);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ TailCallRuntime(Runtime::kThrowIllegalInvocation);
}
}
static void Generate_OnStackReplacementHelper(MacroAssembler* masm,
bool has_handler_frame) {
// Lookup the function in the JavaScript frame.
if (has_handler_frame) {
__ mov(eax, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
__ mov(eax, Operand(eax, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
}
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(eax);
__ CallRuntime(Runtime::kCompileForOnStackReplacement);
}
Label skip;
// If the code object is null, just return to the caller.
__ cmp(eax, Immediate(0));
__ j(not_equal, &skip, Label::kNear);
__ ret(0);
__ bind(&skip);
// Drop any potential handler frame that is be sitting on top of the actual
// JavaScript frame. This is the case then OSR is triggered from bytecode.
if (has_handler_frame) {
__ leave();
}
// Load deoptimization data from the code object.
__ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
__ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) -
kHeapObjectTag));
__ SmiUntag(ebx);
// Compute the target address = code_obj + header_size + osr_offset
__ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
// Overwrite the return address on the stack.
__ mov(Operand(esp, 0), eax);
// And "return" to the OSR entry point of the function.
__ ret(0);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, false);
}
void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
Generate_OnStackReplacementHelper(masm, true);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_X87