// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This module contains the platform-specific code. This make the rest of the
// code less dependent on operating system, compilers and runtime libraries.
// This module does specifically not deal with differences between different
// processor architecture.
// The platform classes have the same definition for all platforms. The
// implementation for a particular platform is put in platform_<os>.cc.
// The build system then uses the implementation for the target platform.
//
// This design has been chosen because it is simple and fast. Alternatively,
// the platform dependent classes could have been implemented using abstract
// superclasses with virtual methods and having specializations for each
// platform. This design was rejected because it was more complicated and
// slower. It would require factory methods for selecting the right
// implementation and the overhead of virtual methods for performance
// sensitive like mutex locking/unlocking.
#ifndef V8_BASE_PLATFORM_PLATFORM_H_
#define V8_BASE_PLATFORM_PLATFORM_H_
#include <cstdarg>
#include <string>
#include <vector>
#include "src/base/base-export.h"
#include "src/base/build_config.h"
#include "src/base/compiler-specific.h"
#include "src/base/platform/mutex.h"
#include "src/base/platform/semaphore.h"
#if V8_OS_QNX
#include "src/base/qnx-math.h"
#endif
namespace v8 {
namespace base {
// ----------------------------------------------------------------------------
// Fast TLS support
#ifndef V8_NO_FAST_TLS
#if V8_CC_MSVC && V8_HOST_ARCH_IA32
#define V8_FAST_TLS_SUPPORTED 1
INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
const intptr_t kTibInlineTlsOffset = 0xE10;
const intptr_t kTibExtraTlsOffset = 0xF94;
const intptr_t kMaxInlineSlots = 64;
const intptr_t kMaxSlots = kMaxInlineSlots + 1024;
const intptr_t kPointerSize = sizeof(void*);
DCHECK(0 <= index && index < kMaxSlots);
if (index < kMaxInlineSlots) {
return static_cast<intptr_t>(__readfsdword(kTibInlineTlsOffset +
kPointerSize * index));
}
intptr_t extra = static_cast<intptr_t>(__readfsdword(kTibExtraTlsOffset));
DCHECK(extra != 0);
return *reinterpret_cast<intptr_t*>(extra +
kPointerSize * (index - kMaxInlineSlots));
}
#elif defined(__APPLE__) && (V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64)
#define V8_FAST_TLS_SUPPORTED 1
extern V8_BASE_EXPORT intptr_t kMacTlsBaseOffset;
INLINE(intptr_t InternalGetExistingThreadLocal(intptr_t index));
inline intptr_t InternalGetExistingThreadLocal(intptr_t index) {
intptr_t result;
#if V8_HOST_ARCH_IA32
asm("movl %%gs:(%1,%2,4), %0;"
:"=r"(result) // Output must be a writable register.
:"r"(kMacTlsBaseOffset), "r"(index));
#else
asm("movq %%gs:(%1,%2,8), %0;"
:"=r"(result)
:"r"(kMacTlsBaseOffset), "r"(index));
#endif
return result;
}
#endif
#endif // V8_NO_FAST_TLS
class TimezoneCache;
// ----------------------------------------------------------------------------
// OS
//
// This class has static methods for the different platform specific
// functions. Add methods here to cope with differences between the
// supported platforms.
class V8_BASE_EXPORT OS {
public:
// Initialize the OS class.
// - random_seed: Used for the GetRandomMmapAddress() if non-zero.
// - hard_abort: If true, OS::Abort() will crash instead of aborting.
// - gc_fake_mmap: Name of the file for fake gc mmap used in ll_prof.
static void Initialize(int64_t random_seed,
bool hard_abort,
const char* const gc_fake_mmap);
// Returns the accumulated user time for thread. This routine
// can be used for profiling. The implementation should
// strive for high-precision timer resolution, preferable
// micro-second resolution.
static int GetUserTime(uint32_t* secs, uint32_t* usecs);
// Returns current time as the number of milliseconds since
// 00:00:00 UTC, January 1, 1970.
static double TimeCurrentMillis();
static TimezoneCache* CreateTimezoneCache();
static void DisposeTimezoneCache(TimezoneCache* cache);
static void ClearTimezoneCache(TimezoneCache* cache);
// Returns a string identifying the current time zone. The
// timestamp is used for determining if DST is in effect.
static const char* LocalTimezone(double time, TimezoneCache* cache);
// Returns the local time offset in milliseconds east of UTC without
// taking daylight savings time into account.
static double LocalTimeOffset(TimezoneCache* cache);
// Returns the daylight savings offset for the given time.
static double DaylightSavingsOffset(double time, TimezoneCache* cache);
// Returns last OS error.
static int GetLastError();
static FILE* FOpen(const char* path, const char* mode);
static bool Remove(const char* path);
static char DirectorySeparator();
static bool isDirectorySeparator(const char ch);
// Opens a temporary file, the file is auto removed on close.
static FILE* OpenTemporaryFile();
// Log file open mode is platform-dependent due to line ends issues.
static const char* const LogFileOpenMode;
// Print output to console. This is mostly used for debugging output.
// On platforms that has standard terminal output, the output
// should go to stdout.
static PRINTF_FORMAT(1, 2) void Print(const char* format, ...);
static PRINTF_FORMAT(1, 0) void VPrint(const char* format, va_list args);
// Print output to a file. This is mostly used for debugging output.
static PRINTF_FORMAT(2, 3) void FPrint(FILE* out, const char* format, ...);
static PRINTF_FORMAT(2, 0) void VFPrint(FILE* out, const char* format,
va_list args);
// Print error output to console. This is mostly used for error message
// output. On platforms that has standard terminal output, the output
// should go to stderr.
static PRINTF_FORMAT(1, 2) void PrintError(const char* format, ...);
static PRINTF_FORMAT(1, 0) void VPrintError(const char* format, va_list args);
// Allocate/Free memory used by JS heap. Pages are readable/writable, but
// they are not guaranteed to be executable unless 'executable' is true.
// Returns the address of allocated memory, or NULL if failed.
static void* Allocate(const size_t requested,
size_t* allocated,
bool is_executable);
static void Free(void* address, const size_t size);
// Allocates a region of memory that is inaccessible. On Windows this reserves
// but does not commit the memory. On Linux, it is equivalent to a call to
// Allocate() followed by Guard().
static void* AllocateGuarded(const size_t requested);
// This is the granularity at which the ProtectCode(...) call can set page
// permissions.
static intptr_t CommitPageSize();
// Mark code segments non-writable.
static void ProtectCode(void* address, const size_t size);
// Assign memory as a guard page so that access will cause an exception.
static void Guard(void* address, const size_t size);
// Make a region of memory readable and writable.
static void Unprotect(void* address, const size_t size);
// Generate a random address to be used for hinting mmap().
static void* GetRandomMmapAddr();
// Get the Alignment guaranteed by Allocate().
static size_t AllocateAlignment();
// Sleep for a specified time interval.
static void Sleep(TimeDelta interval);
// Abort the current process.
V8_NORETURN static void Abort();
// Debug break.
static void DebugBreak();
// Walk the stack.
static const int kStackWalkError = -1;
static const int kStackWalkMaxNameLen = 256;
static const int kStackWalkMaxTextLen = 256;
struct StackFrame {
void* address;
char text[kStackWalkMaxTextLen];
};
class V8_BASE_EXPORT MemoryMappedFile {
public:
virtual ~MemoryMappedFile() {}
virtual void* memory() const = 0;
virtual size_t size() const = 0;
static MemoryMappedFile* open(const char* name);
static MemoryMappedFile* create(const char* name, size_t size,
void* initial);
};
// Safe formatting print. Ensures that str is always null-terminated.
// Returns the number of chars written, or -1 if output was truncated.
static PRINTF_FORMAT(3, 4) int SNPrintF(char* str, int length,
const char* format, ...);
static PRINTF_FORMAT(3, 0) int VSNPrintF(char* str, int length,
const char* format, va_list args);
static char* StrChr(char* str, int c);
static void StrNCpy(char* dest, int length, const char* src, size_t n);
// Support for the profiler. Can do nothing, in which case ticks
// occuring in shared libraries will not be properly accounted for.
struct SharedLibraryAddress {
SharedLibraryAddress(const std::string& library_path, uintptr_t start,
uintptr_t end)
: library_path(library_path), start(start), end(end), aslr_slide(0) {}
SharedLibraryAddress(const std::string& library_path, uintptr_t start,
uintptr_t end, intptr_t aslr_slide)
: library_path(library_path),
start(start),
end(end),
aslr_slide(aslr_slide) {}
std::string library_path;
uintptr_t start;
uintptr_t end;
intptr_t aslr_slide;
};
static std::vector<SharedLibraryAddress> GetSharedLibraryAddresses();
// Support for the profiler. Notifies the external profiling
// process that a code moving garbage collection starts. Can do
// nothing, in which case the code objects must not move (e.g., by
// using --never-compact) if accurate profiling is desired.
static void SignalCodeMovingGC();
// Support runtime detection of whether the hard float option of the
// EABI is used.
static bool ArmUsingHardFloat();
// Returns the activation frame alignment constraint or zero if
// the platform doesn't care. Guaranteed to be a power of two.
static int ActivationFrameAlignment();
static int GetCurrentProcessId();
static int GetCurrentThreadId();
private:
static const int msPerSecond = 1000;
#if V8_OS_POSIX
static const char* GetGCFakeMMapFile();
#endif
DISALLOW_IMPLICIT_CONSTRUCTORS(OS);
};
// Represents and controls an area of reserved memory.
// Control of the reserved memory can be assigned to another VirtualMemory
// object by assignment or copy-contructing. This removes the reserved memory
// from the original object.
class V8_BASE_EXPORT VirtualMemory {
public:
// Empty VirtualMemory object, controlling no reserved memory.
VirtualMemory();
// Reserves virtual memory with size.
explicit VirtualMemory(size_t size);
// Reserves virtual memory containing an area of the given size that
// is aligned per alignment. This may not be at the position returned
// by address().
VirtualMemory(size_t size, size_t alignment);
// Construct a virtual memory by assigning it some already mapped address
// and size.
VirtualMemory(void* address, size_t size) : address_(address), size_(size) {}
// Releases the reserved memory, if any, controlled by this VirtualMemory
// object.
~VirtualMemory();
// Returns whether the memory has been reserved.
bool IsReserved();
// Initialize or resets an embedded VirtualMemory object.
void Reset();
// Returns the start address of the reserved memory.
// If the memory was reserved with an alignment, this address is not
// necessarily aligned. The user might need to round it up to a multiple of
// the alignment to get the start of the aligned block.
void* address() {
DCHECK(IsReserved());
return address_;
}
// Returns the size of the reserved memory. The returned value is only
// meaningful when IsReserved() returns true.
// If the memory was reserved with an alignment, this size may be larger
// than the requested size.
size_t size() { return size_; }
// Commits real memory. Returns whether the operation succeeded.
bool Commit(void* address, size_t size, bool is_executable);
// Uncommit real memory. Returns whether the operation succeeded.
bool Uncommit(void* address, size_t size);
// Creates a single guard page at the given address.
bool Guard(void* address);
// Releases the memory after |free_start|.
void ReleasePartial(void* free_start) {
DCHECK(IsReserved());
// Notice: Order is important here. The VirtualMemory object might live
// inside the allocated region.
size_t size = size_ - (reinterpret_cast<size_t>(free_start) -
reinterpret_cast<size_t>(address_));
CHECK(InVM(free_start, size));
DCHECK_LT(address_, free_start);
DCHECK_LT(free_start, reinterpret_cast<void*>(
reinterpret_cast<size_t>(address_) + size_));
bool result = ReleasePartialRegion(address_, size_, free_start, size);
USE(result);
DCHECK(result);
size_ -= size;
}
void Release() {
DCHECK(IsReserved());
// Notice: Order is important here. The VirtualMemory object might live
// inside the allocated region.
void* address = address_;
size_t size = size_;
CHECK(InVM(address, size));
Reset();
bool result = ReleaseRegion(address, size);
USE(result);
DCHECK(result);
}
// Assign control of the reserved region to a different VirtualMemory object.
// The old object is no longer functional (IsReserved() returns false).
void TakeControl(VirtualMemory* from) {
DCHECK(!IsReserved());
address_ = from->address_;
size_ = from->size_;
from->Reset();
}
static void* ReserveRegion(size_t size);
static bool CommitRegion(void* base, size_t size, bool is_executable);
static bool UncommitRegion(void* base, size_t size);
// Must be called with a base pointer that has been returned by ReserveRegion
// and the same size it was reserved with.
static bool ReleaseRegion(void* base, size_t size);
// Must be called with a base pointer that has been returned by ReserveRegion
// and the same size it was reserved with.
// [free_start, free_start + free_size] is the memory that will be released.
static bool ReleasePartialRegion(void* base, size_t size, void* free_start,
size_t free_size);
// Returns true if OS performs lazy commits, i.e. the memory allocation call
// defers actual physical memory allocation till the first memory access.
// Otherwise returns false.
static bool HasLazyCommits();
private:
bool InVM(void* address, size_t size) {
return (reinterpret_cast<uintptr_t>(address_) <=
reinterpret_cast<uintptr_t>(address)) &&
((reinterpret_cast<uintptr_t>(address_) + size_) >=
(reinterpret_cast<uintptr_t>(address) + size));
}
void* address_; // Start address of the virtual memory.
size_t size_; // Size of the virtual memory.
};
// ----------------------------------------------------------------------------
// Thread
//
// Thread objects are used for creating and running threads. When the start()
// method is called the new thread starts running the run() method in the new
// thread. The Thread object should not be deallocated before the thread has
// terminated.
class V8_BASE_EXPORT Thread {
public:
// Opaque data type for thread-local storage keys.
typedef int32_t LocalStorageKey;
class Options {
public:
Options() : name_("v8:<unknown>"), stack_size_(0) {}
explicit Options(const char* name, int stack_size = 0)
: name_(name), stack_size_(stack_size) {}
const char* name() const { return name_; }
int stack_size() const { return stack_size_; }
private:
const char* name_;
int stack_size_;
};
// Create new thread.
explicit Thread(const Options& options);
virtual ~Thread();
// Start new thread by calling the Run() method on the new thread.
void Start();
// Start new thread and wait until Run() method is called on the new thread.
void StartSynchronously() {
start_semaphore_ = new Semaphore(0);
Start();
start_semaphore_->Wait();
delete start_semaphore_;
start_semaphore_ = NULL;
}
// Wait until thread terminates.
void Join();
inline const char* name() const {
return name_;
}
// Abstract method for run handler.
virtual void Run() = 0;
// Thread-local storage.
static LocalStorageKey CreateThreadLocalKey();
static void DeleteThreadLocalKey(LocalStorageKey key);
static void* GetThreadLocal(LocalStorageKey key);
static int GetThreadLocalInt(LocalStorageKey key) {
return static_cast<int>(reinterpret_cast<intptr_t>(GetThreadLocal(key)));
}
static void SetThreadLocal(LocalStorageKey key, void* value);
static void SetThreadLocalInt(LocalStorageKey key, int value) {
SetThreadLocal(key, reinterpret_cast<void*>(static_cast<intptr_t>(value)));
}
static bool HasThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key) != NULL;
}
#ifdef V8_FAST_TLS_SUPPORTED
static inline void* GetExistingThreadLocal(LocalStorageKey key) {
void* result = reinterpret_cast<void*>(
InternalGetExistingThreadLocal(static_cast<intptr_t>(key)));
DCHECK(result == GetThreadLocal(key));
return result;
}
#else
static inline void* GetExistingThreadLocal(LocalStorageKey key) {
return GetThreadLocal(key);
}
#endif
// The thread name length is limited to 16 based on Linux's implementation of
// prctl().
static const int kMaxThreadNameLength = 16;
class PlatformData;
PlatformData* data() { return data_; }
void NotifyStartedAndRun() {
if (start_semaphore_) start_semaphore_->Signal();
Run();
}
private:
void set_name(const char* name);
PlatformData* data_;
char name_[kMaxThreadNameLength];
int stack_size_;
Semaphore* start_semaphore_;
DISALLOW_COPY_AND_ASSIGN(Thread);
};
} // namespace base
} // namespace v8
#endif // V8_BASE_PLATFORM_PLATFORM_H_