// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// The reason we write our own hash map instead of using unordered_map in STL,
// is that STL containers use a mutex pool on debug build, which will lead to
// deadlock when we are using async signal handler.
#ifndef V8_BASE_HASHMAP_H_
#define V8_BASE_HASHMAP_H_
#include <stdlib.h>
#include "src/base/bits.h"
#include "src/base/hashmap-entry.h"
#include "src/base/logging.h"
namespace v8 {
namespace base {
class DefaultAllocationPolicy {
public:
V8_INLINE void* New(size_t size) { return malloc(size); }
V8_INLINE static void Delete(void* p) { free(p); }
};
template <typename Key, typename Value, class MatchFun, class AllocationPolicy>
class TemplateHashMapImpl {
public:
typedef TemplateHashMapEntry<Key, Value> Entry;
// The default capacity. This is used by the call sites which want
// to pass in a non-default AllocationPolicy but want to use the
// default value of capacity specified by the implementation.
static const uint32_t kDefaultHashMapCapacity = 8;
// initial_capacity is the size of the initial hash map;
// it must be a power of 2 (and thus must not be 0).
TemplateHashMapImpl(uint32_t capacity = kDefaultHashMapCapacity,
MatchFun match = MatchFun(),
AllocationPolicy allocator = AllocationPolicy());
// Clones the given hashmap and creates a copy with the same entries.
TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun,
AllocationPolicy>* original,
AllocationPolicy allocator = AllocationPolicy());
~TemplateHashMapImpl();
// If an entry with matching key is found, returns that entry.
// Otherwise, nullptr is returned.
Entry* Lookup(const Key& key, uint32_t hash) const;
// If an entry with matching key is found, returns that entry.
// If no matching entry is found, a new entry is inserted with
// corresponding key, key hash, and default initialized value.
Entry* LookupOrInsert(const Key& key, uint32_t hash,
AllocationPolicy allocator = AllocationPolicy());
// If an entry with matching key is found, returns that entry.
// If no matching entry is found, a new entry is inserted with
// corresponding key, key hash, and value created by func.
template <typename Func>
Entry* LookupOrInsert(const Key& key, uint32_t hash, const Func& value_func,
AllocationPolicy allocator = AllocationPolicy());
Entry* InsertNew(const Key& key, uint32_t hash,
AllocationPolicy allocator = AllocationPolicy());
// Removes the entry with matching key.
// It returns the value of the deleted entry
// or null if there is no value for such key.
Value Remove(const Key& key, uint32_t hash);
// Empties the hash map (occupancy() == 0).
void Clear();
// Empties the map and makes it unusable for allocation.
void Invalidate() {
AllocationPolicy::Delete(map_);
map_ = nullptr;
occupancy_ = 0;
capacity_ = 0;
}
// The number of (non-empty) entries in the table.
uint32_t occupancy() const { return occupancy_; }
// The capacity of the table. The implementation
// makes sure that occupancy is at most 80% of
// the table capacity.
uint32_t capacity() const { return capacity_; }
// Iteration
//
// for (Entry* p = map.Start(); p != nullptr; p = map.Next(p)) {
// ...
// }
//
// If entries are inserted during iteration, the effect of
// calling Next() is undefined.
Entry* Start() const;
Entry* Next(Entry* entry) const;
void Reset(AllocationPolicy allocator) {
Initialize(capacity_, allocator);
occupancy_ = 0;
}
protected:
void Initialize(uint32_t capacity, AllocationPolicy allocator);
private:
Entry* map_;
uint32_t capacity_;
uint32_t occupancy_;
// TODO(leszeks): This takes up space even if it has no state, maybe replace
// with something that does the empty base optimisation e.g. std::tuple
MatchFun match_;
Entry* map_end() const { return map_ + capacity_; }
Entry* Probe(const Key& key, uint32_t hash) const;
Entry* FillEmptyEntry(Entry* entry, const Key& key, const Value& value,
uint32_t hash,
AllocationPolicy allocator = AllocationPolicy());
void Resize(AllocationPolicy allocator);
DISALLOW_COPY_AND_ASSIGN(TemplateHashMapImpl);
};
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::
TemplateHashMapImpl(uint32_t initial_capacity, MatchFun match,
AllocationPolicy allocator)
: match_(match) {
Initialize(initial_capacity, allocator);
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::
TemplateHashMapImpl(const TemplateHashMapImpl<Key, Value, MatchFun,
AllocationPolicy>* original,
AllocationPolicy allocator)
: capacity_(original->capacity_),
occupancy_(original->occupancy_),
match_(original->match_) {
map_ = reinterpret_cast<Entry*>(allocator.New(capacity_ * sizeof(Entry)));
memcpy(map_, original->map_, capacity_ * sizeof(Entry));
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
TemplateHashMapImpl<Key, Value, MatchFun,
AllocationPolicy>::~TemplateHashMapImpl() {
AllocationPolicy::Delete(map_);
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Lookup(
const Key& key, uint32_t hash) const {
Entry* entry = Probe(key, hash);
return entry->exists() ? entry : nullptr;
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert(
const Key& key, uint32_t hash, AllocationPolicy allocator) {
return LookupOrInsert(key, hash, []() { return Value(); }, allocator);
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
template <typename Func>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::LookupOrInsert(
const Key& key, uint32_t hash, const Func& value_func,
AllocationPolicy allocator) {
// Find a matching entry.
Entry* entry = Probe(key, hash);
if (entry->exists()) {
return entry;
}
return FillEmptyEntry(entry, key, value_func(), hash, allocator);
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::InsertNew(
const Key& key, uint32_t hash, AllocationPolicy allocator) {
Entry* entry = Probe(key, hash);
return FillEmptyEntry(entry, key, Value(), hash, allocator);
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
Value TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Remove(
const Key& key, uint32_t hash) {
// Lookup the entry for the key to remove.
Entry* p = Probe(key, hash);
if (!p->exists()) {
// Key not found nothing to remove.
return nullptr;
}
Value value = p->value;
// To remove an entry we need to ensure that it does not create an empty
// entry that will cause the search for another entry to stop too soon. If all
// the entries between the entry to remove and the next empty slot have their
// initial position inside this interval, clearing the entry to remove will
// not break the search. If, while searching for the next empty entry, an
// entry is encountered which does not have its initial position between the
// entry to remove and the position looked at, then this entry can be moved to
// the place of the entry to remove without breaking the search for it. The
// entry made vacant by this move is now the entry to remove and the process
// starts over.
// Algorithm from http://en.wikipedia.org/wiki/Open_addressing.
// This guarantees loop termination as there is at least one empty entry so
// eventually the removed entry will have an empty entry after it.
DCHECK(occupancy_ < capacity_);
// p is the candidate entry to clear. q is used to scan forwards.
Entry* q = p; // Start at the entry to remove.
while (true) {
// Move q to the next entry.
q = q + 1;
if (q == map_end()) {
q = map_;
}
// All entries between p and q have their initial position between p and q
// and the entry p can be cleared without breaking the search for these
// entries.
if (!q->exists()) {
break;
}
// Find the initial position for the entry at position q.
Entry* r = map_ + (q->hash & (capacity_ - 1));
// If the entry at position q has its initial position outside the range
// between p and q it can be moved forward to position p and will still be
// found. There is now a new candidate entry for clearing.
if ((q > p && (r <= p || r > q)) || (q < p && (r <= p && r > q))) {
*p = *q;
p = q;
}
}
// Clear the entry which is allowed to en emptied.
p->clear();
occupancy_--;
return value;
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Clear() {
// Mark all entries as empty.
for (size_t i = 0; i < capacity_; ++i) {
map_[i].clear();
}
occupancy_ = 0;
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Start() const {
return Next(map_ - 1);
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Next(
Entry* entry) const {
const Entry* end = map_end();
DCHECK(map_ - 1 <= entry && entry < end);
for (entry++; entry < end; entry++) {
if (entry->exists()) {
return entry;
}
}
return nullptr;
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Probe(
const Key& key, uint32_t hash) const {
DCHECK(base::bits::IsPowerOfTwo32(capacity_));
size_t i = hash & (capacity_ - 1);
DCHECK(i < capacity_);
DCHECK(occupancy_ < capacity_); // Guarantees loop termination.
while (map_[i].exists() && !match_(hash, map_[i].hash, key, map_[i].key)) {
i = (i + 1) & (capacity_ - 1);
}
return &map_[i];
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
typename TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Entry*
TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::FillEmptyEntry(
Entry* entry, const Key& key, const Value& value, uint32_t hash,
AllocationPolicy allocator) {
DCHECK(!entry->exists());
new (entry) Entry(key, value, hash);
occupancy_++;
// Grow the map if we reached >= 80% occupancy.
if (occupancy_ + occupancy_ / 4 >= capacity_) {
Resize(allocator);
entry = Probe(key, hash);
}
return entry;
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Initialize(
uint32_t capacity, AllocationPolicy allocator) {
DCHECK(base::bits::IsPowerOfTwo32(capacity));
map_ = reinterpret_cast<Entry*>(allocator.New(capacity * sizeof(Entry)));
if (map_ == nullptr) {
FATAL("Out of memory: HashMap::Initialize");
return;
}
capacity_ = capacity;
Clear();
}
template <typename Key, typename Value, typename MatchFun,
class AllocationPolicy>
void TemplateHashMapImpl<Key, Value, MatchFun, AllocationPolicy>::Resize(
AllocationPolicy allocator) {
Entry* map = map_;
uint32_t n = occupancy_;
// Allocate larger map.
Initialize(capacity_ * 2, allocator);
// Rehash all current entries.
for (Entry* entry = map; n > 0; entry++) {
if (entry->exists()) {
Entry* new_entry = Probe(entry->key, entry->hash);
new_entry = FillEmptyEntry(new_entry, entry->key, entry->value,
entry->hash, allocator);
n--;
}
}
// Delete old map.
AllocationPolicy::Delete(map);
}
// Match function which compares hashes before executing a (potentially
// expensive) key comparison.
template <typename Key, typename MatchFun>
struct HashEqualityThenKeyMatcher {
explicit HashEqualityThenKeyMatcher(MatchFun match) : match_(match) {}
bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1,
const Key& key2) const {
return hash1 == hash2 && match_(key1, key2);
}
private:
MatchFun match_;
};
// Hashmap<void*, void*> which takes a custom key comparison function pointer.
template <typename AllocationPolicy>
class CustomMatcherTemplateHashMapImpl
: public TemplateHashMapImpl<
void*, void*,
HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>,
AllocationPolicy> {
typedef TemplateHashMapImpl<
void*, void*, HashEqualityThenKeyMatcher<void*, bool (*)(void*, void*)>,
AllocationPolicy>
Base;
public:
typedef bool (*MatchFun)(void*, void*);
CustomMatcherTemplateHashMapImpl(
MatchFun match, uint32_t capacity = Base::kDefaultHashMapCapacity,
AllocationPolicy allocator = AllocationPolicy())
: Base(capacity, HashEqualityThenKeyMatcher<void*, MatchFun>(match),
allocator) {}
CustomMatcherTemplateHashMapImpl(
const CustomMatcherTemplateHashMapImpl<AllocationPolicy>* original,
AllocationPolicy allocator = AllocationPolicy())
: Base(original, allocator) {}
private:
DISALLOW_COPY_AND_ASSIGN(CustomMatcherTemplateHashMapImpl);
};
typedef CustomMatcherTemplateHashMapImpl<DefaultAllocationPolicy>
CustomMatcherHashMap;
// Match function which compares keys directly by equality.
template <typename Key>
struct KeyEqualityMatcher {
bool operator()(uint32_t hash1, uint32_t hash2, const Key& key1,
const Key& key2) const {
return key1 == key2;
}
};
// Hashmap<void*, void*> which compares the key pointers directly.
template <typename AllocationPolicy>
class PointerTemplateHashMapImpl
: public TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>,
AllocationPolicy> {
typedef TemplateHashMapImpl<void*, void*, KeyEqualityMatcher<void*>,
AllocationPolicy>
Base;
public:
PointerTemplateHashMapImpl(uint32_t capacity = Base::kDefaultHashMapCapacity,
AllocationPolicy allocator = AllocationPolicy())
: Base(capacity, KeyEqualityMatcher<void*>(), allocator) {}
};
typedef PointerTemplateHashMapImpl<DefaultAllocationPolicy> HashMap;
// A hash map for pointer keys and values with an STL-like interface.
template <class Key, class Value, class MatchFun, class AllocationPolicy>
class TemplateHashMap
: private TemplateHashMapImpl<void*, void*,
HashEqualityThenKeyMatcher<void*, MatchFun>,
AllocationPolicy> {
typedef TemplateHashMapImpl<void*, void*,
HashEqualityThenKeyMatcher<void*, MatchFun>,
AllocationPolicy>
Base;
public:
STATIC_ASSERT(sizeof(Key*) == sizeof(void*)); // NOLINT
STATIC_ASSERT(sizeof(Value*) == sizeof(void*)); // NOLINT
struct value_type {
Key* first;
Value* second;
};
class Iterator {
public:
Iterator& operator++() {
entry_ = map_->Next(entry_);
return *this;
}
value_type* operator->() { return reinterpret_cast<value_type*>(entry_); }
bool operator!=(const Iterator& other) { return entry_ != other.entry_; }
private:
Iterator(const Base* map, typename Base::Entry* entry)
: map_(map), entry_(entry) {}
const Base* map_;
typename Base::Entry* entry_;
friend class TemplateHashMap;
};
TemplateHashMap(MatchFun match,
AllocationPolicy allocator = AllocationPolicy())
: Base(Base::kDefaultHashMapCapacity,
HashEqualityThenKeyMatcher<void*, MatchFun>(match), allocator) {}
Iterator begin() const { return Iterator(this, this->Start()); }
Iterator end() const { return Iterator(this, nullptr); }
Iterator find(Key* key, bool insert = false,
AllocationPolicy allocator = AllocationPolicy()) {
if (insert) {
return Iterator(this, this->LookupOrInsert(key, key->Hash(), allocator));
}
return Iterator(this, this->Lookup(key, key->Hash()));
}
};
} // namespace base
} // namespace v8
#endif // V8_BASE_HASHMAP_H_