// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_ARM64
#include "src/code-stubs.h"
#include "src/api-arguments.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/isolate.h"
#include "src/regexp/jsregexp.h"
#include "src/regexp/regexp-macro-assembler.h"
#include "src/runtime/runtime.h"
#include "src/arm64/code-stubs-arm64.h"
#include "src/arm64/frames-arm64.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) {
__ Mov(x5, Operand(x0, LSL, kPointerSizeLog2));
__ Str(x1, MemOperand(jssp, x5));
__ Push(x1);
__ Push(x2);
__ Add(x0, x0, Operand(3));
__ TailCallRuntime(Runtime::kNewArray);
}
void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
ExternalReference miss) {
// Update the static counter each time a new code stub is generated.
isolate()->counters()->code_stubs()->Increment();
CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
int param_count = descriptor.GetRegisterParameterCount();
{
// Call the runtime system in a fresh internal frame.
FrameScope scope(masm, StackFrame::INTERNAL);
DCHECK((param_count == 0) ||
x0.Is(descriptor.GetRegisterParameter(param_count - 1)));
// Push arguments
MacroAssembler::PushPopQueue queue(masm);
for (int i = 0; i < param_count; ++i) {
queue.Queue(descriptor.GetRegisterParameter(i));
}
queue.PushQueued();
__ CallExternalReference(miss, param_count);
}
__ Ret();
}
void DoubleToIStub::Generate(MacroAssembler* masm) {
Label done;
Register input = source();
Register result = destination();
DCHECK(is_truncating());
DCHECK(result.Is64Bits());
DCHECK(jssp.Is(masm->StackPointer()));
int double_offset = offset();
DoubleRegister double_scratch = d0; // only used if !skip_fastpath()
Register scratch1 = GetAllocatableRegisterThatIsNotOneOf(input, result);
Register scratch2 =
GetAllocatableRegisterThatIsNotOneOf(input, result, scratch1);
__ Push(scratch1, scratch2);
// Account for saved regs if input is jssp.
if (input.is(jssp)) double_offset += 2 * kPointerSize;
if (!skip_fastpath()) {
__ Push(double_scratch);
if (input.is(jssp)) double_offset += 1 * kDoubleSize;
__ Ldr(double_scratch, MemOperand(input, double_offset));
// Try to convert with a FPU convert instruction. This handles all
// non-saturating cases.
__ TryConvertDoubleToInt64(result, double_scratch, &done);
__ Fmov(result, double_scratch);
} else {
__ Ldr(result, MemOperand(input, double_offset));
}
// If we reach here we need to manually convert the input to an int32.
// Extract the exponent.
Register exponent = scratch1;
__ Ubfx(exponent, result, HeapNumber::kMantissaBits,
HeapNumber::kExponentBits);
// It the exponent is >= 84 (kMantissaBits + 32), the result is always 0 since
// the mantissa gets shifted completely out of the int32_t result.
__ Cmp(exponent, HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 32);
__ CzeroX(result, ge);
__ B(ge, &done);
// The Fcvtzs sequence handles all cases except where the conversion causes
// signed overflow in the int64_t target. Since we've already handled
// exponents >= 84, we can guarantee that 63 <= exponent < 84.
if (masm->emit_debug_code()) {
__ Cmp(exponent, HeapNumber::kExponentBias + 63);
// Exponents less than this should have been handled by the Fcvt case.
__ Check(ge, kUnexpectedValue);
}
// Isolate the mantissa bits, and set the implicit '1'.
Register mantissa = scratch2;
__ Ubfx(mantissa, result, 0, HeapNumber::kMantissaBits);
__ Orr(mantissa, mantissa, 1UL << HeapNumber::kMantissaBits);
// Negate the mantissa if necessary.
__ Tst(result, kXSignMask);
__ Cneg(mantissa, mantissa, ne);
// Shift the mantissa bits in the correct place. We know that we have to shift
// it left here, because exponent >= 63 >= kMantissaBits.
__ Sub(exponent, exponent,
HeapNumber::kExponentBias + HeapNumber::kMantissaBits);
__ Lsl(result, mantissa, exponent);
__ Bind(&done);
if (!skip_fastpath()) {
__ Pop(double_scratch);
}
__ Pop(scratch2, scratch1);
__ Ret();
}
// See call site for description.
static void EmitIdenticalObjectComparison(MacroAssembler* masm, Register left,
Register right, Register scratch,
FPRegister double_scratch,
Label* slow, Condition cond) {
DCHECK(!AreAliased(left, right, scratch));
Label not_identical, return_equal, heap_number;
Register result = x0;
__ Cmp(right, left);
__ B(ne, ¬_identical);
// Test for NaN. Sadly, we can't just compare to factory::nan_value(),
// so we do the second best thing - test it ourselves.
// They are both equal and they are not both Smis so both of them are not
// Smis. If it's not a heap number, then return equal.
Register right_type = scratch;
if ((cond == lt) || (cond == gt)) {
// Call runtime on identical JSObjects. Otherwise return equal.
__ JumpIfObjectType(right, right_type, right_type, FIRST_JS_RECEIVER_TYPE,
slow, ge);
// Call runtime on identical symbols since we need to throw a TypeError.
__ Cmp(right_type, SYMBOL_TYPE);
__ B(eq, slow);
} else if (cond == eq) {
__ JumpIfHeapNumber(right, &heap_number);
} else {
__ JumpIfObjectType(right, right_type, right_type, HEAP_NUMBER_TYPE,
&heap_number);
// Comparing JS objects with <=, >= is complicated.
__ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
__ B(ge, slow);
// Call runtime on identical symbols since we need to throw a TypeError.
__ Cmp(right_type, SYMBOL_TYPE);
__ B(eq, slow);
// Normally here we fall through to return_equal, but undefined is
// special: (undefined == undefined) == true, but
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
if ((cond == le) || (cond == ge)) {
__ Cmp(right_type, ODDBALL_TYPE);
__ B(ne, &return_equal);
__ JumpIfNotRoot(right, Heap::kUndefinedValueRootIndex, &return_equal);
if (cond == le) {
// undefined <= undefined should fail.
__ Mov(result, GREATER);
} else {
// undefined >= undefined should fail.
__ Mov(result, LESS);
}
__ Ret();
}
}
__ Bind(&return_equal);
if (cond == lt) {
__ Mov(result, GREATER); // Things aren't less than themselves.
} else if (cond == gt) {
__ Mov(result, LESS); // Things aren't greater than themselves.
} else {
__ Mov(result, EQUAL); // Things are <=, >=, ==, === themselves.
}
__ Ret();
// Cases lt and gt have been handled earlier, and case ne is never seen, as
// it is handled in the parser (see Parser::ParseBinaryExpression). We are
// only concerned with cases ge, le and eq here.
if ((cond != lt) && (cond != gt)) {
DCHECK((cond == ge) || (cond == le) || (cond == eq));
__ Bind(&heap_number);
// Left and right are identical pointers to a heap number object. Return
// non-equal if the heap number is a NaN, and equal otherwise. Comparing
// the number to itself will set the overflow flag iff the number is NaN.
__ Ldr(double_scratch, FieldMemOperand(right, HeapNumber::kValueOffset));
__ Fcmp(double_scratch, double_scratch);
__ B(vc, &return_equal); // Not NaN, so treat as normal heap number.
if (cond == le) {
__ Mov(result, GREATER);
} else {
__ Mov(result, LESS);
}
__ Ret();
}
// No fall through here.
if (FLAG_debug_code) {
__ Unreachable();
}
__ Bind(¬_identical);
}
// See call site for description.
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
Register left,
Register right,
Register left_type,
Register right_type,
Register scratch) {
DCHECK(!AreAliased(left, right, left_type, right_type, scratch));
if (masm->emit_debug_code()) {
// We assume that the arguments are not identical.
__ Cmp(left, right);
__ Assert(ne, kExpectedNonIdenticalObjects);
}
// If either operand is a JS object or an oddball value, then they are not
// equal since their pointers are different.
// There is no test for undetectability in strict equality.
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
Label right_non_object;
__ Cmp(right_type, FIRST_JS_RECEIVER_TYPE);
__ B(lt, &right_non_object);
// Return non-zero - x0 already contains a non-zero pointer.
DCHECK(left.is(x0) || right.is(x0));
Label return_not_equal;
__ Bind(&return_not_equal);
__ Ret();
__ Bind(&right_non_object);
// Check for oddballs: true, false, null, undefined.
__ Cmp(right_type, ODDBALL_TYPE);
// If right is not ODDBALL, test left. Otherwise, set eq condition.
__ Ccmp(left_type, ODDBALL_TYPE, ZFlag, ne);
// If right or left is not ODDBALL, test left >= FIRST_JS_RECEIVER_TYPE.
// Otherwise, right or left is ODDBALL, so set a ge condition.
__ Ccmp(left_type, FIRST_JS_RECEIVER_TYPE, NVFlag, ne);
__ B(ge, &return_not_equal);
// Internalized strings are unique, so they can only be equal if they are the
// same object. We have already tested that case, so if left and right are
// both internalized strings, they cannot be equal.
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
__ Orr(scratch, left_type, right_type);
__ TestAndBranchIfAllClear(
scratch, kIsNotStringMask | kIsNotInternalizedMask, &return_not_equal);
}
// See call site for description.
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
Register left,
Register right,
FPRegister left_d,
FPRegister right_d,
Label* slow,
bool strict) {
DCHECK(!AreAliased(left_d, right_d));
DCHECK((left.is(x0) && right.is(x1)) ||
(right.is(x0) && left.is(x1)));
Register result = x0;
Label right_is_smi, done;
__ JumpIfSmi(right, &right_is_smi);
// Left is the smi. Check whether right is a heap number.
if (strict) {
// If right is not a number and left is a smi, then strict equality cannot
// succeed. Return non-equal.
Label is_heap_number;
__ JumpIfHeapNumber(right, &is_heap_number);
// Register right is a non-zero pointer, which is a valid NOT_EQUAL result.
if (!right.is(result)) {
__ Mov(result, NOT_EQUAL);
}
__ Ret();
__ Bind(&is_heap_number);
} else {
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
// runtime.
__ JumpIfNotHeapNumber(right, slow);
}
// Left is the smi. Right is a heap number. Load right value into right_d, and
// convert left smi into double in left_d.
__ Ldr(right_d, FieldMemOperand(right, HeapNumber::kValueOffset));
__ SmiUntagToDouble(left_d, left);
__ B(&done);
__ Bind(&right_is_smi);
// Right is a smi. Check whether the non-smi left is a heap number.
if (strict) {
// If left is not a number and right is a smi then strict equality cannot
// succeed. Return non-equal.
Label is_heap_number;
__ JumpIfHeapNumber(left, &is_heap_number);
// Register left is a non-zero pointer, which is a valid NOT_EQUAL result.
if (!left.is(result)) {
__ Mov(result, NOT_EQUAL);
}
__ Ret();
__ Bind(&is_heap_number);
} else {
// Smi compared non-strictly with a non-smi, non-heap-number. Call the
// runtime.
__ JumpIfNotHeapNumber(left, slow);
}
// Right is the smi. Left is a heap number. Load left value into left_d, and
// convert right smi into double in right_d.
__ Ldr(left_d, FieldMemOperand(left, HeapNumber::kValueOffset));
__ SmiUntagToDouble(right_d, right);
// Fall through to both_loaded_as_doubles.
__ Bind(&done);
}
// Fast negative check for internalized-to-internalized equality or receiver
// equality. Also handles the undetectable receiver to null/undefined
// comparison.
// See call site for description.
static void EmitCheckForInternalizedStringsOrObjects(
MacroAssembler* masm, Register left, Register right, Register left_map,
Register right_map, Register left_type, Register right_type,
Label* possible_strings, Label* runtime_call) {
DCHECK(!AreAliased(left, right, left_map, right_map, left_type, right_type));
Register result = x0;
DCHECK(left.is(x0) || right.is(x0));
Label object_test, return_equal, return_unequal, undetectable;
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
// TODO(all): reexamine this branch sequence for optimisation wrt branch
// prediction.
__ Tbnz(right_type, MaskToBit(kIsNotStringMask), &object_test);
__ Tbnz(right_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
__ Tbnz(left_type, MaskToBit(kIsNotStringMask), runtime_call);
__ Tbnz(left_type, MaskToBit(kIsNotInternalizedMask), possible_strings);
// Both are internalized. We already checked they weren't the same pointer so
// they are not equal. Return non-equal by returning the non-zero object
// pointer in x0.
__ Ret();
__ Bind(&object_test);
Register left_bitfield = left_type;
Register right_bitfield = right_type;
__ Ldrb(right_bitfield, FieldMemOperand(right_map, Map::kBitFieldOffset));
__ Ldrb(left_bitfield, FieldMemOperand(left_map, Map::kBitFieldOffset));
__ Tbnz(right_bitfield, MaskToBit(1 << Map::kIsUndetectable), &undetectable);
__ Tbnz(left_bitfield, MaskToBit(1 << Map::kIsUndetectable), &return_unequal);
__ CompareInstanceType(right_map, right_type, FIRST_JS_RECEIVER_TYPE);
__ B(lt, runtime_call);
__ CompareInstanceType(left_map, left_type, FIRST_JS_RECEIVER_TYPE);
__ B(lt, runtime_call);
__ Bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in x0.
__ Ret();
__ Bind(&undetectable);
__ Tbz(left_bitfield, MaskToBit(1 << Map::kIsUndetectable), &return_unequal);
// If both sides are JSReceivers, then the result is false according to
// the HTML specification, which says that only comparisons with null or
// undefined are affected by special casing for document.all.
__ CompareInstanceType(right_map, right_type, ODDBALL_TYPE);
__ B(eq, &return_equal);
__ CompareInstanceType(left_map, left_type, ODDBALL_TYPE);
__ B(ne, &return_unequal);
__ Bind(&return_equal);
__ Mov(result, EQUAL);
__ Ret();
}
static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
CompareICState::State expected,
Label* fail) {
Label ok;
if (expected == CompareICState::SMI) {
__ JumpIfNotSmi(input, fail);
} else if (expected == CompareICState::NUMBER) {
__ JumpIfSmi(input, &ok);
__ JumpIfNotHeapNumber(input, fail);
}
// We could be strict about internalized/non-internalized here, but as long as
// hydrogen doesn't care, the stub doesn't have to care either.
__ Bind(&ok);
}
void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
Register lhs = x1;
Register rhs = x0;
Register result = x0;
Condition cond = GetCondition();
Label miss;
CompareICStub_CheckInputType(masm, lhs, left(), &miss);
CompareICStub_CheckInputType(masm, rhs, right(), &miss);
Label slow; // Call builtin.
Label not_smis, both_loaded_as_doubles;
Label not_two_smis, smi_done;
__ JumpIfEitherNotSmi(lhs, rhs, ¬_two_smis);
__ SmiUntag(lhs);
__ Sub(result, lhs, Operand::UntagSmi(rhs));
__ Ret();
__ Bind(¬_two_smis);
// NOTICE! This code is only reached after a smi-fast-case check, so it is
// certain that at least one operand isn't a smi.
// Handle the case where the objects are identical. Either returns the answer
// or goes to slow. Only falls through if the objects were not identical.
EmitIdenticalObjectComparison(masm, lhs, rhs, x10, d0, &slow, cond);
// If either is a smi (we know that at least one is not a smi), then they can
// only be strictly equal if the other is a HeapNumber.
__ JumpIfBothNotSmi(lhs, rhs, ¬_smis);
// Exactly one operand is a smi. EmitSmiNonsmiComparison generates code that
// can:
// 1) Return the answer.
// 2) Branch to the slow case.
// 3) Fall through to both_loaded_as_doubles.
// In case 3, we have found out that we were dealing with a number-number
// comparison. The double values of the numbers have been loaded, right into
// rhs_d, left into lhs_d.
FPRegister rhs_d = d0;
FPRegister lhs_d = d1;
EmitSmiNonsmiComparison(masm, lhs, rhs, lhs_d, rhs_d, &slow, strict());
__ Bind(&both_loaded_as_doubles);
// The arguments have been converted to doubles and stored in rhs_d and
// lhs_d.
Label nan;
__ Fcmp(lhs_d, rhs_d);
__ B(vs, &nan); // Overflow flag set if either is NaN.
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
__ Ret();
__ Bind(&nan);
// Left and/or right is a NaN. Load the result register with whatever makes
// the comparison fail, since comparisons with NaN always fail (except ne,
// which is filtered out at a higher level.)
DCHECK(cond != ne);
if ((cond == lt) || (cond == le)) {
__ Mov(result, GREATER);
} else {
__ Mov(result, LESS);
}
__ Ret();
__ Bind(¬_smis);
// At this point we know we are dealing with two different objects, and
// neither of them is a smi. The objects are in rhs_ and lhs_.
// Load the maps and types of the objects.
Register rhs_map = x10;
Register rhs_type = x11;
Register lhs_map = x12;
Register lhs_type = x13;
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
if (strict()) {
// This emits a non-equal return sequence for some object types, or falls
// through if it was not lucky.
EmitStrictTwoHeapObjectCompare(masm, lhs, rhs, lhs_type, rhs_type, x14);
}
Label check_for_internalized_strings;
Label flat_string_check;
// Check for heap number comparison. Branch to earlier double comparison code
// if they are heap numbers, otherwise, branch to internalized string check.
__ Cmp(rhs_type, HEAP_NUMBER_TYPE);
__ B(ne, &check_for_internalized_strings);
__ Cmp(lhs_map, rhs_map);
// If maps aren't equal, lhs_ and rhs_ are not heap numbers. Branch to flat
// string check.
__ B(ne, &flat_string_check);
// Both lhs_ and rhs_ are heap numbers. Load them and branch to the double
// comparison code.
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
__ B(&both_loaded_as_doubles);
__ Bind(&check_for_internalized_strings);
// In the strict case, the EmitStrictTwoHeapObjectCompare already took care
// of internalized strings.
if ((cond == eq) && !strict()) {
// Returns an answer for two internalized strings or two detectable objects.
// Otherwise branches to the string case or not both strings case.
EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, lhs_map, rhs_map,
lhs_type, rhs_type,
&flat_string_check, &slow);
}
// Check for both being sequential one-byte strings,
// and inline if that is the case.
__ Bind(&flat_string_check);
__ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x14,
x15, &slow);
__ IncrementCounter(isolate()->counters()->string_compare_native(), 1, x10,
x11);
if (cond == eq) {
StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
x12);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
x12, x13);
}
// Never fall through to here.
if (FLAG_debug_code) {
__ Unreachable();
}
__ Bind(&slow);
if (cond == eq) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(cp);
__ Call(strict() ? isolate()->builtins()->StrictEqual()
: isolate()->builtins()->Equal(),
RelocInfo::CODE_TARGET);
__ Pop(cp);
}
// Turn true into 0 and false into some non-zero value.
STATIC_ASSERT(EQUAL == 0);
__ LoadRoot(x1, Heap::kTrueValueRootIndex);
__ Sub(x0, x0, x1);
__ Ret();
} else {
__ Push(lhs, rhs);
int ncr; // NaN compare result
if ((cond == lt) || (cond == le)) {
ncr = GREATER;
} else {
DCHECK((cond == gt) || (cond == ge)); // remaining cases
ncr = LESS;
}
__ Mov(x10, Smi::FromInt(ncr));
__ Push(x10);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ TailCallRuntime(Runtime::kCompare);
}
__ Bind(&miss);
GenerateMiss(masm);
}
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
CPURegList saved_regs = kCallerSaved;
CPURegList saved_fp_regs = kCallerSavedFP;
// We don't allow a GC during a store buffer overflow so there is no need to
// store the registers in any particular way, but we do have to store and
// restore them.
// We don't care if MacroAssembler scratch registers are corrupted.
saved_regs.Remove(*(masm->TmpList()));
saved_fp_regs.Remove(*(masm->FPTmpList()));
__ PushCPURegList(saved_regs);
if (save_doubles()) {
__ PushCPURegList(saved_fp_regs);
}
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(x0, ExternalReference::isolate_address(isolate()));
__ CallCFunction(
ExternalReference::store_buffer_overflow_function(isolate()), 1, 0);
if (save_doubles()) {
__ PopCPURegList(saved_fp_regs);
}
__ PopCPURegList(saved_regs);
__ Ret();
}
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
Isolate* isolate) {
StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
stub1.GetCode();
StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
stub2.GetCode();
}
void StoreRegistersStateStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
UseScratchRegisterScope temps(masm);
Register saved_lr = temps.UnsafeAcquire(to_be_pushed_lr());
Register return_address = temps.AcquireX();
__ Mov(return_address, lr);
// Restore lr with the value it had before the call to this stub (the value
// which must be pushed).
__ Mov(lr, saved_lr);
__ PushSafepointRegisters();
__ Ret(return_address);
}
void RestoreRegistersStateStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
UseScratchRegisterScope temps(masm);
Register return_address = temps.AcquireX();
// Preserve the return address (lr will be clobbered by the pop).
__ Mov(return_address, lr);
__ PopSafepointRegisters();
__ Ret(return_address);
}
void MathPowStub::Generate(MacroAssembler* masm) {
// Stack on entry:
// jssp[0]: Exponent (as a tagged value).
// jssp[1]: Base (as a tagged value).
//
// The (tagged) result will be returned in x0, as a heap number.
Register exponent_tagged = MathPowTaggedDescriptor::exponent();
DCHECK(exponent_tagged.is(x11));
Register exponent_integer = MathPowIntegerDescriptor::exponent();
DCHECK(exponent_integer.is(x12));
Register saved_lr = x19;
FPRegister result_double = d0;
FPRegister base_double = d0;
FPRegister exponent_double = d1;
FPRegister base_double_copy = d2;
FPRegister scratch1_double = d6;
FPRegister scratch0_double = d7;
// A fast-path for integer exponents.
Label exponent_is_smi, exponent_is_integer;
// Allocate a heap number for the result, and return it.
Label done;
// Unpack the inputs.
if (exponent_type() == TAGGED) {
__ JumpIfSmi(exponent_tagged, &exponent_is_smi);
__ Ldr(exponent_double,
FieldMemOperand(exponent_tagged, HeapNumber::kValueOffset));
}
// Handle double (heap number) exponents.
if (exponent_type() != INTEGER) {
// Detect integer exponents stored as doubles and handle those in the
// integer fast-path.
__ TryRepresentDoubleAsInt64(exponent_integer, exponent_double,
scratch0_double, &exponent_is_integer);
{
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(saved_lr, lr);
__ CallCFunction(
ExternalReference::power_double_double_function(isolate()), 0, 2);
__ Mov(lr, saved_lr);
__ B(&done);
}
// Handle SMI exponents.
__ Bind(&exponent_is_smi);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// d1 base_double The base as a double.
__ SmiUntag(exponent_integer, exponent_tagged);
}
__ Bind(&exponent_is_integer);
// x10 base_tagged The tagged base (input).
// x11 exponent_tagged The tagged exponent (input).
// x12 exponent_integer The exponent as an integer.
// d1 base_double The base as a double.
// Find abs(exponent). For negative exponents, we can find the inverse later.
Register exponent_abs = x13;
__ Cmp(exponent_integer, 0);
__ Cneg(exponent_abs, exponent_integer, mi);
// x13 exponent_abs The value of abs(exponent_integer).
// Repeatedly multiply to calculate the power.
// result = 1.0;
// For each bit n (exponent_integer{n}) {
// if (exponent_integer{n}) {
// result *= base;
// }
// base *= base;
// if (remaining bits in exponent_integer are all zero) {
// break;
// }
// }
Label power_loop, power_loop_entry, power_loop_exit;
__ Fmov(scratch1_double, base_double);
__ Fmov(base_double_copy, base_double);
__ Fmov(result_double, 1.0);
__ B(&power_loop_entry);
__ Bind(&power_loop);
__ Fmul(scratch1_double, scratch1_double, scratch1_double);
__ Lsr(exponent_abs, exponent_abs, 1);
__ Cbz(exponent_abs, &power_loop_exit);
__ Bind(&power_loop_entry);
__ Tbz(exponent_abs, 0, &power_loop);
__ Fmul(result_double, result_double, scratch1_double);
__ B(&power_loop);
__ Bind(&power_loop_exit);
// If the exponent was positive, result_double holds the result.
__ Tbz(exponent_integer, kXSignBit, &done);
// The exponent was negative, so find the inverse.
__ Fmov(scratch0_double, 1.0);
__ Fdiv(result_double, scratch0_double, result_double);
// ECMA-262 only requires Math.pow to return an 'implementation-dependent
// approximation' of base^exponent. However, mjsunit/math-pow uses Math.pow
// to calculate the subnormal value 2^-1074. This method of calculating
// negative powers doesn't work because 2^1074 overflows to infinity. To
// catch this corner-case, we bail out if the result was 0. (This can only
// occur if the divisor is infinity or the base is zero.)
__ Fcmp(result_double, 0.0);
__ B(&done, ne);
AllowExternalCallThatCantCauseGC scope(masm);
__ Mov(saved_lr, lr);
__ Fmov(base_double, base_double_copy);
__ Scvtf(exponent_double, exponent_integer);
__ CallCFunction(ExternalReference::power_double_double_function(isolate()),
0, 2);
__ Mov(lr, saved_lr);
__ Bind(&done);
__ Ret();
}
void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
// It is important that the following stubs are generated in this order
// because pregenerated stubs can only call other pregenerated stubs.
// RecordWriteStub uses StoreBufferOverflowStub, which in turn uses
// CEntryStub.
CEntryStub::GenerateAheadOfTime(isolate);
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate);
CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
CreateWeakCellStub::GenerateAheadOfTime(isolate);
BinaryOpICStub::GenerateAheadOfTime(isolate);
StoreRegistersStateStub::GenerateAheadOfTime(isolate);
RestoreRegistersStateStub::GenerateAheadOfTime(isolate);
BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
StoreFastElementStub::GenerateAheadOfTime(isolate);
}
void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
StoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) {
RestoreRegistersStateStub stub(isolate);
stub.GetCode();
}
void CodeStub::GenerateFPStubs(Isolate* isolate) {
// Floating-point code doesn't get special handling in ARM64, so there's
// nothing to do here.
USE(isolate);
}
bool CEntryStub::NeedsImmovableCode() {
// CEntryStub stores the return address on the stack before calling into
// C++ code. In some cases, the VM accesses this address, but it is not used
// when the C++ code returns to the stub because LR holds the return address
// in AAPCS64. If the stub is moved (perhaps during a GC), we could end up
// returning to dead code.
// TODO(jbramley): Whilst this is the only analysis that makes sense, I can't
// find any comment to confirm this, and I don't hit any crashes whatever
// this function returns. The anaylsis should be properly confirmed.
return true;
}
void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
CEntryStub stub(isolate, 1, kDontSaveFPRegs);
stub.GetCode();
CEntryStub stub_fp(isolate, 1, kSaveFPRegs);
stub_fp.GetCode();
}
void CEntryStub::Generate(MacroAssembler* masm) {
// The Abort mechanism relies on CallRuntime, which in turn relies on
// CEntryStub, so until this stub has been generated, we have to use a
// fall-back Abort mechanism.
//
// Note that this stub must be generated before any use of Abort.
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
ASM_LOCATION("CEntryStub::Generate entry");
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Register parameters:
// x0: argc (including receiver, untagged)
// x1: target
// If argv_in_register():
// x11: argv (pointer to first argument)
//
// The stack on entry holds the arguments and the receiver, with the receiver
// at the highest address:
//
// jssp]argc-1]: receiver
// jssp[argc-2]: arg[argc-2]
// ... ...
// jssp[1]: arg[1]
// jssp[0]: arg[0]
//
// The arguments are in reverse order, so that arg[argc-2] is actually the
// first argument to the target function and arg[0] is the last.
DCHECK(jssp.Is(__ StackPointer()));
const Register& argc_input = x0;
const Register& target_input = x1;
// Calculate argv, argc and the target address, and store them in
// callee-saved registers so we can retry the call without having to reload
// these arguments.
// TODO(jbramley): If the first call attempt succeeds in the common case (as
// it should), then we might be better off putting these parameters directly
// into their argument registers, rather than using callee-saved registers and
// preserving them on the stack.
const Register& argv = x21;
const Register& argc = x22;
const Register& target = x23;
// Derive argv from the stack pointer so that it points to the first argument
// (arg[argc-2]), or just below the receiver in case there are no arguments.
// - Adjust for the arg[] array.
Register temp_argv = x11;
if (!argv_in_register()) {
__ Add(temp_argv, jssp, Operand(x0, LSL, kPointerSizeLog2));
// - Adjust for the receiver.
__ Sub(temp_argv, temp_argv, 1 * kPointerSize);
}
// Reserve three slots to preserve x21-x23 callee-saved registers. If the
// result size is too large to be returned in registers then also reserve
// space for the return value.
int extra_stack_space = 3 + (result_size() <= 2 ? 0 : result_size());
// Enter the exit frame.
FrameScope scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(
save_doubles(), x10, extra_stack_space,
is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
DCHECK(csp.Is(__ StackPointer()));
// Poke callee-saved registers into reserved space.
__ Poke(argv, 1 * kPointerSize);
__ Poke(argc, 2 * kPointerSize);
__ Poke(target, 3 * kPointerSize);
if (result_size() > 2) {
// Save the location of the return value into x8 for call.
__ Add(x8, __ StackPointer(), Operand(4 * kPointerSize));
}
// We normally only keep tagged values in callee-saved registers, as they
// could be pushed onto the stack by called stubs and functions, and on the
// stack they can confuse the GC. However, we're only calling C functions
// which can push arbitrary data onto the stack anyway, and so the GC won't
// examine that part of the stack.
__ Mov(argc, argc_input);
__ Mov(target, target_input);
__ Mov(argv, temp_argv);
// x21 : argv
// x22 : argc
// x23 : call target
//
// The stack (on entry) holds the arguments and the receiver, with the
// receiver at the highest address:
//
// argv[8]: receiver
// argv -> argv[0]: arg[argc-2]
// ... ...
// argv[...]: arg[1]
// argv[...]: arg[0]
//
// Immediately below (after) this is the exit frame, as constructed by
// EnterExitFrame:
// fp[8]: CallerPC (lr)
// fp -> fp[0]: CallerFP (old fp)
// fp[-8]: Space reserved for SPOffset.
// fp[-16]: CodeObject()
// csp[...]: Saved doubles, if saved_doubles is true.
// csp[32]: Alignment padding, if necessary.
// csp[24]: Preserved x23 (used for target).
// csp[16]: Preserved x22 (used for argc).
// csp[8]: Preserved x21 (used for argv).
// csp -> csp[0]: Space reserved for the return address.
//
// After a successful call, the exit frame, preserved registers (x21-x23) and
// the arguments (including the receiver) are dropped or popped as
// appropriate. The stub then returns.
//
// After an unsuccessful call, the exit frame and suchlike are left
// untouched, and the stub either throws an exception by jumping to one of
// the exception_returned label.
DCHECK(csp.Is(__ StackPointer()));
// Prepare AAPCS64 arguments to pass to the builtin.
__ Mov(x0, argc);
__ Mov(x1, argv);
__ Mov(x2, ExternalReference::isolate_address(isolate()));
Label return_location;
__ Adr(x12, &return_location);
__ Poke(x12, 0);
if (__ emit_debug_code()) {
// Verify that the slot below fp[kSPOffset]-8 points to the return location
// (currently in x12).
UseScratchRegisterScope temps(masm);
Register temp = temps.AcquireX();
__ Ldr(temp, MemOperand(fp, ExitFrameConstants::kSPOffset));
__ Ldr(temp, MemOperand(temp, -static_cast<int64_t>(kXRegSize)));
__ Cmp(temp, x12);
__ Check(eq, kReturnAddressNotFoundInFrame);
}
// Call the builtin.
__ Blr(target);
__ Bind(&return_location);
if (result_size() > 2) {
DCHECK_EQ(3, result_size());
// Read result values stored on stack.
__ Ldr(x0, MemOperand(__ StackPointer(), 4 * kPointerSize));
__ Ldr(x1, MemOperand(__ StackPointer(), 5 * kPointerSize));
__ Ldr(x2, MemOperand(__ StackPointer(), 6 * kPointerSize));
}
// Result returned in x0, x1:x0 or x2:x1:x0 - do not destroy these registers!
// x0 result0 The return code from the call.
// x1 result1 For calls which return ObjectPair or ObjectTriple.
// x2 result2 For calls which return ObjectTriple.
// x21 argv
// x22 argc
// x23 target
const Register& result = x0;
// Check result for exception sentinel.
Label exception_returned;
__ CompareRoot(result, Heap::kExceptionRootIndex);
__ B(eq, &exception_returned);
// The call succeeded, so unwind the stack and return.
// Restore callee-saved registers x21-x23.
__ Mov(x11, argc);
__ Peek(argv, 1 * kPointerSize);
__ Peek(argc, 2 * kPointerSize);
__ Peek(target, 3 * kPointerSize);
__ LeaveExitFrame(save_doubles(), x10, true);
DCHECK(jssp.Is(__ StackPointer()));
if (!argv_in_register()) {
// Drop the remaining stack slots and return from the stub.
__ Drop(x11);
}
__ AssertFPCRState();
__ Ret();
// The stack pointer is still csp if we aren't returning, and the frame
// hasn't changed (except for the return address).
__ SetStackPointer(csp);
// Handling of exception.
__ Bind(&exception_returned);
ExternalReference pending_handler_context_address(
Isolate::kPendingHandlerContextAddress, isolate());
ExternalReference pending_handler_code_address(
Isolate::kPendingHandlerCodeAddress, isolate());
ExternalReference pending_handler_offset_address(
Isolate::kPendingHandlerOffsetAddress, isolate());
ExternalReference pending_handler_fp_address(
Isolate::kPendingHandlerFPAddress, isolate());
ExternalReference pending_handler_sp_address(
Isolate::kPendingHandlerSPAddress, isolate());
// Ask the runtime for help to determine the handler. This will set x0 to
// contain the current pending exception, don't clobber it.
ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler,
isolate());
DCHECK(csp.Is(masm->StackPointer()));
{
FrameScope scope(masm, StackFrame::MANUAL);
__ Mov(x0, 0); // argc.
__ Mov(x1, 0); // argv.
__ Mov(x2, ExternalReference::isolate_address(isolate()));
__ CallCFunction(find_handler, 3);
}
// We didn't execute a return case, so the stack frame hasn't been updated
// (except for the return address slot). However, we don't need to initialize
// jssp because the throw method will immediately overwrite it when it
// unwinds the stack.
__ SetStackPointer(jssp);
// Retrieve the handler context, SP and FP.
__ Mov(cp, Operand(pending_handler_context_address));
__ Ldr(cp, MemOperand(cp));
__ Mov(jssp, Operand(pending_handler_sp_address));
__ Ldr(jssp, MemOperand(jssp));
__ Mov(csp, jssp);
__ Mov(fp, Operand(pending_handler_fp_address));
__ Ldr(fp, MemOperand(fp));
// If the handler is a JS frame, restore the context to the frame. Note that
// the context will be set to (cp == 0) for non-JS frames.
Label not_js_frame;
__ Cbz(cp, ¬_js_frame);
__ Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ Bind(¬_js_frame);
// Compute the handler entry address and jump to it.
__ Mov(x10, Operand(pending_handler_code_address));
__ Ldr(x10, MemOperand(x10));
__ Mov(x11, Operand(pending_handler_offset_address));
__ Ldr(x11, MemOperand(x11));
__ Add(x10, x10, Code::kHeaderSize - kHeapObjectTag);
__ Add(x10, x10, x11);
__ Br(x10);
}
// This is the entry point from C++. 5 arguments are provided in x0-x4.
// See use of the CALL_GENERATED_CODE macro for example in src/execution.cc.
// Input:
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
// Output:
// x0: result.
void JSEntryStub::Generate(MacroAssembler* masm) {
DCHECK(jssp.Is(__ StackPointer()));
Register code_entry = x0;
// Enable instruction instrumentation. This only works on the simulator, and
// will have no effect on the model or real hardware.
__ EnableInstrumentation();
Label invoke, handler_entry, exit;
// Push callee-saved registers and synchronize the system stack pointer (csp)
// and the JavaScript stack pointer (jssp).
//
// We must not write to jssp until after the PushCalleeSavedRegisters()
// call, since jssp is itself a callee-saved register.
__ SetStackPointer(csp);
__ PushCalleeSavedRegisters();
__ Mov(jssp, csp);
__ SetStackPointer(jssp);
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Set up the reserved register for 0.0.
__ Fmov(fp_zero, 0.0);
// Build an entry frame (see layout below).
StackFrame::Type marker = type();
int64_t bad_frame_pointer = -1L; // Bad frame pointer to fail if it is used.
__ Mov(x13, bad_frame_pointer);
__ Mov(x12, StackFrame::TypeToMarker(marker));
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
__ Ldr(x10, MemOperand(x11));
__ Push(x13, x12, xzr, x10);
// Set up fp.
__ Sub(fp, jssp, EntryFrameConstants::kCallerFPOffset);
// Push the JS entry frame marker. Also set js_entry_sp if this is the
// outermost JS call.
Label non_outermost_js, done;
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
__ Mov(x10, ExternalReference(js_entry_sp));
__ Ldr(x11, MemOperand(x10));
__ Cbnz(x11, &non_outermost_js);
__ Str(fp, MemOperand(x10));
__ Mov(x12, StackFrame::OUTERMOST_JSENTRY_FRAME);
__ Push(x12);
__ B(&done);
__ Bind(&non_outermost_js);
// We spare one instruction by pushing xzr since the marker is 0.
DCHECK(StackFrame::INNER_JSENTRY_FRAME == 0);
__ Push(xzr);
__ Bind(&done);
// The frame set up looks like this:
// jssp[0] : JS entry frame marker.
// jssp[1] : C entry FP.
// jssp[2] : stack frame marker.
// jssp[3] : stack frmae marker.
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
// Jump to a faked try block that does the invoke, with a faked catch
// block that sets the pending exception.
__ B(&invoke);
// Prevent the constant pool from being emitted between the record of the
// handler_entry position and the first instruction of the sequence here.
// There is no risk because Assembler::Emit() emits the instruction before
// checking for constant pool emission, but we do not want to depend on
// that.
{
Assembler::BlockPoolsScope block_pools(masm);
__ bind(&handler_entry);
handler_offset_ = handler_entry.pos();
// Caught exception: Store result (exception) in the pending exception
// field in the JSEnv and return a failure sentinel. Coming in here the
// fp will be invalid because the PushTryHandler below sets it to 0 to
// signal the existence of the JSEntry frame.
__ Mov(x10, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
}
__ Str(code_entry, MemOperand(x10));
__ LoadRoot(x0, Heap::kExceptionRootIndex);
__ B(&exit);
// Invoke: Link this frame into the handler chain.
__ Bind(&invoke);
__ PushStackHandler();
// If an exception not caught by another handler occurs, this handler
// returns control to the code after the B(&invoke) above, which
// restores all callee-saved registers (including cp and fp) to their
// saved values before returning a failure to C.
// Invoke the function by calling through the JS entry trampoline builtin.
// Notice that we cannot store a reference to the trampoline code directly in
// this stub, because runtime stubs are not traversed when doing GC.
// Expected registers by Builtins::JSEntryTrampoline
// x0: code entry.
// x1: function.
// x2: receiver.
// x3: argc.
// x4: argv.
ExternalReference entry(type() == StackFrame::ENTRY_CONSTRUCT
? Builtins::kJSConstructEntryTrampoline
: Builtins::kJSEntryTrampoline,
isolate());
__ Mov(x10, entry);
// Call the JSEntryTrampoline.
__ Ldr(x11, MemOperand(x10)); // Dereference the address.
__ Add(x12, x11, Code::kHeaderSize - kHeapObjectTag);
__ Blr(x12);
// Unlink this frame from the handler chain.
__ PopStackHandler();
__ Bind(&exit);
// x0 holds the result.
// The stack pointer points to the top of the entry frame pushed on entry from
// C++ (at the beginning of this stub):
// jssp[0] : JS entry frame marker.
// jssp[1] : C entry FP.
// jssp[2] : stack frame marker.
// jssp[3] : stack frmae marker.
// jssp[4] : bad frame pointer 0xfff...ff <- fp points here.
// Check if the current stack frame is marked as the outermost JS frame.
Label non_outermost_js_2;
__ Pop(x10);
__ Cmp(x10, StackFrame::OUTERMOST_JSENTRY_FRAME);
__ B(ne, &non_outermost_js_2);
__ Mov(x11, ExternalReference(js_entry_sp));
__ Str(xzr, MemOperand(x11));
__ Bind(&non_outermost_js_2);
// Restore the top frame descriptors from the stack.
__ Pop(x10);
__ Mov(x11, ExternalReference(Isolate::kCEntryFPAddress, isolate()));
__ Str(x10, MemOperand(x11));
// Reset the stack to the callee saved registers.
__ Drop(-EntryFrameConstants::kCallerFPOffset, kByteSizeInBytes);
// Restore the callee-saved registers and return.
DCHECK(jssp.Is(__ StackPointer()));
__ Mov(csp, jssp);
__ SetStackPointer(csp);
__ PopCalleeSavedRegisters();
// After this point, we must not modify jssp because it is a callee-saved
// register which we have just restored.
__ Ret();
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec);
#else // V8_INTERPRETED_REGEXP
// Stack frame on entry.
// jssp[0]: last_match_info (expected JSArray)
// jssp[8]: previous index
// jssp[16]: subject string
// jssp[24]: JSRegExp object
Label runtime;
// Use of registers for this function.
// Variable registers:
// x10-x13 used as scratch registers
// w0 string_type type of subject string
// x2 jsstring_length subject string length
// x3 jsregexp_object JSRegExp object
// w4 string_encoding Latin1 or UC16
// w5 sliced_string_offset if the string is a SlicedString
// offset to the underlying string
// w6 string_representation groups attributes of the string:
// - is a string
// - type of the string
// - is a short external string
Register string_type = w0;
Register jsstring_length = x2;
Register jsregexp_object = x3;
Register string_encoding = w4;
Register sliced_string_offset = w5;
Register string_representation = w6;
// These are in callee save registers and will be preserved by the call
// to the native RegExp code, as this code is called using the normal
// C calling convention. When calling directly from generated code the
// native RegExp code will not do a GC and therefore the content of
// these registers are safe to use after the call.
// x19 subject subject string
// x20 regexp_data RegExp data (FixedArray)
// x21 last_match_info_elements info relative to the last match
// (FixedArray)
// x22 code_object generated regexp code
Register subject = x19;
Register regexp_data = x20;
Register last_match_info_elements = x21;
Register code_object = x22;
// Stack frame.
// jssp[00]: last_match_info (JSArray)
// jssp[08]: previous index
// jssp[16]: subject string
// jssp[24]: JSRegExp object
const int kLastMatchInfoOffset = 0 * kPointerSize;
const int kPreviousIndexOffset = 1 * kPointerSize;
const int kSubjectOffset = 2 * kPointerSize;
const int kJSRegExpOffset = 3 * kPointerSize;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address(isolate());
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size(isolate());
__ Mov(x10, address_of_regexp_stack_memory_size);
__ Ldr(x10, MemOperand(x10));
__ Cbz(x10, &runtime);
// Check that the first argument is a JSRegExp object.
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(jsregexp_object, kJSRegExpOffset);
__ JumpIfSmi(jsregexp_object, &runtime);
__ JumpIfNotObjectType(jsregexp_object, x10, x10, JS_REGEXP_TYPE, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ Ldr(regexp_data, FieldMemOperand(jsregexp_object, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
STATIC_ASSERT(kSmiTag == 0);
__ Tst(regexp_data, kSmiTagMask);
__ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected);
__ CompareObjectType(regexp_data, x10, x10, FIXED_ARRAY_TYPE);
__ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
}
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ Ldr(x10, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
__ Cmp(x10, Smi::FromInt(JSRegExp::IRREGEXP));
__ B(ne, &runtime);
// Check that the number of captures fit in the static offsets vector buffer.
// We have always at least one capture for the whole match, plus additional
// ones due to capturing parentheses. A capture takes 2 registers.
// The number of capture registers then is (number_of_captures + 1) * 2.
__ Ldrsw(x10,
UntagSmiFieldMemOperand(regexp_data,
JSRegExp::kIrregexpCaptureCountOffset));
// Check (number_of_captures + 1) * 2 <= offsets vector size
// number_of_captures * 2 <= offsets vector size - 2
STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
__ Add(x10, x10, x10);
__ Cmp(x10, Isolate::kJSRegexpStaticOffsetsVectorSize - 2);
__ B(hi, &runtime);
// Initialize offset for possibly sliced string.
__ Mov(sliced_string_offset, 0);
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(subject, kSubjectOffset);
__ JumpIfSmi(subject, &runtime);
__ Ldr(jsstring_length, FieldMemOperand(subject, String::kLengthOffset));
// Handle subject string according to its encoding and representation:
// (1) Sequential string? If yes, go to (4).
// (2) Sequential or cons? If not, go to (5).
// (3) Cons string. If the string is flat, replace subject with first string
// and go to (1). Otherwise bail out to runtime.
// (4) Sequential string. Load regexp code according to encoding.
// (E) Carry on.
/// [...]
// Deferred code at the end of the stub:
// (5) Long external string? If not, go to (7).
// (6) External string. Make it, offset-wise, look like a sequential string.
// Go to (4).
// (7) Short external string or not a string? If yes, bail out to runtime.
// (8) Sliced or thin string. Replace subject with parent. Go to (1).
Label check_underlying; // (1)
Label seq_string; // (4)
Label not_seq_nor_cons; // (5)
Label external_string; // (6)
Label not_long_external; // (7)
__ Bind(&check_underlying);
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(string_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
// (1) Sequential string? If yes, go to (4).
__ And(string_representation,
string_type,
kIsNotStringMask |
kStringRepresentationMask |
kShortExternalStringMask);
// We depend on the fact that Strings of type
// SeqString and not ShortExternalString are defined
// by the following pattern:
// string_type: 0XX0 XX00
// ^ ^ ^^
// | | ||
// | | is a SeqString
// | is not a short external String
// is a String
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
STATIC_ASSERT(kShortExternalStringTag != 0);
__ Cbz(string_representation, &seq_string); // Go to (4).
// (2) Sequential or cons? If not, go to (5).
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
STATIC_ASSERT(kThinStringTag > kExternalStringTag);
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
__ Cmp(string_representation, kExternalStringTag);
__ B(ge, ¬_seq_nor_cons); // Go to (5).
// (3) Cons string. Check that it's flat.
__ Ldr(x10, FieldMemOperand(subject, ConsString::kSecondOffset));
__ JumpIfNotRoot(x10, Heap::kempty_stringRootIndex, &runtime);
// Replace subject with first string.
__ Ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
__ B(&check_underlying);
// (4) Sequential string. Load regexp code according to encoding.
__ Bind(&seq_string);
// Check that the third argument is a positive smi less than the subject
// string length. A negative value will be greater (unsigned comparison).
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(x10, kPreviousIndexOffset);
__ JumpIfNotSmi(x10, &runtime);
__ Cmp(jsstring_length, x10);
__ B(ls, &runtime);
// Argument 2 (x1): We need to load argument 2 (the previous index) into x1
// before entering the exit frame.
__ SmiUntag(x1, x10);
// The fourth bit determines the string encoding in string_type.
STATIC_ASSERT(kOneByteStringTag == 0x08);
STATIC_ASSERT(kTwoByteStringTag == 0x00);
STATIC_ASSERT(kStringEncodingMask == 0x08);
// Find the code object based on the assumptions above.
// kDataOneByteCodeOffset and kDataUC16CodeOffset are adjacent, adds an offset
// of kPointerSize to reach the latter.
STATIC_ASSERT(JSRegExp::kDataOneByteCodeOffset + kPointerSize ==
JSRegExp::kDataUC16CodeOffset);
__ Mov(x10, kPointerSize);
// We will need the encoding later: Latin1 = 0x08
// UC16 = 0x00
__ Ands(string_encoding, string_type, kStringEncodingMask);
__ CzeroX(x10, ne);
__ Add(x10, regexp_data, x10);
__ Ldr(code_object, FieldMemOperand(x10, JSRegExp::kDataOneByteCodeOffset));
// (E) Carry on. String handling is done.
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// a smi (code flushing support).
__ JumpIfSmi(code_object, &runtime);
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1,
x10,
x11);
// Isolates: note we add an additional parameter here (isolate pointer).
__ EnterExitFrame(false, x10, 1);
DCHECK(csp.Is(__ StackPointer()));
// We have 9 arguments to pass to the regexp code, therefore we have to pass
// one on the stack and the rest as registers.
// Note that the placement of the argument on the stack isn't standard
// AAPCS64:
// csp[0]: Space for the return address placed by DirectCEntryStub.
// csp[8]: Argument 9, the current isolate address.
__ Mov(x10, ExternalReference::isolate_address(isolate()));
__ Poke(x10, kPointerSize);
Register length = w11;
Register previous_index_in_bytes = w12;
Register start = x13;
// Load start of the subject string.
__ Add(start, subject, SeqString::kHeaderSize - kHeapObjectTag);
// Load the length from the original subject string from the previous stack
// frame. Therefore we have to use fp, which points exactly to two pointer
// sizes below the previous sp. (Because creating a new stack frame pushes
// the previous fp onto the stack and decrements sp by 2 * kPointerSize.)
__ Ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
__ Ldr(length, UntagSmiFieldMemOperand(subject, String::kLengthOffset));
// Handle UC16 encoding, two bytes make one character.
// string_encoding: if Latin1: 0x08
// if UC16: 0x00
STATIC_ASSERT(kStringEncodingMask == 0x08);
__ Ubfx(string_encoding, string_encoding, 3, 1);
__ Eor(string_encoding, string_encoding, 1);
// string_encoding: if Latin1: 0
// if UC16: 1
// Convert string positions from characters to bytes.
// Previous index is in x1.
__ Lsl(previous_index_in_bytes, w1, string_encoding);
__ Lsl(length, length, string_encoding);
__ Lsl(sliced_string_offset, sliced_string_offset, string_encoding);
// Argument 1 (x0): Subject string.
__ Mov(x0, subject);
// Argument 2 (x1): Previous index, already there.
// Argument 3 (x2): Get the start of input.
// Start of input = start of string + previous index + substring offset
// (0 if the string
// is not sliced).
__ Add(w10, previous_index_in_bytes, sliced_string_offset);
__ Add(x2, start, Operand(w10, UXTW));
// Argument 4 (x3):
// End of input = start of input + (length of input - previous index)
__ Sub(w10, length, previous_index_in_bytes);
__ Add(x3, x2, Operand(w10, UXTW));
// Argument 5 (x4): static offsets vector buffer.
__ Mov(x4, ExternalReference::address_of_static_offsets_vector(isolate()));
// Argument 6 (x5): Set the number of capture registers to zero to force
// global regexps to behave as non-global. This stub is not used for global
// regexps.
__ Mov(x5, 0);
// Argument 7 (x6): Start (high end) of backtracking stack memory area.
__ Mov(x10, address_of_regexp_stack_memory_address);
__ Ldr(x10, MemOperand(x10));
__ Mov(x11, address_of_regexp_stack_memory_size);
__ Ldr(x11, MemOperand(x11));
__ Add(x6, x10, x11);
// Argument 8 (x7): Indicate that this is a direct call from JavaScript.
__ Mov(x7, 1);
// Locate the code entry and call it.
__ Add(code_object, code_object, Code::kHeaderSize - kHeapObjectTag);
DirectCEntryStub stub(isolate());
stub.GenerateCall(masm, code_object);
__ LeaveExitFrame(false, x10, true);
// The generated regexp code returns an int32 in w0.
Label failure, exception;
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::FAILURE, eq, &failure);
__ CompareAndBranch(w0,
NativeRegExpMacroAssembler::EXCEPTION,
eq,
&exception);
__ CompareAndBranch(w0, NativeRegExpMacroAssembler::RETRY, eq, &runtime);
// Success: process the result from the native regexp code.
Register number_of_capture_registers = x12;
// Calculate number of capture registers (number_of_captures + 1) * 2
// and store it in the last match info.
__ Ldrsw(x10,
UntagSmiFieldMemOperand(regexp_data,
JSRegExp::kIrregexpCaptureCountOffset));
__ Add(x10, x10, x10);
__ Add(number_of_capture_registers, x10, 2);
// Check that the last match info is a FixedArray.
DCHECK(jssp.Is(__ StackPointer()));
__ Peek(last_match_info_elements, kLastMatchInfoOffset);
__ JumpIfSmi(last_match_info_elements, &runtime);
// Check that the object has fast elements.
__ Ldr(x10,
FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
__ JumpIfNotRoot(x10, Heap::kFixedArrayMapRootIndex, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information (overhead).
// (number_of_captures + 1) * 2 + overhead <= last match info size
// (number_of_captures * 2) + 2 + overhead <= last match info size
// number_of_capture_registers + overhead <= last match info size
__ Ldrsw(x10,
UntagSmiFieldMemOperand(last_match_info_elements,
FixedArray::kLengthOffset));
__ Add(x11, number_of_capture_registers, RegExpMatchInfo::kLastMatchOverhead);
__ Cmp(x11, x10);
__ B(gt, &runtime);
// Store the capture count.
__ SmiTag(x10, number_of_capture_registers);
__ Str(x10, FieldMemOperand(last_match_info_elements,
RegExpMatchInfo::kNumberOfCapturesOffset));
// Store last subject and last input.
__ Str(subject, FieldMemOperand(last_match_info_elements,
RegExpMatchInfo::kLastSubjectOffset));
// Use x10 as the subject string in order to only need
// one RecordWriteStub.
__ Mov(x10, subject);
__ RecordWriteField(last_match_info_elements,
RegExpMatchInfo::kLastSubjectOffset, x10, x11,
kLRHasNotBeenSaved, kDontSaveFPRegs);
__ Str(subject, FieldMemOperand(last_match_info_elements,
RegExpMatchInfo::kLastInputOffset));
__ Mov(x10, subject);
__ RecordWriteField(last_match_info_elements,
RegExpMatchInfo::kLastInputOffset, x10, x11,
kLRHasNotBeenSaved, kDontSaveFPRegs);
Register last_match_offsets = x13;
Register offsets_vector_index = x14;
Register current_offset = x15;
// Get the static offsets vector filled by the native regexp code
// and fill the last match info.
ExternalReference address_of_static_offsets_vector =
ExternalReference::address_of_static_offsets_vector(isolate());
__ Mov(offsets_vector_index, address_of_static_offsets_vector);
Label next_capture, done;
// Capture register counter starts from number of capture registers and
// iterates down to zero (inclusive).
__ Add(last_match_offsets, last_match_info_elements,
RegExpMatchInfo::kFirstCaptureOffset - kHeapObjectTag);
__ Bind(&next_capture);
__ Subs(number_of_capture_registers, number_of_capture_registers, 2);
__ B(mi, &done);
// Read two 32 bit values from the static offsets vector buffer into
// an X register
__ Ldr(current_offset,
MemOperand(offsets_vector_index, kWRegSize * 2, PostIndex));
// Store the smi values in the last match info.
__ SmiTag(x10, current_offset);
// Clearing the 32 bottom bits gives us a Smi.
STATIC_ASSERT(kSmiTag == 0);
__ Bic(x11, current_offset, kSmiShiftMask);
__ Stp(x10,
x11,
MemOperand(last_match_offsets, kXRegSize * 2, PostIndex));
__ B(&next_capture);
__ Bind(&done);
// Return last match info.
__ Mov(x0, last_match_info_elements);
// Drop the 4 arguments of the stub from the stack.
__ Drop(4);
__ Ret();
__ Bind(&exception);
Register exception_value = x0;
// A stack overflow (on the backtrack stack) may have occured
// in the RegExp code but no exception has been created yet.
// If there is no pending exception, handle that in the runtime system.
__ Mov(x10, Operand(isolate()->factory()->the_hole_value()));
__ Mov(x11,
Operand(ExternalReference(Isolate::kPendingExceptionAddress,
isolate())));
__ Ldr(exception_value, MemOperand(x11));
__ Cmp(x10, exception_value);
__ B(eq, &runtime);
// For exception, throw the exception again.
__ TailCallRuntime(Runtime::kRegExpExecReThrow);
__ Bind(&failure);
__ Mov(x0, Operand(isolate()->factory()->null_value()));
// Drop the 4 arguments of the stub from the stack.
__ Drop(4);
__ Ret();
__ Bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec);
// Deferred code for string handling.
// (5) Long external string? If not, go to (7).
__ Bind(¬_seq_nor_cons);
// Compare flags are still set.
__ B(ne, ¬_long_external); // Go to (7).
// (6) External string. Make it, offset-wise, look like a sequential string.
__ Bind(&external_string);
if (masm->emit_debug_code()) {
// Assert that we do not have a cons or slice (indirect strings) here.
// Sequential strings have already been ruled out.
__ Ldr(x10, FieldMemOperand(subject, HeapObject::kMapOffset));
__ Ldrb(x10, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Tst(x10, kIsIndirectStringMask);
__ Check(eq, kExternalStringExpectedButNotFound);
__ And(x10, x10, kStringRepresentationMask);
__ Cmp(x10, 0);
__ Check(ne, kExternalStringExpectedButNotFound);
}
__ Ldr(subject,
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
// Move the pointer so that offset-wise, it looks like a sequential string.
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
__ Sub(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag);
__ B(&seq_string); // Go to (4).
// (7) If this is a short external string or not a string, bail out to
// runtime.
__ Bind(¬_long_external);
STATIC_ASSERT(kShortExternalStringTag != 0);
__ TestAndBranchIfAnySet(string_representation,
kShortExternalStringMask | kIsNotStringMask,
&runtime);
// (8) Sliced or thin string. Replace subject with parent.
Label thin_string;
__ Cmp(string_representation, kThinStringTag);
__ B(eq, &thin_string);
__ Ldr(sliced_string_offset,
UntagSmiFieldMemOperand(subject, SlicedString::kOffsetOffset));
__ Ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
__ B(&check_underlying); // Go to (1).
__ bind(&thin_string);
__ Ldr(subject, FieldMemOperand(subject, ThinString::kActualOffset));
__ B(&check_underlying); // Go to (1).
#endif
}
static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub,
Register argc, Register function,
Register feedback_vector, Register index,
Register new_target) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Number-of-arguments register must be smi-tagged to call out.
__ SmiTag(argc);
__ Push(argc, function, feedback_vector, index);
__ Push(cp);
DCHECK(feedback_vector.Is(x2) && index.Is(x3));
__ CallStub(stub);
__ Pop(cp);
__ Pop(index, feedback_vector, function, argc);
__ SmiUntag(argc);
}
static void GenerateRecordCallTarget(MacroAssembler* masm, Register argc,
Register function,
Register feedback_vector, Register index,
Register new_target, Register scratch1,
Register scratch2, Register scratch3) {
ASM_LOCATION("GenerateRecordCallTarget");
DCHECK(!AreAliased(scratch1, scratch2, scratch3, argc, function,
feedback_vector, index, new_target));
// Cache the called function in a feedback vector slot. Cache states are
// uninitialized, monomorphic (indicated by a JSFunction), and megamorphic.
// argc : number of arguments to the construct function
// function : the function to call
// feedback_vector : the feedback vector
// index : slot in feedback vector (smi)
Label initialize, done, miss, megamorphic, not_array_function;
DCHECK_EQ(*FeedbackVector::MegamorphicSentinel(masm->isolate()),
masm->isolate()->heap()->megamorphic_symbol());
DCHECK_EQ(*FeedbackVector::UninitializedSentinel(masm->isolate()),
masm->isolate()->heap()->uninitialized_symbol());
// Load the cache state.
Register feedback = scratch1;
Register feedback_map = scratch2;
Register feedback_value = scratch3;
__ Add(feedback, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Ldr(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize));
// A monomorphic cache hit or an already megamorphic state: invoke the
// function without changing the state.
// We don't know if feedback value is a WeakCell or a Symbol, but it's
// harmless to read at this position in a symbol (see static asserts in
// feedback-vector.h).
Label check_allocation_site;
__ Ldr(feedback_value, FieldMemOperand(feedback, WeakCell::kValueOffset));
__ Cmp(function, feedback_value);
__ B(eq, &done);
__ CompareRoot(feedback, Heap::kmegamorphic_symbolRootIndex);
__ B(eq, &done);
__ Ldr(feedback_map, FieldMemOperand(feedback, HeapObject::kMapOffset));
__ CompareRoot(feedback_map, Heap::kWeakCellMapRootIndex);
__ B(ne, &check_allocation_site);
// If the weak cell is cleared, we have a new chance to become monomorphic.
__ JumpIfSmi(feedback_value, &initialize);
__ B(&megamorphic);
__ bind(&check_allocation_site);
// If we came here, we need to see if we are the array function.
// If we didn't have a matching function, and we didn't find the megamorph
// sentinel, then we have in the slot either some other function or an
// AllocationSite.
__ JumpIfNotRoot(feedback_map, Heap::kAllocationSiteMapRootIndex, &miss);
// Make sure the function is the Array() function
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1);
__ Cmp(function, scratch1);
__ B(ne, &megamorphic);
__ B(&done);
__ Bind(&miss);
// A monomorphic miss (i.e, here the cache is not uninitialized) goes
// megamorphic.
__ JumpIfRoot(scratch1, Heap::kuninitialized_symbolRootIndex, &initialize);
// MegamorphicSentinel is an immortal immovable object (undefined) so no
// write-barrier is needed.
__ Bind(&megamorphic);
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ LoadRoot(scratch2, Heap::kmegamorphic_symbolRootIndex);
__ Str(scratch2, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ B(&done);
// An uninitialized cache is patched with the function or sentinel to
// indicate the ElementsKind if function is the Array constructor.
__ Bind(&initialize);
// Make sure the function is the Array() function
__ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, scratch1);
__ Cmp(function, scratch1);
__ B(ne, ¬_array_function);
// The target function is the Array constructor,
// Create an AllocationSite if we don't already have it, store it in the
// slot.
CreateAllocationSiteStub create_stub(masm->isolate());
CallStubInRecordCallTarget(masm, &create_stub, argc, function,
feedback_vector, index, new_target);
__ B(&done);
__ Bind(¬_array_function);
CreateWeakCellStub weak_cell_stub(masm->isolate());
CallStubInRecordCallTarget(masm, &weak_cell_stub, argc, function,
feedback_vector, index, new_target);
__ Bind(&done);
// Increment the call count for all function calls.
__ Add(scratch1, feedback_vector,
Operand::UntagSmiAndScale(index, kPointerSizeLog2));
__ Add(scratch1, scratch1, Operand(FixedArray::kHeaderSize + kPointerSize));
__ Ldr(scratch2, FieldMemOperand(scratch1, 0));
__ Add(scratch2, scratch2, Operand(Smi::FromInt(1)));
__ Str(scratch2, FieldMemOperand(scratch1, 0));
}
void CallConstructStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("CallConstructStub::Generate");
// x0 : number of arguments
// x1 : the function to call
// x2 : feedback vector
// x3 : slot in feedback vector (Smi, for RecordCallTarget)
Register function = x1;
Label non_function;
// Check that the function is not a smi.
__ JumpIfSmi(function, &non_function);
// Check that the function is a JSFunction.
Register object_type = x10;
__ JumpIfNotObjectType(function, object_type, object_type, JS_FUNCTION_TYPE,
&non_function);
GenerateRecordCallTarget(masm, x0, function, x2, x3, x4, x5, x11, x12);
__ Add(x5, x2, Operand::UntagSmiAndScale(x3, kPointerSizeLog2));
Label feedback_register_initialized;
// Put the AllocationSite from the feedback vector into x2, or undefined.
__ Ldr(x2, FieldMemOperand(x5, FixedArray::kHeaderSize));
__ Ldr(x5, FieldMemOperand(x2, AllocationSite::kMapOffset));
__ JumpIfRoot(x5, Heap::kAllocationSiteMapRootIndex,
&feedback_register_initialized);
__ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
__ bind(&feedback_register_initialized);
__ AssertUndefinedOrAllocationSite(x2, x5);
__ Mov(x3, function);
// Tail call to the function-specific construct stub (still in the caller
// context at this point).
__ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset));
__ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset));
__ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag);
__ Br(x4);
__ Bind(&non_function);
__ Mov(x3, function);
__ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET);
}
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
// If the receiver is a smi trigger the non-string case.
if (check_mode_ == RECEIVER_IS_UNKNOWN) {
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ TestAndBranchIfAnySet(result_, kIsNotStringMask, receiver_not_string_);
}
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
__ Bind(&got_smi_index_);
// Check for index out of range.
__ Ldrsw(result_, UntagSmiFieldMemOperand(object_, String::kLengthOffset));
__ Cmp(result_, Operand::UntagSmi(index_));
__ B(ls, index_out_of_range_);
__ SmiUntag(index_);
StringCharLoadGenerator::Generate(masm,
object_,
index_.W(),
result_,
&call_runtime_);
__ SmiTag(result_);
__ Bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, EmbedMode embed_mode,
const RuntimeCallHelper& call_helper) {
__ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
__ Bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ JumpIfNotHeapNumber(index_, index_not_number_);
call_helper.BeforeCall(masm);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Push(LoadWithVectorDescriptor::VectorRegister(),
LoadWithVectorDescriptor::SlotRegister(), object_, index_);
} else {
// Save object_ on the stack and pass index_ as argument for runtime call.
__ Push(object_, index_);
}
__ CallRuntime(Runtime::kNumberToSmi);
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ Mov(index_, x0);
if (embed_mode == PART_OF_IC_HANDLER) {
__ Pop(object_, LoadWithVectorDescriptor::SlotRegister(),
LoadWithVectorDescriptor::VectorRegister());
} else {
__ Pop(object_);
}
// Reload the instance type.
__ Ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
__ Ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(index_, index_out_of_range_);
// Otherwise, return to the fast path.
__ B(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ Bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ SmiTag(index_);
__ Push(object_, index_);
__ CallRuntime(Runtime::kStringCharCodeAtRT);
__ Mov(result_, x0);
call_helper.AfterCall(masm);
__ B(&exit_);
__ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
}
void CompareICStub::GenerateBooleans(MacroAssembler* masm) {
// Inputs are in x0 (lhs) and x1 (rhs).
DCHECK_EQ(CompareICState::BOOLEAN, state());
ASM_LOCATION("CompareICStub[Booleans]");
Label miss;
__ CheckMap(x1, x2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
__ CheckMap(x0, x3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK);
if (!Token::IsEqualityOp(op())) {
__ Ldr(x1, FieldMemOperand(x1, Oddball::kToNumberOffset));
__ AssertSmi(x1);
__ Ldr(x0, FieldMemOperand(x0, Oddball::kToNumberOffset));
__ AssertSmi(x0);
}
__ Sub(x0, x1, x0);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateSmis(MacroAssembler* masm) {
// Inputs are in x0 (lhs) and x1 (rhs).
DCHECK(state() == CompareICState::SMI);
ASM_LOCATION("CompareICStub[Smis]");
Label miss;
// Bail out (to 'miss') unless both x0 and x1 are smis.
__ JumpIfEitherNotSmi(x0, x1, &miss);
if (GetCondition() == eq) {
// For equality we do not care about the sign of the result.
__ Sub(x0, x0, x1);
} else {
// Untag before subtracting to avoid handling overflow.
__ SmiUntag(x1);
__ Sub(x0, x1, Operand::UntagSmi(x0));
}
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
DCHECK(state() == CompareICState::NUMBER);
ASM_LOCATION("CompareICStub[HeapNumbers]");
Label unordered, maybe_undefined1, maybe_undefined2;
Label miss, handle_lhs, values_in_d_regs;
Label untag_rhs, untag_lhs;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
FPRegister rhs_d = d0;
FPRegister lhs_d = d1;
if (left() == CompareICState::SMI) {
__ JumpIfNotSmi(lhs, &miss);
}
if (right() == CompareICState::SMI) {
__ JumpIfNotSmi(rhs, &miss);
}
__ SmiUntagToDouble(rhs_d, rhs, kSpeculativeUntag);
__ SmiUntagToDouble(lhs_d, lhs, kSpeculativeUntag);
// Load rhs if it's a heap number.
__ JumpIfSmi(rhs, &handle_lhs);
__ JumpIfNotHeapNumber(rhs, &maybe_undefined1);
__ Ldr(rhs_d, FieldMemOperand(rhs, HeapNumber::kValueOffset));
// Load lhs if it's a heap number.
__ Bind(&handle_lhs);
__ JumpIfSmi(lhs, &values_in_d_regs);
__ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
__ Ldr(lhs_d, FieldMemOperand(lhs, HeapNumber::kValueOffset));
__ Bind(&values_in_d_regs);
__ Fcmp(lhs_d, rhs_d);
__ B(vs, &unordered); // Overflow flag set if either is NaN.
STATIC_ASSERT((LESS == -1) && (EQUAL == 0) && (GREATER == 1));
__ Cset(result, gt); // gt => 1, otherwise (lt, eq) => 0 (EQUAL).
__ Csinv(result, result, xzr, ge); // lt => -1, gt => 1, eq => 0.
__ Ret();
__ Bind(&unordered);
CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
CompareICState::GENERIC, CompareICState::GENERIC);
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
__ Bind(&maybe_undefined1);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ JumpIfNotRoot(rhs, Heap::kUndefinedValueRootIndex, &miss);
__ JumpIfSmi(lhs, &unordered);
__ JumpIfNotHeapNumber(lhs, &maybe_undefined2);
__ B(&unordered);
}
__ Bind(&maybe_undefined2);
if (Token::IsOrderedRelationalCompareOp(op())) {
__ JumpIfRoot(lhs, Heap::kUndefinedValueRootIndex, &unordered);
}
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::INTERNALIZED_STRING);
ASM_LOCATION("CompareICStub[InternalizedStrings]");
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(lhs, rhs, &miss);
// Check that both operands are internalized strings.
Register rhs_map = x10;
Register lhs_map = x11;
Register rhs_type = x10;
Register lhs_type = x11;
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
__ Orr(x12, lhs_type, rhs_type);
__ TestAndBranchIfAnySet(
x12, kIsNotStringMask | kIsNotInternalizedMask, &miss);
// Internalized strings are compared by identity.
STATIC_ASSERT(EQUAL == 0);
__ Cmp(lhs, rhs);
__ Cset(result, ne);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
DCHECK(state() == CompareICState::UNIQUE_NAME);
ASM_LOCATION("CompareICStub[UniqueNames]");
DCHECK(GetCondition() == eq);
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
Register lhs_instance_type = w2;
Register rhs_instance_type = w3;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(lhs, rhs, &miss);
// Check that both operands are unique names. This leaves the instance
// types loaded in tmp1 and tmp2.
__ Ldr(x10, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldr(x11, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldrb(lhs_instance_type, FieldMemOperand(x10, Map::kInstanceTypeOffset));
__ Ldrb(rhs_instance_type, FieldMemOperand(x11, Map::kInstanceTypeOffset));
// To avoid a miss, each instance type should be either SYMBOL_TYPE or it
// should have kInternalizedTag set.
__ JumpIfNotUniqueNameInstanceType(lhs_instance_type, &miss);
__ JumpIfNotUniqueNameInstanceType(rhs_instance_type, &miss);
// Unique names are compared by identity.
STATIC_ASSERT(EQUAL == 0);
__ Cmp(lhs, rhs);
__ Cset(result, ne);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateStrings(MacroAssembler* masm) {
DCHECK(state() == CompareICState::STRING);
ASM_LOCATION("CompareICStub[Strings]");
Label miss;
bool equality = Token::IsEqualityOp(op());
Register result = x0;
Register rhs = x0;
Register lhs = x1;
// Check that both operands are heap objects.
__ JumpIfEitherSmi(rhs, lhs, &miss);
// Check that both operands are strings.
Register rhs_map = x10;
Register lhs_map = x11;
Register rhs_type = x10;
Register lhs_type = x11;
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldrb(lhs_type, FieldMemOperand(lhs_map, Map::kInstanceTypeOffset));
__ Ldrb(rhs_type, FieldMemOperand(rhs_map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ Orr(x12, lhs_type, rhs_type);
__ Tbnz(x12, MaskToBit(kIsNotStringMask), &miss);
// Fast check for identical strings.
Label not_equal;
__ Cmp(lhs, rhs);
__ B(ne, ¬_equal);
__ Mov(result, EQUAL);
__ Ret();
__ Bind(¬_equal);
// Handle not identical strings
// Check that both strings are internalized strings. If they are, we're done
// because we already know they are not identical. We know they are both
// strings.
if (equality) {
DCHECK(GetCondition() == eq);
STATIC_ASSERT(kInternalizedTag == 0);
Label not_internalized_strings;
__ Orr(x12, lhs_type, rhs_type);
__ TestAndBranchIfAnySet(
x12, kIsNotInternalizedMask, ¬_internalized_strings);
// Result is in rhs (x0), and not EQUAL, as rhs is not a smi.
__ Ret();
__ Bind(¬_internalized_strings);
}
// Check that both strings are sequential one-byte.
Label runtime;
__ JumpIfBothInstanceTypesAreNotSequentialOneByte(lhs_type, rhs_type, x12,
x13, &runtime);
// Compare flat one-byte strings. Returns when done.
if (equality) {
StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, x10, x11,
x12);
} else {
StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, x10, x11,
x12, x13);
}
// Handle more complex cases in runtime.
__ Bind(&runtime);
if (equality) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(lhs, rhs);
__ CallRuntime(Runtime::kStringEqual);
}
__ LoadRoot(x1, Heap::kTrueValueRootIndex);
__ Sub(x0, x0, x1);
__ Ret();
} else {
__ Push(lhs, rhs);
__ TailCallRuntime(Runtime::kStringCompare);
}
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateReceivers(MacroAssembler* masm) {
DCHECK_EQ(CompareICState::RECEIVER, state());
ASM_LOCATION("CompareICStub[Receivers]");
Label miss;
Register result = x0;
Register rhs = x0;
Register lhs = x1;
__ JumpIfEitherSmi(rhs, lhs, &miss);
STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE);
__ JumpIfObjectType(rhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt);
__ JumpIfObjectType(lhs, x10, x10, FIRST_JS_RECEIVER_TYPE, &miss, lt);
DCHECK_EQ(eq, GetCondition());
__ Sub(result, rhs, lhs);
__ Ret();
__ Bind(&miss);
GenerateMiss(masm);
}
void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) {
ASM_LOCATION("CompareICStub[KnownReceivers]");
Label miss;
Handle<WeakCell> cell = Map::WeakCellForMap(known_map_);
Register result = x0;
Register rhs = x0;
Register lhs = x1;
__ JumpIfEitherSmi(rhs, lhs, &miss);
Register rhs_map = x10;
Register lhs_map = x11;
Register map = x12;
__ GetWeakValue(map, cell);
__ Ldr(rhs_map, FieldMemOperand(rhs, HeapObject::kMapOffset));
__ Ldr(lhs_map, FieldMemOperand(lhs, HeapObject::kMapOffset));
__ Cmp(rhs_map, map);
__ B(ne, &miss);
__ Cmp(lhs_map, map);
__ B(ne, &miss);
if (Token::IsEqualityOp(op())) {
__ Sub(result, rhs, lhs);
__ Ret();
} else {
Register ncr = x2;
if (op() == Token::LT || op() == Token::LTE) {
__ Mov(ncr, Smi::FromInt(GREATER));
} else {
__ Mov(ncr, Smi::FromInt(LESS));
}
__ Push(lhs, rhs, ncr);
__ TailCallRuntime(Runtime::kCompare);
}
__ Bind(&miss);
GenerateMiss(masm);
}
// This method handles the case where a compare stub had the wrong
// implementation. It calls a miss handler, which re-writes the stub. All other
// CompareICStub::Generate* methods should fall back into this one if their
// operands were not the expected types.
void CompareICStub::GenerateMiss(MacroAssembler* masm) {
ASM_LOCATION("CompareICStub[Miss]");
Register stub_entry = x11;
{
FrameScope scope(masm, StackFrame::INTERNAL);
Register op = x10;
Register left = x1;
Register right = x0;
// Preserve some caller-saved registers.
__ Push(x1, x0, lr);
// Push the arguments.
__ Mov(op, Smi::FromInt(this->op()));
__ Push(left, right, op);
// Call the miss handler. This also pops the arguments.
__ CallRuntime(Runtime::kCompareIC_Miss);
// Compute the entry point of the rewritten stub.
__ Add(stub_entry, x0, Code::kHeaderSize - kHeapObjectTag);
// Restore caller-saved registers.
__ Pop(lr, x0, x1);
}
// Tail-call to the new stub.
__ Jump(stub_entry);
}
void StringHelper::GenerateFlatOneByteStringEquals(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3) {
DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3));
Register result = x0;
Register left_length = scratch1;
Register right_length = scratch2;
// Compare lengths. If lengths differ, strings can't be equal. Lengths are
// smis, and don't need to be untagged.
Label strings_not_equal, check_zero_length;
__ Ldr(left_length, FieldMemOperand(left, String::kLengthOffset));
__ Ldr(right_length, FieldMemOperand(right, String::kLengthOffset));
__ Cmp(left_length, right_length);
__ B(eq, &check_zero_length);
__ Bind(&strings_not_equal);
__ Mov(result, Smi::FromInt(NOT_EQUAL));
__ Ret();
// Check if the length is zero. If so, the strings must be equal (and empty.)
Label compare_chars;
__ Bind(&check_zero_length);
STATIC_ASSERT(kSmiTag == 0);
__ Cbnz(left_length, &compare_chars);
__ Mov(result, Smi::FromInt(EQUAL));
__ Ret();
// Compare characters. Falls through if all characters are equal.
__ Bind(&compare_chars);
GenerateOneByteCharsCompareLoop(masm, left, right, left_length, scratch2,
scratch3, &strings_not_equal);
// Characters in strings are equal.
__ Mov(result, Smi::FromInt(EQUAL));
__ Ret();
}
void StringHelper::GenerateCompareFlatOneByteStrings(
MacroAssembler* masm, Register left, Register right, Register scratch1,
Register scratch2, Register scratch3, Register scratch4) {
DCHECK(!AreAliased(left, right, scratch1, scratch2, scratch3, scratch4));
Label result_not_equal, compare_lengths;
// Find minimum length and length difference.
Register length_delta = scratch3;
__ Ldr(scratch1, FieldMemOperand(left, String::kLengthOffset));
__ Ldr(scratch2, FieldMemOperand(right, String::kLengthOffset));
__ Subs(length_delta, scratch1, scratch2);
Register min_length = scratch1;
__ Csel(min_length, scratch2, scratch1, gt);
__ Cbz(min_length, &compare_lengths);
// Compare loop.
GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
scratch4, &result_not_equal);
// Compare lengths - strings up to min-length are equal.
__ Bind(&compare_lengths);
DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
// Use length_delta as result if it's zero.
Register result = x0;
__ Subs(result, length_delta, 0);
__ Bind(&result_not_equal);
Register greater = x10;
Register less = x11;
__ Mov(greater, Smi::FromInt(GREATER));
__ Mov(less, Smi::FromInt(LESS));
__ CmovX(result, greater, gt);
__ CmovX(result, less, lt);
__ Ret();
}
void StringHelper::GenerateOneByteCharsCompareLoop(
MacroAssembler* masm, Register left, Register right, Register length,
Register scratch1, Register scratch2, Label* chars_not_equal) {
DCHECK(!AreAliased(left, right, length, scratch1, scratch2));
// Change index to run from -length to -1 by adding length to string
// start. This means that loop ends when index reaches zero, which
// doesn't need an additional compare.
__ SmiUntag(length);
__ Add(scratch1, length, SeqOneByteString::kHeaderSize - kHeapObjectTag);
__ Add(left, left, scratch1);
__ Add(right, right, scratch1);
Register index = length;
__ Neg(index, length); // index = -length;
// Compare loop
Label loop;
__ Bind(&loop);
__ Ldrb(scratch1, MemOperand(left, index));
__ Ldrb(scratch2, MemOperand(right, index));
__ Cmp(scratch1, scratch2);
__ B(ne, chars_not_equal);
__ Add(index, index, 1);
__ Cbnz(index, &loop);
}
void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x1 : left
// -- x0 : right
// -- lr : return address
// -----------------------------------
// Load x2 with the allocation site. We stick an undefined dummy value here
// and replace it with the real allocation site later when we instantiate this
// stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
__ LoadObject(x2, handle(isolate()->heap()->undefined_value()));
// Make sure that we actually patched the allocation site.
if (FLAG_debug_code) {
__ AssertNotSmi(x2, kExpectedAllocationSite);
__ Ldr(x10, FieldMemOperand(x2, HeapObject::kMapOffset));
__ AssertRegisterIsRoot(x10, Heap::kAllocationSiteMapRootIndex,
kExpectedAllocationSite);
}
// Tail call into the stub that handles binary operations with allocation
// sites.
BinaryOpWithAllocationSiteStub stub(isolate(), state());
__ TailCallStub(&stub);
}
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
// We need some extra registers for this stub, they have been allocated
// but we need to save them before using them.
regs_.Save(masm);
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
Label dont_need_remembered_set;
Register val = regs_.scratch0();
__ Ldr(val, MemOperand(regs_.address()));
__ JumpIfNotInNewSpace(val, &dont_need_remembered_set);
__ JumpIfInNewSpace(regs_.object(), &dont_need_remembered_set);
// First notify the incremental marker if necessary, then update the
// remembered set.
CheckNeedsToInformIncrementalMarker(
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm); // Restore the extra scratch registers we used.
__ RememberedSetHelper(object(), address(),
value(), // scratch1
save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
__ Bind(&dont_need_remembered_set);
}
CheckNeedsToInformIncrementalMarker(
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
InformIncrementalMarker(masm);
regs_.Restore(masm); // Restore the extra scratch registers we used.
__ Ret();
}
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
Register address =
x0.Is(regs_.address()) ? regs_.scratch0() : regs_.address();
DCHECK(!address.Is(regs_.object()));
DCHECK(!address.Is(x0));
__ Mov(address, regs_.address());
__ Mov(x0, regs_.object());
__ Mov(x1, address);
__ Mov(x2, ExternalReference::isolate_address(isolate()));
AllowExternalCallThatCantCauseGC scope(masm);
ExternalReference function =
ExternalReference::incremental_marking_record_write_function(
isolate());
__ CallCFunction(function, 3, 0);
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
}
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
MacroAssembler* masm,
OnNoNeedToInformIncrementalMarker on_no_need,
Mode mode) {
Label on_black;
Label need_incremental;
Label need_incremental_pop_scratch;
// If the object is not black we don't have to inform the incremental marker.
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
regs_.Restore(masm); // Restore the extra scratch registers we used.
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(),
value(), // scratch1
save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ Bind(&on_black);
// Get the value from the slot.
Register val = regs_.scratch0();
__ Ldr(val, MemOperand(regs_.address()));
if (mode == INCREMENTAL_COMPACTION) {
Label ensure_not_white;
__ CheckPageFlagClear(val, regs_.scratch1(),
MemoryChunk::kEvacuationCandidateMask,
&ensure_not_white);
__ CheckPageFlagClear(regs_.object(),
regs_.scratch1(),
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
&need_incremental);
__ Bind(&ensure_not_white);
}
// We need extra registers for this, so we push the object and the address
// register temporarily.
__ Push(regs_.address(), regs_.object());
__ JumpIfWhite(val,
regs_.scratch1(), // Scratch.
regs_.object(), // Scratch.
regs_.address(), // Scratch.
regs_.scratch2(), // Scratch.
&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
regs_.Restore(masm); // Restore the extra scratch registers we used.
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
__ RememberedSetHelper(object(), address(),
value(), // scratch1
save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
} else {
__ Ret();
}
__ Bind(&need_incremental_pop_scratch);
__ Pop(regs_.object(), regs_.address());
__ Bind(&need_incremental);
// Fall through when we need to inform the incremental marker.
}
void RecordWriteStub::Generate(MacroAssembler* masm) {
Label skip_to_incremental_noncompacting;
Label skip_to_incremental_compacting;
// We patch these two first instructions back and forth between a nop and
// real branch when we start and stop incremental heap marking.
// Initially the stub is expected to be in STORE_BUFFER_ONLY mode, so 2 nops
// are generated.
// See RecordWriteStub::Patch for details.
{
InstructionAccurateScope scope(masm, 2);
__ adr(xzr, &skip_to_incremental_noncompacting);
__ adr(xzr, &skip_to_incremental_compacting);
}
if (remembered_set_action() == EMIT_REMEMBERED_SET) {
__ RememberedSetHelper(object(), address(),
value(), // scratch1
save_fp_regs_mode(), MacroAssembler::kReturnAtEnd);
}
__ Ret();
__ Bind(&skip_to_incremental_noncompacting);
GenerateIncremental(masm, INCREMENTAL);
__ Bind(&skip_to_incremental_compacting);
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
}
void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
CEntryStub ces(isolate(), 1, kSaveFPRegs);
__ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
int parameter_count_offset =
StubFailureTrampolineFrameConstants::kArgumentsLengthOffset;
__ Ldr(x1, MemOperand(fp, parameter_count_offset));
if (function_mode() == JS_FUNCTION_STUB_MODE) {
__ Add(x1, x1, 1);
}
masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
__ Drop(x1);
// Return to IC Miss stub, continuation still on stack.
__ Ret();
}
// The entry hook is a "BumpSystemStackPointer" instruction (sub), followed by
// a "Push lr" instruction, followed by a call.
static const unsigned int kProfileEntryHookCallSize =
Assembler::kCallSizeWithRelocation + (2 * kInstructionSize);
void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
if (masm->isolate()->function_entry_hook() != NULL) {
ProfileEntryHookStub stub(masm->isolate());
Assembler::BlockConstPoolScope no_const_pools(masm);
DontEmitDebugCodeScope no_debug_code(masm);
Label entry_hook_call_start;
__ Bind(&entry_hook_call_start);
__ Push(lr);
__ CallStub(&stub);
DCHECK(masm->SizeOfCodeGeneratedSince(&entry_hook_call_start) ==
kProfileEntryHookCallSize);
__ Pop(lr);
}
}
void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
MacroAssembler::NoUseRealAbortsScope no_use_real_aborts(masm);
// Save all kCallerSaved registers (including lr), since this can be called
// from anywhere.
// TODO(jbramley): What about FP registers?
__ PushCPURegList(kCallerSaved);
DCHECK(kCallerSaved.IncludesAliasOf(lr));
const int kNumSavedRegs = kCallerSaved.Count();
// Compute the function's address as the first argument.
__ Sub(x0, lr, kProfileEntryHookCallSize);
#if V8_HOST_ARCH_ARM64
uintptr_t entry_hook =
reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
__ Mov(x10, entry_hook);
#else
// Under the simulator we need to indirect the entry hook through a trampoline
// function at a known address.
ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
__ Mov(x10, Operand(ExternalReference(&dispatcher,
ExternalReference::BUILTIN_CALL,
isolate())));
// It additionally takes an isolate as a third parameter
__ Mov(x2, ExternalReference::isolate_address(isolate()));
#endif
// The caller's return address is above the saved temporaries.
// Grab its location for the second argument to the hook.
__ Add(x1, __ StackPointer(), kNumSavedRegs * kPointerSize);
{
// Create a dummy frame, as CallCFunction requires this.
FrameScope frame(masm, StackFrame::MANUAL);
__ CallCFunction(x10, 2, 0);
}
__ PopCPURegList(kCallerSaved);
__ Ret();
}
void DirectCEntryStub::Generate(MacroAssembler* masm) {
// When calling into C++ code the stack pointer must be csp.
// Therefore this code must use csp for peek/poke operations when the
// stub is generated. When the stub is called
// (via DirectCEntryStub::GenerateCall), the caller must setup an ExitFrame
// and configure the stack pointer *before* doing the call.
const Register old_stack_pointer = __ StackPointer();
__ SetStackPointer(csp);
// Put return address on the stack (accessible to GC through exit frame pc).
__ Poke(lr, 0);
// Call the C++ function.
__ Blr(x10);
// Return to calling code.
__ Peek(lr, 0);
__ AssertFPCRState();
__ Ret();
__ SetStackPointer(old_stack_pointer);
}
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
Register target) {
// Make sure the caller configured the stack pointer (see comment in
// DirectCEntryStub::Generate).
DCHECK(csp.Is(__ StackPointer()));
intptr_t code =
reinterpret_cast<intptr_t>(GetCode().location());
__ Mov(lr, Operand(code, RelocInfo::CODE_TARGET));
__ Mov(x10, target);
// Branch to the stub.
__ Blr(lr);
}
void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
Label* miss,
Label* done,
Register receiver,
Register properties,
Handle<Name> name,
Register scratch0) {
DCHECK(!AreAliased(receiver, properties, scratch0));
DCHECK(name->IsUniqueName());
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the hole value).
for (int i = 0; i < kInlinedProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch0;
// Capacity is smi 2^n.
__ Ldrsw(index, UntagSmiFieldMemOperand(properties, kCapacityOffset));
__ Sub(index, index, 1);
__ And(index, index, name->Hash() + NameDictionary::GetProbeOffset(i));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
Register entity_name = scratch0;
// Having undefined at this place means the name is not contained.
Register tmp = index;
__ Add(tmp, properties, Operand(index, LSL, kPointerSizeLog2));
__ Ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
__ JumpIfRoot(entity_name, Heap::kUndefinedValueRootIndex, done);
// Stop if found the property.
__ Cmp(entity_name, Operand(name));
__ B(eq, miss);
Label good;
__ JumpIfRoot(entity_name, Heap::kTheHoleValueRootIndex, &good);
// Check if the entry name is not a unique name.
__ Ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ Ldrb(entity_name,
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entity_name, miss);
__ Bind(&good);
}
CPURegList spill_list(CPURegister::kRegister, kXRegSizeInBits, 0, 6);
spill_list.Combine(lr);
spill_list.Remove(scratch0); // Scratch registers don't need to be preserved.
__ PushCPURegList(spill_list);
__ Ldr(x0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ Mov(x1, Operand(name));
NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
__ CallStub(&stub);
// Move stub return value to scratch0. Note that scratch0 is not included in
// spill_list and won't be clobbered by PopCPURegList.
__ Mov(scratch0, x0);
__ PopCPURegList(spill_list);
__ Cbz(scratch0, done);
__ B(miss);
}
void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
// This stub overrides SometimesSetsUpAFrame() to return false. That means
// we cannot call anything that could cause a GC from this stub.
//
// Arguments are in x0 and x1:
// x0: property dictionary.
// x1: the name of the property we are looking for.
//
// Return value is in x0 and is zero if lookup failed, non zero otherwise.
// If the lookup is successful, x2 will contains the index of the entry.
Register result = x0;
Register dictionary = x0;
Register key = x1;
Register index = x2;
Register mask = x3;
Register hash = x4;
Register undefined = x5;
Register entry_key = x6;
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
__ Ldrsw(mask, UntagSmiFieldMemOperand(dictionary, kCapacityOffset));
__ Sub(mask, mask, 1);
__ Ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
// Capacity is smi 2^n.
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
DCHECK(NameDictionary::GetProbeOffset(i) <
1 << (32 - Name::kHashFieldOffset));
__ Add(index, hash,
NameDictionary::GetProbeOffset(i) << Name::kHashShift);
} else {
__ Mov(index, hash);
}
__ And(index, mask, Operand(index, LSR, Name::kHashShift));
// Scale the index by multiplying by the entry size.
STATIC_ASSERT(NameDictionary::kEntrySize == 3);
__ Add(index, index, Operand(index, LSL, 1)); // index *= 3.
__ Add(index, dictionary, Operand(index, LSL, kPointerSizeLog2));
__ Ldr(entry_key, FieldMemOperand(index, kElementsStartOffset));
// Having undefined at this place means the name is not contained.
__ Cmp(entry_key, undefined);
__ B(eq, ¬_in_dictionary);
// Stop if found the property.
__ Cmp(entry_key, key);
__ B(eq, &in_dictionary);
if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
// Check if the entry name is not a unique name.
__ Ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
__ Ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary);
}
}
__ Bind(&maybe_in_dictionary);
// If we are doing negative lookup then probing failure should be
// treated as a lookup success. For positive lookup, probing failure
// should be treated as lookup failure.
if (mode() == POSITIVE_LOOKUP) {
__ Mov(result, 0);
__ Ret();
}
__ Bind(&in_dictionary);
__ Mov(result, 1);
__ Ret();
__ Bind(¬_in_dictionary);
__ Mov(result, 0);
__ Ret();
}
template<class T>
static void CreateArrayDispatch(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
ASM_LOCATION("CreateArrayDispatch");
if (mode == DISABLE_ALLOCATION_SITES) {
T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
Register kind = x3;
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
// TODO(jbramley): Is this the best way to handle this? Can we make the
// tail calls conditional, rather than hopping over each one?
__ CompareAndBranch(kind, candidate_kind, ne, &next);
T stub(masm->isolate(), candidate_kind);
__ TailCallStub(&stub);
__ Bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
// TODO(jbramley): If this needs to be a special case, make it a proper template
// specialization, and not a separate function.
static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
ASM_LOCATION("CreateArrayDispatchOneArgument");
// x0 - argc
// x1 - constructor?
// x2 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
// x3 - kind (if mode != DISABLE_ALLOCATION_SITES)
// sp[0] - last argument
Register allocation_site = x2;
Register kind = x3;
Label normal_sequence;
if (mode == DONT_OVERRIDE) {
STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(FAST_ELEMENTS == 2);
STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
// Is the low bit set? If so, the array is holey.
__ Tbnz(kind, 0, &normal_sequence);
}
// Look at the last argument.
// TODO(jbramley): What does a 0 argument represent?
__ Peek(x10, 0);
__ Cbz(x10, &normal_sequence);
if (mode == DISABLE_ALLOCATION_SITES) {
ElementsKind initial = GetInitialFastElementsKind();
ElementsKind holey_initial = GetHoleyElementsKind(initial);
ArraySingleArgumentConstructorStub stub_holey(masm->isolate(),
holey_initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub_holey);
__ Bind(&normal_sequence);
ArraySingleArgumentConstructorStub stub(masm->isolate(),
initial,
DISABLE_ALLOCATION_SITES);
__ TailCallStub(&stub);
} else if (mode == DONT_OVERRIDE) {
// We are going to create a holey array, but our kind is non-holey.
// Fix kind and retry (only if we have an allocation site in the slot).
__ Orr(kind, kind, 1);
if (FLAG_debug_code) {
__ Ldr(x10, FieldMemOperand(allocation_site, 0));
__ JumpIfNotRoot(x10, Heap::kAllocationSiteMapRootIndex,
&normal_sequence);
__ Assert(eq, kExpectedAllocationSite);
}
// Save the resulting elements kind in type info. We can't just store 'kind'
// in the AllocationSite::transition_info field because elements kind is
// restricted to a portion of the field; upper bits need to be left alone.
STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
__ Ldr(x11, FieldMemOperand(allocation_site,
AllocationSite::kTransitionInfoOffset));
__ Add(x11, x11, Smi::FromInt(kFastElementsKindPackedToHoley));
__ Str(x11, FieldMemOperand(allocation_site,
AllocationSite::kTransitionInfoOffset));
__ Bind(&normal_sequence);
int last_index =
GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= last_index; ++i) {
Label next;
ElementsKind candidate_kind = GetFastElementsKindFromSequenceIndex(i);
__ CompareAndBranch(kind, candidate_kind, ne, &next);
ArraySingleArgumentConstructorStub stub(masm->isolate(), candidate_kind);
__ TailCallStub(&stub);
__ Bind(&next);
}
// If we reached this point there is a problem.
__ Abort(kUnexpectedElementsKindInArrayConstructor);
} else {
UNREACHABLE();
}
}
template<class T>
static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
int to_index = GetSequenceIndexFromFastElementsKind(
TERMINAL_FAST_ELEMENTS_KIND);
for (int i = 0; i <= to_index; ++i) {
ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
T stub(isolate, kind);
stub.GetCode();
if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
stub1.GetCode();
}
}
}
void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) {
ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
isolate);
ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
isolate);
ArrayNArgumentsConstructorStub stub(isolate);
stub.GetCode();
ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS };
for (int i = 0; i < 2; i++) {
// For internal arrays we only need a few things
InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
stubh1.GetCode();
InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
stubh2.GetCode();
}
}
void ArrayConstructorStub::GenerateDispatchToArrayStub(
MacroAssembler* masm,
AllocationSiteOverrideMode mode) {
Register argc = x0;
Label zero_case, n_case;
__ Cbz(argc, &zero_case);
__ Cmp(argc, 1);
__ B(ne, &n_case);
// One argument.
CreateArrayDispatchOneArgument(masm, mode);
__ Bind(&zero_case);
// No arguments.
CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
__ Bind(&n_case);
// N arguments.
ArrayNArgumentsConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void ArrayConstructorStub::Generate(MacroAssembler* masm) {
ASM_LOCATION("ArrayConstructorStub::Generate");
// ----------- S t a t e -------------
// -- x0 : argc (only if argument_count() is ANY or MORE_THAN_ONE)
// -- x1 : constructor
// -- x2 : AllocationSite or undefined
// -- x3 : new target
// -- sp[0] : last argument
// -----------------------------------
Register constructor = x1;
Register allocation_site = x2;
Register new_target = x3;
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
Label unexpected_map, map_ok;
// Initial map for the builtin Array function should be a map.
__ Ldr(x10, FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ JumpIfSmi(x10, &unexpected_map);
__ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
__ Bind(&unexpected_map);
__ Abort(kUnexpectedInitialMapForArrayFunction);
__ Bind(&map_ok);
// We should either have undefined in the allocation_site register or a
// valid AllocationSite.
__ AssertUndefinedOrAllocationSite(allocation_site, x10);
}
// Enter the context of the Array function.
__ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
Label subclassing;
__ Cmp(new_target, constructor);
__ B(ne, &subclassing);
Register kind = x3;
Label no_info;
// Get the elements kind and case on that.
__ JumpIfRoot(allocation_site, Heap::kUndefinedValueRootIndex, &no_info);
__ Ldrsw(kind,
UntagSmiFieldMemOperand(allocation_site,
AllocationSite::kTransitionInfoOffset));
__ And(kind, kind, AllocationSite::ElementsKindBits::kMask);
GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
__ Bind(&no_info);
GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
// Subclassing support.
__ Bind(&subclassing);
__ Poke(constructor, Operand(x0, LSL, kPointerSizeLog2));
__ Add(x0, x0, Operand(3));
__ Push(new_target, allocation_site);
__ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate()));
}
void InternalArrayConstructorStub::GenerateCase(
MacroAssembler* masm, ElementsKind kind) {
Label zero_case, n_case;
Register argc = x0;
__ Cbz(argc, &zero_case);
__ CompareAndBranch(argc, 1, ne, &n_case);
// One argument.
if (IsFastPackedElementsKind(kind)) {
Label packed_case;
// We might need to create a holey array; look at the first argument.
__ Peek(x10, 0);
__ Cbz(x10, &packed_case);
InternalArraySingleArgumentConstructorStub
stub1_holey(isolate(), GetHoleyElementsKind(kind));
__ TailCallStub(&stub1_holey);
__ Bind(&packed_case);
}
InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
__ TailCallStub(&stub1);
__ Bind(&zero_case);
// No arguments.
InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
__ TailCallStub(&stub0);
__ Bind(&n_case);
// N arguments.
ArrayNArgumentsConstructorStub stubN(isolate());
__ TailCallStub(&stubN);
}
void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : argc
// -- x1 : constructor
// -- sp[0] : return address
// -- sp[4] : last argument
// -----------------------------------
Register constructor = x1;
if (FLAG_debug_code) {
// The array construct code is only set for the global and natives
// builtin Array functions which always have maps.
Label unexpected_map, map_ok;
// Initial map for the builtin Array function should be a map.
__ Ldr(x10, FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ JumpIfSmi(x10, &unexpected_map);
__ JumpIfObjectType(x10, x10, x11, MAP_TYPE, &map_ok);
__ Bind(&unexpected_map);
__ Abort(kUnexpectedInitialMapForArrayFunction);
__ Bind(&map_ok);
}
Register kind = w3;
// Figure out the right elements kind
__ Ldr(x10, FieldMemOperand(constructor,
JSFunction::kPrototypeOrInitialMapOffset));
// Retrieve elements_kind from map.
__ LoadElementsKindFromMap(kind, x10);
if (FLAG_debug_code) {
Label done;
__ Cmp(x3, FAST_ELEMENTS);
__ Ccmp(x3, FAST_HOLEY_ELEMENTS, ZFlag, ne);
__ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
}
Label fast_elements_case;
__ CompareAndBranch(kind, FAST_ELEMENTS, eq, &fast_elements_case);
GenerateCase(masm, FAST_HOLEY_ELEMENTS);
__ Bind(&fast_elements_case);
GenerateCase(masm, FAST_ELEMENTS);
}
// The number of register that CallApiFunctionAndReturn will need to save on
// the stack. The space for these registers need to be allocated in the
// ExitFrame before calling CallApiFunctionAndReturn.
static const int kCallApiFunctionSpillSpace = 4;
static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
return static_cast<int>(ref0.address() - ref1.address());
}
// Calls an API function. Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.
// 'stack_space' is the space to be unwound on exit (includes the call JS
// arguments space and the additional space allocated for the fast call).
// 'spill_offset' is the offset from the stack pointer where
// CallApiFunctionAndReturn can spill registers.
static void CallApiFunctionAndReturn(
MacroAssembler* masm, Register function_address,
ExternalReference thunk_ref, int stack_space,
MemOperand* stack_space_operand, int spill_offset,
MemOperand return_value_operand, MemOperand* context_restore_operand) {
ASM_LOCATION("CallApiFunctionAndReturn");
Isolate* isolate = masm->isolate();
ExternalReference next_address =
ExternalReference::handle_scope_next_address(isolate);
const int kNextOffset = 0;
const int kLimitOffset = AddressOffset(
ExternalReference::handle_scope_limit_address(isolate), next_address);
const int kLevelOffset = AddressOffset(
ExternalReference::handle_scope_level_address(isolate), next_address);
DCHECK(function_address.is(x1) || function_address.is(x2));
Label profiler_disabled;
Label end_profiler_check;
__ Mov(x10, ExternalReference::is_profiling_address(isolate));
__ Ldrb(w10, MemOperand(x10));
__ Cbz(w10, &profiler_disabled);
__ Mov(x3, thunk_ref);
__ B(&end_profiler_check);
__ Bind(&profiler_disabled);
__ Mov(x3, function_address);
__ Bind(&end_profiler_check);
// Save the callee-save registers we are going to use.
// TODO(all): Is this necessary? ARM doesn't do it.
STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
__ Poke(x19, (spill_offset + 0) * kXRegSize);
__ Poke(x20, (spill_offset + 1) * kXRegSize);
__ Poke(x21, (spill_offset + 2) * kXRegSize);
__ Poke(x22, (spill_offset + 3) * kXRegSize);
// Allocate HandleScope in callee-save registers.
// We will need to restore the HandleScope after the call to the API function,
// by allocating it in callee-save registers they will be preserved by C code.
Register handle_scope_base = x22;
Register next_address_reg = x19;
Register limit_reg = x20;
Register level_reg = w21;
__ Mov(handle_scope_base, next_address);
__ Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
__ Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
__ Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
__ Add(level_reg, level_reg, 1);
__ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ Mov(x0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_enter_external_function(isolate),
1);
__ PopSafepointRegisters();
}
// Native call returns to the DirectCEntry stub which redirects to the
// return address pushed on stack (could have moved after GC).
// DirectCEntry stub itself is generated early and never moves.
DirectCEntryStub stub(isolate);
stub.GenerateCall(masm, x3);
if (FLAG_log_timer_events) {
FrameScope frame(masm, StackFrame::MANUAL);
__ PushSafepointRegisters();
__ Mov(x0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::log_leave_external_function(isolate),
1);
__ PopSafepointRegisters();
}
Label promote_scheduled_exception;
Label delete_allocated_handles;
Label leave_exit_frame;
Label return_value_loaded;
// Load value from ReturnValue.
__ Ldr(x0, return_value_operand);
__ Bind(&return_value_loaded);
// No more valid handles (the result handle was the last one). Restore
// previous handle scope.
__ Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
if (__ emit_debug_code()) {
__ Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
__ Cmp(w1, level_reg);
__ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
}
__ Sub(level_reg, level_reg, 1);
__ Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
__ Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
__ Cmp(limit_reg, x1);
__ B(ne, &delete_allocated_handles);
// Leave the API exit frame.
__ Bind(&leave_exit_frame);
// Restore callee-saved registers.
__ Peek(x19, (spill_offset + 0) * kXRegSize);
__ Peek(x20, (spill_offset + 1) * kXRegSize);
__ Peek(x21, (spill_offset + 2) * kXRegSize);
__ Peek(x22, (spill_offset + 3) * kXRegSize);
bool restore_context = context_restore_operand != NULL;
if (restore_context) {
__ Ldr(cp, *context_restore_operand);
}
if (stack_space_operand != NULL) {
__ Ldr(w2, *stack_space_operand);
}
__ LeaveExitFrame(false, x1, !restore_context);
// Check if the function scheduled an exception.
__ Mov(x5, ExternalReference::scheduled_exception_address(isolate));
__ Ldr(x5, MemOperand(x5));
__ JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex,
&promote_scheduled_exception);
if (stack_space_operand != NULL) {
__ Drop(x2, 1);
} else {
__ Drop(stack_space);
}
__ Ret();
// Re-throw by promoting a scheduled exception.
__ Bind(&promote_scheduled_exception);
__ TailCallRuntime(Runtime::kPromoteScheduledException);
// HandleScope limit has changed. Delete allocated extensions.
__ Bind(&delete_allocated_handles);
__ Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
// Save the return value in a callee-save register.
Register saved_result = x19;
__ Mov(saved_result, x0);
__ Mov(x0, ExternalReference::isolate_address(isolate));
__ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate),
1);
__ Mov(x0, saved_result);
__ B(&leave_exit_frame);
}
void CallApiCallbackStub::Generate(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- x0 : callee
// -- x4 : call_data
// -- x2 : holder
// -- x1 : api_function_address
// -- cp : context
// --
// -- sp[0] : last argument
// -- ...
// -- sp[(argc - 1) * 8] : first argument
// -- sp[argc * 8] : receiver
// -----------------------------------
Register callee = x0;
Register call_data = x4;
Register holder = x2;
Register api_function_address = x1;
Register context = cp;
typedef FunctionCallbackArguments FCA;
STATIC_ASSERT(FCA::kContextSaveIndex == 6);
STATIC_ASSERT(FCA::kCalleeIndex == 5);
STATIC_ASSERT(FCA::kDataIndex == 4);
STATIC_ASSERT(FCA::kReturnValueOffset == 3);
STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
STATIC_ASSERT(FCA::kIsolateIndex == 1);
STATIC_ASSERT(FCA::kHolderIndex == 0);
STATIC_ASSERT(FCA::kNewTargetIndex == 7);
STATIC_ASSERT(FCA::kArgsLength == 8);
// FunctionCallbackArguments
// new target
__ PushRoot(Heap::kUndefinedValueRootIndex);
// context, callee and call data.
__ Push(context, callee, call_data);
if (!is_lazy()) {
// Load context from callee
__ Ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset));
}
if (!call_data_undefined()) {
__ LoadRoot(call_data, Heap::kUndefinedValueRootIndex);
}
Register isolate_reg = x5;
__ Mov(isolate_reg, ExternalReference::isolate_address(masm->isolate()));
// FunctionCallbackArguments:
// return value, return value default, isolate, holder.
__ Push(call_data, call_data, isolate_reg, holder);
// Prepare arguments.
Register args = x6;
__ Mov(args, masm->StackPointer());
// Allocate the v8::Arguments structure in the arguments' space, since it's
// not controlled by GC.
const int kApiStackSpace = 3;
// Allocate space for CallApiFunctionAndReturn can store some scratch
// registeres on the stack.
const int kCallApiFunctionSpillSpace = 4;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
DCHECK(!AreAliased(x0, api_function_address));
// x0 = FunctionCallbackInfo&
// Arguments is after the return address.
__ Add(x0, masm->StackPointer(), 1 * kPointerSize);
// FunctionCallbackInfo::implicit_args_ and FunctionCallbackInfo::values_
__ Add(x10, args, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize));
__ Stp(args, x10, MemOperand(x0, 0 * kPointerSize));
// FunctionCallbackInfo::length_ = argc
__ Mov(x10, argc());
__ Str(x10, MemOperand(x0, 2 * kPointerSize));
ExternalReference thunk_ref =
ExternalReference::invoke_function_callback(masm->isolate());
AllowExternalCallThatCantCauseGC scope(masm);
MemOperand context_restore_operand(
fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
// Stores return the first js argument
int return_value_offset = 0;
if (is_store()) {
return_value_offset = 2 + FCA::kArgsLength;
} else {
return_value_offset = 2 + FCA::kReturnValueOffset;
}
MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
int stack_space = 0;
MemOperand length_operand =
MemOperand(masm->StackPointer(), 3 * kPointerSize);
MemOperand* stack_space_operand = &length_operand;
stack_space = argc() + FCA::kArgsLength + 1;
stack_space_operand = NULL;
const int spill_offset = 1 + kApiStackSpace;
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space,
stack_space_operand, spill_offset,
return_value_operand, &context_restore_operand);
}
void CallApiGetterStub::Generate(MacroAssembler* masm) {
// Build v8::PropertyCallbackInfo::args_ array on the stack and push property
// name below the exit frame to make GC aware of them.
STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
Register receiver = ApiGetterDescriptor::ReceiverRegister();
Register holder = ApiGetterDescriptor::HolderRegister();
Register callback = ApiGetterDescriptor::CallbackRegister();
Register scratch = x4;
Register scratch2 = x5;
Register scratch3 = x6;
DCHECK(!AreAliased(receiver, holder, callback, scratch));
__ Push(receiver);
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
__ Mov(scratch2, Operand(ExternalReference::isolate_address(isolate())));
__ Ldr(scratch3, FieldMemOperand(callback, AccessorInfo::kDataOffset));
__ Push(scratch3, scratch, scratch, scratch2, holder);
__ Push(Smi::kZero); // should_throw_on_error -> false
__ Ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
__ Push(scratch);
// v8::PropertyCallbackInfo::args_ array and name handle.
const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
// Load address of v8::PropertyAccessorInfo::args_ array and name handle.
__ Mov(x0, masm->StackPointer()); // x0 = Handle<Name>
__ Add(x1, x0, 1 * kPointerSize); // x1 = v8::PCI::args_
const int kApiStackSpace = 1;
// Allocate space for CallApiFunctionAndReturn can store some scratch
// registeres on the stack.
const int kCallApiFunctionSpillSpace = 4;
FrameScope frame_scope(masm, StackFrame::MANUAL);
__ EnterExitFrame(false, x10, kApiStackSpace + kCallApiFunctionSpillSpace);
// Create v8::PropertyCallbackInfo object on the stack and initialize
// it's args_ field.
__ Poke(x1, 1 * kPointerSize);
__ Add(x1, masm->StackPointer(), 1 * kPointerSize);
// x1 = v8::PropertyCallbackInfo&
ExternalReference thunk_ref =
ExternalReference::invoke_accessor_getter_callback(isolate());
Register api_function_address = x2;
__ Ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
__ Ldr(api_function_address,
FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
const int spill_offset = 1 + kApiStackSpace;
// +3 is to skip prolog, return address and name handle.
MemOperand return_value_operand(
fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
kStackUnwindSpace, NULL, spill_offset,
return_value_operand, NULL);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_ARM64