// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file contains an implementation of VideoDecodeAccelerator
// that utilizes hardware video decoders, which expose Video4Linux 2 API
// (http://linuxtv.org/downloads/v4l-dvb-apis/).
// Note: ported from Chromium commit head: 85fdf90
// Note: image processor is not ported.
#ifndef MEDIA_GPU_V4L2_VIDEO_DECODE_ACCELERATOR_H_
#define MEDIA_GPU_V4L2_VIDEO_DECODE_ACCELERATOR_H_
#include <stddef.h>
#include <stdint.h>
#include <list>
#include <memory>
#include <queue>
#include <vector>
#include "base/callback_forward.h"
#include "base/macros.h"
#include "base/memory/linked_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/thread.h"
#include "picture.h"
#include "size.h"
#include "v4l2_device.h"
#include "video_decode_accelerator.h"
namespace media {
class H264Parser;
// This class handles video accelerators directly through a V4L2 device exported
// by the hardware blocks.
//
// The threading model of this class is driven by the fact that it needs to
// interface two fundamentally different event queues -- the one Chromium
// provides through MessageLoop, and the one driven by the V4L2 devices which
// is waited on with epoll(). There are three threads involved in this class:
//
// * The child thread, which is the main GPU process thread which calls the
// VideoDecodeAccelerator entry points. Calls from this thread
// generally do not block (with the exception of Initialize() and Destroy()).
// They post tasks to the decoder_thread_, which actually services the task
// and calls back when complete through the
// VideoDecodeAccelerator::Client interface.
// * The decoder_thread_, owned by this class. It services API tasks, through
// the *Task() routines, as well as V4L2 device events, through
// ServiceDeviceTask(). Almost all state modification is done on this thread
// (this doesn't include buffer (re)allocation sequence, see below).
// * The device_poll_thread_, owned by this class. All it does is epoll() on
// the V4L2 in DevicePollTask() and schedule a ServiceDeviceTask() on the
// decoder_thread_ when something interesting happens.
// TODO(sheu): replace this thread with an TYPE_IO decoder_thread_.
//
// Note that this class has (almost) no locks, apart from the pictures_assigned_
// WaitableEvent. Everything (apart from buffer (re)allocation) is serviced on
// the decoder_thread_, so there are no synchronization issues.
// ... well, there are, but it's a matter of getting messages posted in the
// right order, not fiddling with locks.
// Buffer creation is a two-step process that is serviced partially on the
// Child thread, because we need to wait for the client to provide textures
// for the buffers we allocate. We cannot keep the decoder thread running while
// the client allocates Pictures for us, because we need to REQBUFS first to get
// the required number of output buffers from the device and that cannot be done
// unless we free the previous set of buffers, leaving the decoding in a
// inoperable state for the duration of the wait for Pictures. So to prevent
// subtle races (esp. if we get Reset() in the meantime), we block the decoder
// thread while we wait for AssignPictureBuffers from the client.
//
// V4L2VideoDecodeAccelerator may use image processor to convert the output.
// There are three cases:
// Flush: V4L2VDA should wait until image processor returns all processed
// frames.
// Reset: V4L2VDA doesn't need to wait for image processor. When image processor
// returns an old frame, drop it.
// Resolution change: V4L2VDA destroy image processor when destroying output
// buffrers. We cannot drop any frame during resolution change. So V4L2VDA
// should destroy output buffers after image processor returns all the frames.
class V4L2VideoDecodeAccelerator
: public VideoDecodeAccelerator {
public:
V4L2VideoDecodeAccelerator(
const scoped_refptr<V4L2Device>& device);
~V4L2VideoDecodeAccelerator() override;
// VideoDecodeAccelerator implementation.
// Note: Initialize() and Destroy() are synchronous.
bool Initialize(const Config& config, Client* client) override;
void Decode(const BitstreamBuffer& bitstream_buffer) override;
void AssignPictureBuffers(const std::vector<PictureBuffer>& buffers) override;
void ImportBufferForPicture(
int32_t picture_buffer_id,
VideoPixelFormat pixel_format,
const NativePixmapHandle& native_pixmap_handle) override;
void ReusePictureBuffer(int32_t picture_buffer_id) override;
void Flush() override;
void Reset() override;
void Destroy() override;
bool TryToSetupDecodeOnSeparateThread(
const base::WeakPtr<Client>& decode_client,
const scoped_refptr<base::SingleThreadTaskRunner>& decode_task_runner)
override;
static VideoDecodeAccelerator::SupportedProfiles GetSupportedProfiles();
private:
// These are rather subjectively tuned.
enum {
kInputBufferCount = 8,
// TODO(posciak): determine input buffer size based on level limits.
// See http://crbug.com/255116.
// Input bitstream buffer size for up to 1080p streams.
kInputBufferMaxSizeFor1080p = 1024 * 1024,
// Input bitstream buffer size for up to 4k streams.
kInputBufferMaxSizeFor4k = 4 * kInputBufferMaxSizeFor1080p,
// This is originally from media/base/limits.h in Chromium.
kMaxVideoFrames = 4,
// Number of output buffers to use for each VDA stage above what's required
// by the decoder (e.g. DPB size, in H264). We need
// limits::kMaxVideoFrames to fill up the GpuVideoDecode pipeline,
// and +1 for a frame in transit.
kDpbOutputBufferExtraCount = kMaxVideoFrames + 1,
// Number of extra output buffers if image processor is used.
kDpbOutputBufferExtraCountForImageProcessor = 1,
};
// Internal state of the decoder.
enum State {
kUninitialized, // Initialize() not yet called.
kInitialized, // Initialize() returned true; ready to start decoding.
kDecoding, // DecodeBufferInitial() successful; decoding frames.
kResetting, // Presently resetting.
// Performing resolution change and waiting for image processor to return
// all frames.
kChangingResolution,
// Requested new PictureBuffers via ProvidePictureBuffers(), awaiting
// AssignPictureBuffers().
kAwaitingPictureBuffers,
kError, // Error in kDecoding state.
};
enum OutputRecordState {
kFree, // Ready to be queued to the device.
kAtDevice, // Held by device.
kAtProcessor, // Held by image processor.
kAtClient, // Held by client of V4L2VideoDecodeAccelerator.
};
enum BufferId {
kFlushBufferId = -2 // Buffer id for flush buffer, queued by FlushTask().
};
// Auto-destruction reference for BitstreamBuffer, for message-passing from
// Decode() to DecodeTask().
struct BitstreamBufferRef;
// Record for decoded pictures that can be sent to PictureReady.
struct PictureRecord {
PictureRecord(bool cleared, const Picture& picture);
~PictureRecord();
bool cleared; // Whether the texture is cleared and safe to render from.
Picture picture; // The decoded picture.
};
// Record for input buffers.
struct InputRecord {
InputRecord();
~InputRecord();
bool at_device; // held by device.
void* address; // mmap() address.
size_t length; // mmap() length.
off_t bytes_used; // bytes filled in the mmap() segment.
int32_t input_id; // triggering input_id as given to Decode().
};
// Record for output buffers.
struct OutputRecord {
OutputRecord();
OutputRecord(OutputRecord&&) = default;
~OutputRecord();
OutputRecordState state;
int32_t picture_id; // picture buffer id as returned to PictureReady().
bool cleared; // Whether the texture is cleared and safe to render
// from. See TextureManager for details.
// Output fds of the processor. Used only when OutputMode is IMPORT.
std::vector<base::ScopedFD> processor_output_fds;
};
//
// Decoding tasks, to be run on decode_thread_.
//
// Task to finish initialization on decoder_thread_.
void InitializeTask();
// Enqueue a BitstreamBuffer to decode. This will enqueue a buffer to the
// decoder_input_queue_, then queue a DecodeBufferTask() to actually decode
// the buffer.
void DecodeTask(const BitstreamBuffer& bitstream_buffer);
// Decode from the buffers queued in decoder_input_queue_. Calls
// DecodeBufferInitial() or DecodeBufferContinue() as appropriate.
void DecodeBufferTask();
// Advance to the next fragment that begins a frame.
bool AdvanceFrameFragment(const uint8_t* data, size_t size, size_t* endpos);
// Schedule another DecodeBufferTask() if we're behind.
void ScheduleDecodeBufferTaskIfNeeded();
// Return true if we should continue to schedule DecodeBufferTask()s after
// completion. Store the amount of input actually consumed in |endpos|.
bool DecodeBufferInitial(const void* data, size_t size, size_t* endpos);
bool DecodeBufferContinue(const void* data, size_t size);
// Accumulate data for the next frame to decode. May return false in
// non-error conditions; for example when pipeline is full and should be
// retried later.
bool AppendToInputFrame(const void* data, size_t size);
// Flush data for one decoded frame.
bool FlushInputFrame();
// Allocate V4L2 buffers and assign them to |buffers| provided by the client
// via AssignPictureBuffers() on decoder thread.
void AssignPictureBuffersTask(const std::vector<PictureBuffer>& buffers);
// Use buffer backed by dmabuf file descriptors in |dmabuf_fds| for the
// OutputRecord associated with |picture_buffer_id|, taking ownership of the
// file descriptors.
void ImportBufferForPictureTask(int32_t picture_buffer_id,
std::vector<base::ScopedFD> dmabuf_fds);
// Service I/O on the V4L2 devices. This task should only be scheduled from
// DevicePollTask(). If |event_pending| is true, one or more events
// on file descriptor are pending.
void ServiceDeviceTask(bool event_pending);
// Handle the various device queues.
void Enqueue();
void Dequeue();
// Dequeue one input buffer. Return true if success.
bool DequeueInputBuffer();
// Dequeue one output buffer. Return true if success.
bool DequeueOutputBuffer();
// Return true if there is a resolution change event pending.
bool DequeueResolutionChangeEvent();
// Enqueue a buffer on the corresponding queue.
bool EnqueueInputRecord();
bool EnqueueOutputRecord();
// Process a ReusePictureBuffer() API call. The API call create an EGLSync
// object on the main (GPU process) thread; we will record this object so we
// can wait on it before reusing the buffer.
void ReusePictureBufferTask(int32_t picture_buffer_id);
// Flush() task. Child thread should not submit any more buffers until it
// receives the NotifyFlushDone callback. This task will schedule an empty
// BitstreamBufferRef (with input_id == kFlushBufferId) to perform the flush.
void FlushTask();
// Notify the client of a flush completion, if required. This should be
// called any time a relevant queue could potentially be emptied: see
// function definition.
void NotifyFlushDoneIfNeeded();
// Returns true if VIDIOC_DECODER_CMD is supported.
bool IsDecoderCmdSupported();
// Send V4L2_DEC_CMD_START to the driver. Return true if success.
bool SendDecoderCmdStop();
// Reset() task. Drop all input buffers. If V4L2VDA is not doing resolution
// change or waiting picture buffers, call FinishReset.
void ResetTask();
// This will schedule a ResetDoneTask() that will send the NotifyResetDone
// callback, then set the decoder state to kResetting so that all intervening
// tasks will drain.
void FinishReset();
void ResetDoneTask();
// Device destruction task.
void DestroyTask();
// Start |device_poll_thread_|.
bool StartDevicePoll();
// Stop |device_poll_thread_|.
bool StopDevicePoll();
bool StopInputStream();
bool StopOutputStream();
void StartResolutionChange();
void FinishResolutionChange();
// Try to get output format and visible size, detected after parsing the
// beginning of the stream. Sets |again| to true if more parsing is needed.
// |visible_size| could be nullptr and ignored.
bool GetFormatInfo(struct v4l2_format* format,
Size* visible_size,
bool* again);
// Create output buffers for the given |format| and |visible_size|.
bool CreateBuffersForFormat(const struct v4l2_format& format,
const Size& visible_size);
// Try to get |visible_size|. Return visible size, or, if querying it is not
// supported or produces invalid size, return |coded_size| instead.
Size GetVisibleSize(const Size& coded_size);
//
// Device tasks, to be run on device_poll_thread_.
//
// The device task.
void DevicePollTask(bool poll_device);
//
// Safe from any thread.
//
// Error notification (using PostTask() to child thread, if necessary).
void NotifyError(Error error);
// Set the decoder_state_ to kError and notify the client (if necessary).
void SetErrorState(Error error);
//
// Other utility functions. Called on decoder_thread_, unless
// decoder_thread_ is not yet started, in which case the child thread can call
// these (e.g. in Initialize() or Destroy()).
//
// Create the buffers we need.
bool CreateInputBuffers();
bool CreateOutputBuffers();
// Destroy buffers.
void DestroyInputBuffers();
// In contrast to DestroyInputBuffers, which is called only on destruction,
// we call DestroyOutputBuffers also during playback, on resolution change.
// Even if anything fails along the way, we still want to go on and clean
// up as much as possible, so return false if this happens, so that the
// caller can error out on resolution change.
bool DestroyOutputBuffers();
// Set input and output formats before starting decode.
bool SetupFormats();
//
// Methods run on child thread.
//
// Send decoded pictures to PictureReady.
void SendPictureReady();
// Callback that indicates a picture has been cleared.
void PictureCleared();
// Our original calling task runner for the child thread.
scoped_refptr<base::SingleThreadTaskRunner> child_task_runner_;
// Task runner Decode() and PictureReady() run on.
scoped_refptr<base::SingleThreadTaskRunner> decode_task_runner_;
// WeakPtr<> pointing to |this| for use in posting tasks from the decoder or
// device worker threads back to the child thread. Because the worker threads
// are members of this class, any task running on those threads is guaranteed
// that this object is still alive. As a result, tasks posted from the child
// thread to the decoder or device thread should use base::Unretained(this),
// and tasks posted the other way should use |weak_this_|.
base::WeakPtr<V4L2VideoDecodeAccelerator> weak_this_;
// To expose client callbacks from VideoDecodeAccelerator.
// NOTE: all calls to these objects *MUST* be executed on
// child_task_runner_.
std::unique_ptr<base::WeakPtrFactory<Client>> client_ptr_factory_;
base::WeakPtr<Client> client_;
// Callbacks to |decode_client_| must be executed on |decode_task_runner_|.
base::WeakPtr<Client> decode_client_;
//
// Decoder state, owned and operated by decoder_thread_.
// Before decoder_thread_ has started, the decoder state is managed by
// the child (main) thread. After decoder_thread_ has started, the decoder
// thread should be the only one managing these.
//
// This thread services tasks posted from the VDA API entry points by the
// child thread and device service callbacks posted from the device thread.
base::Thread decoder_thread_;
// Decoder state machine state.
State decoder_state_;
Config::OutputMode output_mode_;
// BitstreamBuffer we're presently reading.
std::unique_ptr<BitstreamBufferRef> decoder_current_bitstream_buffer_;
// The V4L2Device this class is operating upon.
scoped_refptr<V4L2Device> device_;
// FlushTask() and ResetTask() should not affect buffers that have been
// queued afterwards. For flushing or resetting the pipeline then, we will
// delay these buffers until after the flush or reset completes.
int decoder_delay_bitstream_buffer_id_;
// Input buffer we're presently filling.
int decoder_current_input_buffer_;
// We track the number of buffer decode tasks we have scheduled, since each
// task execution should complete one buffer. If we fall behind (due to
// resource backpressure, etc.), we'll have to schedule more to catch up.
int decoder_decode_buffer_tasks_scheduled_;
// Picture buffers held by the client.
int decoder_frames_at_client_;
// Are we flushing?
bool decoder_flushing_;
// True if VIDIOC_DECODER_CMD is supported.
bool decoder_cmd_supported_;
// True if flushing is waiting for last output buffer. After
// VIDIOC_DECODER_CMD is sent to the driver, this flag will be set to true to
// wait for the last output buffer. When this flag is true, flush done will
// not be sent. After an output buffer that has the flag V4L2_BUF_FLAG_LAST is
// received, this is set to false.
bool flush_awaiting_last_output_buffer_;
// Got a reset request while we were performing resolution change or waiting
// picture buffers.
bool reset_pending_;
// Input queue for decoder_thread_: BitstreamBuffers in.
std::queue<linked_ptr<BitstreamBufferRef>> decoder_input_queue_;
// For H264 decode, hardware requires that we send it frame-sized chunks.
// We'll need to parse the stream.
std::unique_ptr<H264Parser> decoder_h264_parser_;
// Set if the decoder has a pending incomplete frame in an input buffer.
bool decoder_partial_frame_pending_;
//
// Hardware state and associated queues. Since decoder_thread_ services
// the hardware, decoder_thread_ owns these too.
// output_buffer_map_, free_output_buffers_ and output_planes_count_ are an
// exception during the buffer (re)allocation sequence, when the
// decoder_thread_ is blocked briefly while the Child thread manipulates
// them.
//
// Completed decode buffers.
std::queue<int> input_ready_queue_;
// Input buffer state.
bool input_streamon_;
// Input buffers enqueued to device.
int input_buffer_queued_count_;
// Input buffers ready to use, as a LIFO since we don't care about ordering.
std::vector<int> free_input_buffers_;
// Mapping of int index to input buffer record.
std::vector<InputRecord> input_buffer_map_;
// Output buffer state.
bool output_streamon_;
// Output buffers enqueued to device.
int output_buffer_queued_count_;
// Output buffers ready to use, as a FIFO since we want oldest-first to hide
// synchronization latency with GL.
std::list<int> free_output_buffers_;
// Mapping of int index to output buffer record.
std::vector<OutputRecord> output_buffer_map_;
// Required size of DPB for decoding.
int output_dpb_size_;
// Number of planes (i.e. separate memory buffers) for output.
size_t output_planes_count_;
// Pictures that are ready but not sent to PictureReady yet.
std::queue<PictureRecord> pending_picture_ready_;
// The number of pictures that are sent to PictureReady and will be cleared.
int picture_clearing_count_;
// Output picture coded size.
Size coded_size_;
// Output picture visible size.
Size visible_size_;
//
// The device polling thread handles notifications of V4L2 device changes.
//
// The thread.
base::Thread device_poll_thread_;
//
// Other state, held by the child (main) thread.
//
// The codec we'll be decoding for.
VideoCodecProfile video_profile_;
// Chosen input format for video_profile_.
uint32_t input_format_fourcc_;
// Chosen output format.
uint32_t output_format_fourcc_;
// Input format V4L2 fourccs this class supports.
static const uint32_t supported_input_fourccs_[];
// The WeakPtrFactory for |weak_this_|.
base::WeakPtrFactory<V4L2VideoDecodeAccelerator> weak_this_factory_;
DISALLOW_COPY_AND_ASSIGN(V4L2VideoDecodeAccelerator);
};
} // namespace media
#endif // MEDIA_GPU_V4L2_VIDEO_DECODE_ACCELERATOR_H_