// This file was extracted from the TCG Published
// Trusted Platform Module Library
// Part 4: Supporting Routines
// Family "2.0"
// Level 00 Revision 01.16
// October 30, 2014
#ifndef GLOBAL_H
#define GLOBAL_H
//#define SELF_TEST
#include "TpmBuildSwitches.h"
#include "Tpm.h"
#include "TPMB.h"
#include "CryptoEngine.h"
#ifndef EMBEDDED_MODE
#include <setjmp.h>
#endif
//
//
//
// Defines and Types
//
// Unreferenced Parameter
//
// This define is used to eliminate the compiler warning about an unreferenced parameter. Basically, it tells
// the compiler that it is not an accident that the parameter is unreferenced.
//
#ifndef UNREFERENCED_PARAMETER
# define UNREFERENCED_PARAMETER(a) (a)
#endif
#include "bits.h"
//
//
// Crypto Self-Test Values
//
// Define these values here if the AlgorithmTests() project is not used
//
#ifndef SELF_TEST
extern ALGORITHM_VECTOR g_implementedAlgorithms;
extern ALGORITHM_VECTOR g_toTest;
#else
LIB_IMPORT extern ALGORITHM_VECTOR g_implementedAlgorithms;
LIB_IMPORT extern ALGORITHM_VECTOR g_toTest;
#endif
//
// These macros are used in CryptUtil() to invoke the incremental self test.
//
#define TEST(alg) if(TEST_BIT(alg, g_toTest)) CryptTestAlgorithm(alg, NULL)
//
// Use of TPM_ALG_NULL is reserved for RSAEP/RSADP testing. If someone is wanting to test a hash with
// that value, don't do it.
//
#define TEST_HASH(alg) \
if( TEST_BIT(alg, g_toTest) \
&& (alg != ALG_NULL_VALUE)) \
CryptTestAlgorithm(alg, NULL)
//
//
// Hash and HMAC State Structures
//
// These definitions are for the types that can be in a hash state structure. These types are used in the
// crypto utilities
//
typedef BYTE HASH_STATE_TYPE;
#define HASH_STATE_EMPTY ((HASH_STATE_TYPE) 0)
#define HASH_STATE_HASH ((HASH_STATE_TYPE) 1)
#define HASH_STATE_HMAC ((HASH_STATE_TYPE) 2)
//
// A HASH_STATE structure contains an opaque hash stack state. A caller would use this structure when
// performing incremental hash operations. The state is updated on each call. If type is an HMAC_STATE,
// or HMAC_STATE_SEQUENCE then state is followed by the HMAC key in oPad format.
//
typedef struct
{
CPRI_HASH_STATE state; // hash state
HASH_STATE_TYPE type; // type of the context
} HASH_STATE;
//
//
//
//
// An HMAC_STATE structure contains an opaque HMAC stack state. A caller would use this structure
// when performing incremental HMAC operations. This structure contains a hash state and an HMAC key
// and allows slightly better stack optimization than adding an HMAC key to each hash state.
//
typedef struct
{
HASH_STATE hashState; // the hash state
TPM2B_HASH_BLOCK hmacKey; // the HMAC key
} HMAC_STATE;
//
//
// Other Types
//
// An AUTH_VALUE is a BYTE array containing a digest (TPMU_HA)
//
typedef BYTE AUTH_VALUE[sizeof(TPMU_HA)];
//
// A TIME_INFO is a BYTE array that can contain a TPMS_TIME_INFO
//
typedef BYTE TIME_INFO[sizeof(TPMS_TIME_INFO)];
//
// A NAME is a BYTE array that can contain a TPMU_NAME
//
typedef BYTE NAME[sizeof(TPMU_NAME)];
//
//
// Loaded Object Structures
//
// Description
//
// The structures in this section define the object layout as it exists in TPM memory.
// Two types of objects are defined: an ordinary object such as a key, and a sequence object that may be a
// hash, HMAC, or event.
//
// OBJECT_ATTRIBUTES
//
// An OBJECT_ATTRIBUTES structure contains the variable attributes of an object. These properties are
// not part of the public properties but are used by the TPM in managing the object. An
// OBJECT_ATTRIBUTES is used in the definition of the OBJECT data type.
//
typedef struct
{
unsigned publicOnly : 1; //0) SET if only the public portion of
// an object is loaded
unsigned epsHierarchy : 1; //1) SET if the object belongs to EPS
// Hierarchy
unsigned ppsHierarchy : 1; //2) SET if the object belongs to PPS
// Hierarchy
unsigned spsHierarchy : 1; //3) SET f the object belongs to SPS
// Hierarchy
unsigned evict : 1; //4) SET if the object is a platform or
// owner evict object. Platform-
// evict object belongs to PPS
// hierarchy, owner-evict object
// belongs to SPS or EPS hierarchy.
// This bit is also used to mark a
// completed sequence object so it
// will be flush when the
// SequenceComplete command succeeds.
unsigned primary : 1; //5) SET for a primary object
unsigned temporary : 1;
//6) SET for a temporary object
unsigned stClear : 1;
//7) SET for an stClear object
unsigned hmacSeq : 1;
//8) SET for an HMAC sequence object
unsigned hashSeq : 1;
//9) SET for a hash sequence object
unsigned eventSeq : 1;
//10) SET for an event sequence object
unsigned ticketSafe : 1;
//11) SET if a ticket is safe to create
// for hash sequence object
unsigned firstBlock : 1; //12) SET if the first block of hash
// data has been received. It
// works with ticketSafe bit
unsigned isParent : 1; //13) SET if the key has the proper
// attributes to be a parent key
unsigned privateExp : 1; //14) SET when the private exponent
// of an RSA key has been validated.
unsigned reserved : 1; //15) reserved bits. unused.
} OBJECT_ATTRIBUTES;
//
//
// OBJECT Structure
//
// An OBJECT structure holds the object public, sensitive, and meta-data associated. This structure is
// implementation dependent. For this implementation, the structure is not optimized for space but rather for
// clarity of the reference implementation. Other implementations may choose to overlap portions of the
// structure that are not used simultaneously. These changes would necessitate changes to the source code
// but those changes would be compatible with the reference implementation.
//
typedef struct
{
// The attributes field is required to be first followed by the publicArea.
// This allows the overlay of the object structure and a sequence structure
OBJECT_ATTRIBUTES attributes; // object attributes
TPMT_PUBLIC publicArea; // public area of an object
TPMT_SENSITIVE sensitive; // sensitive area of an object
#ifdef TPM_ALG_RSA
TPM2B_PUBLIC_KEY_RSA privateExponent; // Additional field for the private
// exponent of an RSA key.
#endif
TPM2B_NAME qualifiedName; // object qualified name
TPMI_DH_OBJECT evictHandle; // if the object is an evict object,
// the original handle is kept here.
// The 'working' handle will be the
// handle of an object slot.
TPM2B_NAME name; // Name of the object name. Kept here
// to avoid repeatedly computing it.
} OBJECT;
#ifdef EMBEDDED_MODE
// This build time assert serves as a rudimentary check for changes
// to the OBJECT structure (which is serialized to NVmem). Whenever
// the OBJECT struct changes, NV_FORMAT_VERSION ought to be bumped.
struct size_check { char a[sizeof(OBJECT) == 1536 ? 1 : -1]; };
#endif
//
//
// HASH_OBJECT Structure
//
// This structure holds a hash sequence object or an event sequence object.
// The first four components of this structure are manually set to be the same as the first four components of
// the object structure. This prevents the object from being inadvertently misused as sequence objects
// occupy the same memory as a regular object. A debug check is present to make sure that the offsets are
// what they are supposed to be.
//
typedef struct
{
OBJECT_ATTRIBUTES attributes; // The attributes of the HASH object
TPMI_ALG_PUBLIC type; // algorithm
TPMI_ALG_HASH nameAlg; // name algorithm
TPMA_OBJECT objectAttributes; // object attributes
// The data below is unique to a sequence object
TPM2B_AUTH auth; // auth for use of sequence
union
{
HASH_STATE hashState[HASH_COUNT];
HMAC_STATE hmacState;
} state;
} HASH_OBJECT;
//
//
// ANY_OBJECT
//
// This is the union for holding either a sequence object or a regular object.
//
typedef union
{
OBJECT entity;
HASH_OBJECT hash;
} ANY_OBJECT;
//
//
// AUTH_DUP Types
//
// These values are used in the authorization processing.
//
typedef UINT32 AUTH_ROLE;
#define AUTH_NONE ((AUTH_ROLE)(0))
#define AUTH_USER ((AUTH_ROLE)(1))
#define AUTH_ADMIN ((AUTH_ROLE)(2))
#define AUTH_DUP ((AUTH_ROLE)(3))
//
//
// Active Session Context
//
// Description
//
// The structures in this section define the internal structure of a session context.
//
// SESSION_ATTRIBUTES
//
// The attributes in the SESSION_ATTRIBUTES structure track the various properties of the session. It
// maintains most of the tracking state information for the policy session. It is used within the SESSION
// structure.
//
typedef struct
{
unsigned isPolicy : 1; //1) SET if the session may only
// be used for policy
unsigned isAudit : 1; //2) SET if the session is used
// for audit
unsigned isBound : 1; //3) SET if the session is bound to
// with an entity.
// This attribute will be CLEAR if
// either isPolicy or isAudit is SET.
unsigned iscpHashDefined : 1;//4) SET if the cpHash has been defined
// This attribute is not SET unless
// 'isPolicy' is SET.
unsigned isAuthValueNeeded : 1;
//5) SET if the authValue is required
// for computing the session HMAC.
// This attribute is not SET unless
// isPolicy is SET.
unsigned isPasswordNeeded : 1;
//6) SET if a password authValue is
// required for authorization
// This attribute is not SET unless
// isPolicy is SET.
unsigned isPPRequired : 1; //7) SET if physical presence is
// required to be asserted when the
// authorization is checked.
// This attribute is not SET unless
// isPolicy is SET.
unsigned isTrialPolicy : 1; //8) SET if the policy session is
// created for trial of the policy's
// policyHash generation.
// This attribute is not SET unless
// isPolicy is SET.
unsigned isDaBound : 1; //9) SET if the bind entity had noDA
// CLEAR. If this is SET, then an
// auth failure using this session
// will count against lockout even
// if the object being authorized is
// exempt from DA.
unsigned isLockoutBound : 1; //10)SET if the session is bound to
// lockoutAuth.
unsigned requestWasBound : 1;//11) SET if the session is being used
// with the bind entity. If SET
// the authValue will not be use
// in the response HMAC computation.
unsigned checkNvWritten : 1; //12) SET if the TPMA_NV_WRITTEN
// attribute needs to be checked
// when the policy is used for
// authorization for NV access.
// If this is SET for any other
// type, the policy will fail.
unsigned nvWrittenState : 1; //13) SET if TPMA_NV_WRITTEN is
// required to be SET.
} SESSION_ATTRIBUTES;
//
//
// SESSION Structure
//
// The SESSION structure contains all the context of a session except for the associated contextID.
//
// NOTE: The contextID of a session is only relevant when the session context is stored off the TPM.
//
typedef struct
{
TPM_ALG_ID authHashAlg; // session hash algorithm
TPM2B_NONCE nonceTPM; // last TPM-generated nonce for
// this session
TPMT_SYM_DEF symmetric; // session symmetric algorithm (if any)
TPM2B_AUTH sessionKey; // session secret value used for
// generating HMAC and encryption keys
SESSION_ATTRIBUTES attributes; // session attributes
TPM_CC commandCode; // command code (policy session)
TPMA_LOCALITY commandLocality; // command locality (policy session)
UINT32 pcrCounter; // PCR counter value when PCR is
// included (policy session)
// If no PCR is included, this
// value is 0.
UINT64 startTime; // value of TPMS_CLOCK_INFO.clock when
// the session was started (policy
//
// session)
UINT64 timeOut; // timeout relative to
// TPMS_CLOCK_INFO.clock
// There is no timeout if this value
// is 0.
union
{
TPM2B_NAME boundEntity; // value used to track the entity to
// which the session is bound
TPM2B_DIGEST cpHash; // the required cpHash value for the
// command being authorized
} u1; // 'boundEntity' and 'cpHash' may
// share the same space to save memory
union
{
TPM2B_DIGEST auditDigest; // audit session digest
TPM2B_DIGEST policyDigest; // policyHash
} u2; // audit log and policyHash may
// share space to save memory
} SESSION;
//
//
// PCR
//
// PCR_SAVE Structure
//
// The PCR_SAVE structure type contains the PCR data that are saved across power cycles. Only the static
// PCR are required to be saved across power cycles. The DRTM and resettable PCR are not saved. The
// number of static and resettable PCR is determined by the platform-specific specification to which the TPM
// is built.
//
typedef struct
{
#ifdef TPM_ALG_SHA1
BYTE sha1[NUM_STATIC_PCR][SHA1_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SHA256
BYTE sha256[NUM_STATIC_PCR][SHA256_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SHA384
BYTE sha384[NUM_STATIC_PCR][SHA384_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SHA512
BYTE sha512[NUM_STATIC_PCR][SHA512_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SM3_256
BYTE sm3_256[NUM_STATIC_PCR][SM3_256_DIGEST_SIZE];
#endif
// This counter increments whenever the PCR are updated.
// NOTE: A platform-specific specification may designate
// certain PCR changes as not causing this counter
// to increment.
UINT32 pcrCounter;
} PCR_SAVE;
//
//
//
// PCR_POLICY
//
// This structure holds the PCR policies, one for each group of PCR controlled by policy.
//
typedef struct
{
TPMI_ALG_HASH hashAlg[NUM_POLICY_PCR_GROUP];
TPM2B_DIGEST a;
TPM2B_DIGEST policy[NUM_POLICY_PCR_GROUP];
} PCR_POLICY;
//
//
// PCR_AUTHVALUE
//
// This structure holds the PCR policies, one for each group of PCR controlled by policy.
//
typedef struct
{
TPM2B_DIGEST auth[NUM_AUTHVALUE_PCR_GROUP];
} PCR_AUTHVALUE;
//
//
// Startup
//
// SHUTDOWN_NONE
//
// Part 2 defines the two shutdown/startup types that may be used in TPM2_Shutdown() and
// TPM2_Starup(). This additional define is used by the TPM to indicate that no shutdown was received.
//
// NOTE: This is a reserved value.
//
#define SHUTDOWN_NONE (TPM_SU)(0xFFFF)
//
//
// STARTUP_TYPE
//
// This enumeration is the possible startup types. The type is determined by the combination of
// TPM2_ShutDown() and TPM2_Startup().
//
typedef enum
{
SU_RESET,
SU_RESTART,
SU_RESUME
} STARTUP_TYPE;
//
//
// NV
//
// NV_RESERVE
//
// This enumeration defines the master list of the elements of a reserved portion of NV. This list includes all
// the pre-defined data that takes space in NV, either as persistent data or as state save data. The
// enumerations are used as indexes into an array of offset values. The offset values then are used to index
// into NV. This is method provides an imperfect analog to an actual NV implementation.
//
typedef enum
{
// Entries below mirror the PERSISTENT_DATA structure. These values are written
// to NV as individual items.
// hierarchy
NV_DISABLE_CLEAR,
NV_OWNER_ALG,
NV_ENDORSEMENT_ALG,
NV_LOCKOUT_ALG,
NV_OWNER_POLICY,
NV_ENDORSEMENT_POLICY,
NV_LOCKOUT_POLICY,
NV_OWNER_AUTH,
NV_ENDORSEMENT_AUTH,
NV_LOCKOUT_AUTH,
NV_EP_SEED,
NV_SP_SEED,
NV_PP_SEED,
NV_PH_PROOF,
NV_SH_PROOF,
NV_EH_PROOF,
// Time
NV_TOTAL_RESET_COUNT,
NV_RESET_COUNT,
// PCR
NV_PCR_POLICIES,
NV_PCR_ALLOCATED,
// Physical Presence
NV_PP_LIST,
// Dictionary Attack
NV_FAILED_TRIES,
NV_MAX_TRIES,
NV_RECOVERY_TIME,
NV_LOCKOUT_RECOVERY,
NV_LOCKOUT_AUTH_ENABLED,
// Orderly State flag
NV_ORDERLY,
// Command Audit
NV_AUDIT_COMMANDS,
NV_AUDIT_HASH_ALG,
NV_AUDIT_COUNTER,
// Algorithm Set
NV_ALGORITHM_SET,
NV_FIRMWARE_V1,
NV_FIRMWARE_V2,
// The entries above are in PERSISTENT_DATA. The entries below represent
// structures that are read and written as a unit.
// ORDERLY_DATA data structure written on each orderly shutdown
NV_ORDERLY_DATA,
// STATE_CLEAR_DATA structure written on each Shutdown(STATE)
NV_STATE_CLEAR,
// STATE_RESET_DATA structure written on each Shutdown(STATE)
NV_STATE_RESET,
NV_RESERVE_LAST // end of NV reserved data list
} NV_RESERVE;
//
// NV_INDEX
//
// The NV_INDEX structure defines the internal format for an NV index. The indexData size varies
// according to the type of the index. In this implementation, all of the index is manipulated as a unit.
//
typedef struct
{
TPMS_NV_PUBLIC publicArea;
TPM2B_AUTH authValue;
} NV_INDEX;
//
//
// COMMIT_INDEX_MASK
//
// This is the define for the mask value that is used when manipulating the bits in the commit bit array. The
// commit counter is a 64-bit value and the low order bits are used to index the commitArray. This mask
// value is applied to the commit counter to extract the bit number in the array.
//
#ifdef TPM_ALG_ECC
#define COMMIT_INDEX_MASK ((UINT16)((sizeof(gr.commitArray)*8)-1))
#endif
//
//
// RAM Global Values
//
// Description
//
// The values in this section are only extant in RAM. They are defined here and instanced in Global.c.
//
// g_rcIndex
//
// This array is used to contain the array of values that are added to a return code when it is a parameter-,
// handle-, or session-related error. This is an implementation choice and the same result can be achieved
// by using a macro.
//
extern const UINT16 g_rcIndex[15];
//
//
// g_exclusiveAuditSession
//
// This location holds the session handle for the current exclusive audit session. If there is no exclusive
// audit session, the location is set to TPM_RH_UNASSIGNED.
//
extern TPM_HANDLE g_exclusiveAuditSession;
//
//
// g_time
//
// This value is the count of milliseconds since the TPM was powered up. This value is initialized at
// _TPM_Init().
//
extern UINT64 g_time;
//
//
// g_phEnable
//
// This is the platform hierarchy control and determines if the platform hierarchy is available. This value is
// SET on each TPM2_Startup(). The default value is SET.
//
extern BOOL g_phEnable;
// g_pceReConfig
//
// This value is SET if a TPM2_PCR_Allocate() command successfully executed since the last
// TPM2_Startup(). If so, then the next shutdown is required to be Shutdown(CLEAR).
//
extern BOOL g_pcrReConfig;
//
//
// g_DRTMHandle
//
// This location indicates the sequence object handle that holds the DRTM sequence data. When not used,
// it is set to TPM_RH_UNASSIGNED. A sequence DRTM sequence is started on either _TPM_Init() or
// _TPM_Hash_Start().
//
extern TPMI_DH_OBJECT g_DRTMHandle;
//
//
// g_DrtmPreStartup
//
// This value indicates that an H-CRTM occurred after _TPM_Init() but before TPM2_Startup(). The define
// for PRE_STARTUP_FLAG is used to add the g_DrtmPreStartup value to gp_orderlyState at shutdown.
// This hack is to avoid adding another NV variable.
//
extern BOOL g_DrtmPreStartup;
#define PRE_STARTUP_FLAG 0x8000
//
//
// g_StartupLocality3
//
// This value indicates that a TPM2_Startup() occured at locality 3. Otherwise, it at locality 0. The define for
// STARTUP_LOCALITY_3 is to indicate that the startup was not at locality 0. This hack is to avoid adding
// another NV variable.
//
extern BOOL g_StartupLocality3;
#define STARTUP_LOCALITY_3 0x4000
//
//
// g_updateNV
//
// This flag indicates if NV should be updated at the end of a command. This flag is set to FALSE at the
// beginning of each command in ExecuteCommand(). This flag is checked in ExecuteCommand() after the
// detailed actions of a command complete. If the command execution was successful and this flag is SET,
// any pending NV writes will be committed to NV.
//
extern BOOL g_updateNV;
//
//
// g_clearOrderly
//
// This flag indicates if the execution of a command should cause the orderly state to be cleared. This flag
// is set to FALSE at the beginning of each command in ExecuteCommand() and is checked in
// ExecuteCommand() after the detailed actions of a command complete but before the check of
// g_updateNV. If this flag is TRUE, and the orderly state is not SHUTDOWN_NONE, then the orderly state
// in NV memory will be changed to SHUTDOWN_NONE.
//
extern BOOL g_clearOrderly;
//
//
//
// g_prevOrderlyState
//
// This location indicates how the TPM was shut down before the most recent TPM2_Startup(). This value,
// along with the startup type, determines if the TPM should do a TPM Reset, TPM Restart, or TPM
// Resume.
//
extern TPM_SU g_prevOrderlyState;
//
//
// g_nvOk
//
// This value indicates if the NV integrity check was successful or not. If not and the failure was severe, then
// the TPM would have been put into failure mode after it had been re-manufactured. If the NV failure was in
// the area where the state-save data is kept, then this variable will have a value of FALSE indicating that a
// TPM2_Startup(CLEAR) is required.
//
extern BOOL g_nvOk;
//
//
// g_platformUnique
//
// This location contains the unique value(s) used to identify the TPM. It is loaded on every
// _TPM2_Startup() The first value is used to seed the RNG. The second value is used as a vendor
// authValue. The value used by the RNG would be the value derived from the chip unique value (such as
// fused) with a dependency on the authorities of the code in the TPM boot path. The second would be
// derived from the chip unique value with a dependency on the details of the code in the boot path. That is,
// the first value depends on the various signers of the code and the second depends on what was signed.
// The TPM vendor should not be able to know the first value but they are expected to know the second.
//
extern TPM2B_AUTH g_platformUniqueAuthorities; // Reserved for RNG
extern TPM2B_AUTH g_platformUniqueDetails; // referenced by VENDOR_PERMANENT
//
//
// Persistent Global Values
//
// Description
//
// The values in this section are global values that are persistent across power events. The lifetime of the
// values determines the structure in which the value is placed.
//
// PERSISTENT_DATA
//
// This structure holds the persistent values that only change as a consequence of a specific Protected
// Capability and are not affected by TPM power events (TPM2_Startup() or TPM2_Shutdown().
//
typedef struct
{
//*********************************************************************************
// Hierarchy
//*********************************************************************************
// The values in this section are related to the hierarchies.
BOOL disableClear; // TRUE if TPM2_Clear() using
// lockoutAuth is disabled
// Hierarchy authPolicies
TPMI_ALG_HASH ownerAlg;
TPMI_ALG_HASH endorsementAlg;
TPMI_ALG_HASH lockoutAlg;
TPM2B_DIGEST ownerPolicy;
TPM2B_DIGEST endorsementPolicy;
TPM2B_DIGEST lockoutPolicy;
// Hierarchy authValues
TPM2B_AUTH ownerAuth;
TPM2B_AUTH endorsementAuth;
TPM2B_AUTH lockoutAuth;
// Primary Seeds
TPM2B_SEED EPSeed;
TPM2B_SEED SPSeed;
TPM2B_SEED PPSeed;
// Note there is a nullSeed in the state_reset memory.
// Hierarchy proofs
TPM2B_AUTH phProof;
TPM2B_AUTH shProof;
TPM2B_AUTH ehProof;
// Note there is a nullProof in the state_reset memory.
//*********************************************************************************
// Reset Events
//*********************************************************************************
// A count that increments at each TPM reset and never get reset during the life
// time of TPM. The value of this counter is initialized to 1 during TPM
// manufacture process.
UINT64 totalResetCount;
// This counter increments on each TPM Reset. The counter is reset by
// TPM2_Clear().
UINT32 resetCount;
//*********************************************************************************
// PCR
//*********************************************************************************
// This structure hold the policies for those PCR that have an update policy.
// This implementation only supports a single group of PCR controlled by
// policy. If more are required, then this structure would be changed to
// an array.
PCR_POLICY pcrPolicies;
// This structure indicates the allocation of PCR. The structure contains a
// list of PCR allocations for each implemented algorithm. If no PCR are
// allocated for an algorithm, a list entry still exists but the bit map
// will contain no SET bits.
TPML_PCR_SELECTION pcrAllocated;
//*********************************************************************************
// Physical Presence
//*********************************************************************************
// The PP_LIST type contains a bit map of the commands that require physical
// to be asserted when the authorization is evaluated. Physical presence will be
// checked if the corresponding bit in the array is SET and if the authorization
// handle is TPM_RH_PLATFORM.
//
// These bits may be changed with TPM2_PP_Commands().
BYTE ppList[((TPM_CC_PP_LAST - TPM_CC_PP_FIRST + 1) + 7)/8];
//*********************************************************************************
// Dictionary attack values
//*********************************************************************************
// These values are used for dictionary attack tracking and control.
UINT32 failedTries; // the current count of unexpired
// authorization failures
UINT32 maxTries; // number of unexpired authorization
// failures before the TPM is in
// lockout
UINT32 recoveryTime; // time between authorization failures
// before failedTries is decremented
UINT32 lockoutRecovery; // time that must expire between
// authorization failures associated
// with lockoutAuth
BOOL lockOutAuthEnabled; // TRUE if use of lockoutAuth is
// allowed
//*****************************************************************************
// Orderly State
//*****************************************************************************
// The orderly state for current cycle
TPM_SU orderlyState;
//*****************************************************************************
// Command audit values.
//*****************************************************************************
BYTE auditComands[((TPM_CC_LAST - TPM_CC_FIRST + 1) + 7) / 8];
TPMI_ALG_HASH auditHashAlg;
UINT64 auditCounter;
//*****************************************************************************
// Algorithm selection
//*****************************************************************************
//
// The 'algorithmSet' value indicates the collection of algorithms that are
// currently in used on the TPM. The interpretation of value is vendor dependent.
UINT32 algorithmSet;
//*****************************************************************************
// Firmware version
//*****************************************************************************
// The firmwareV1 and firmwareV2 values are instanced in TimeStamp.c. This is
// a scheme used in development to allow determination of the linker build time
// of the TPM. An actual implementation would implement these values in a way that
// is consistent with vendor needs. The values are maintained in RAM for simplified
// access with a master version in NV. These values are modified in a
// vendor-specific way.
// g_firmwareV1 contains the more significant 32-bits of the vendor version number.
// In the reference implementation, if this value is printed as a hex
// value, it will have the format of yyyymmdd
UINT32 firmwareV1;
// g_firmwareV1 contains the less significant 32-bits of the vendor version number.
// In the reference implementation, if this value is printed as a hex
// value, it will have the format of 00 hh mm ss
UINT32 firmwareV2;
} PERSISTENT_DATA;
extern PERSISTENT_DATA gp;
//
//
// ORDERLY_DATA
//
// The data in this structure is saved to NV on each TPM2_Shutdown().
//
typedef struct orderly_data
{
//
//*****************************************************************************
// TIME
//*****************************************************************************
// Clock has two parts. One is the state save part and one is the NV part. The
// state save version is updated on each command. When the clock rolls over, the
// NV version is updated. When the TPM starts up, if the TPM was shutdown in and
// orderly way, then the sClock value is used to initialize the clock. If the
// TPM shutdown was not orderly, then the persistent value is used and the safe
// attribute is clear.
UINT64 clock; // The orderly version of clock
TPMI_YES_NO clockSafe; // Indicates if the clock value is
// safe.
//*********************************************************************************
// DRBG
//*********************************************************************************
#ifdef _DRBG_STATE_SAVE
// This is DRBG state data. This is saved each time the value of clock is
// updated.
DRBG_STATE drbgState;
#endif
} ORDERLY_DATA;
extern ORDERLY_DATA go;
//
//
// STATE_CLEAR_DATA
//
// This structure contains the data that is saved on Shutdown(STATE). and restored on Startup(STATE).
// The values are set to their default settings on any Startup(Clear). In other words the data is only
// persistent across TPM Resume.
// If the comments associated with a parameter indicate a default reset value, the value is applied on each
// Startup(CLEAR).
//
typedef struct state_clear_data
{
//*****************************************************************************
// Hierarchy Control
//*****************************************************************************
BOOL shEnable; // default reset is SET
BOOL ehEnable; // default reset is SET
BOOL phEnableNV; // default reset is SET
TPMI_ALG_HASH platformAlg; // default reset is TPM_ALG_NULL
TPM2B_DIGEST platformPolicy; // default reset is an Empty Buffer
TPM2B_AUTH platformAuth; // default reset is an Empty Buffer
//*****************************************************************************
// PCR
//*****************************************************************************
// The set of PCR to be saved on Shutdown(STATE)
PCR_SAVE pcrSave; // default reset is 0...0
// This structure hold the authorization values for those PCR that have an
// update authorization.
// This implementation only supports a single group of PCR controlled by
// authorization. If more are required, then this structure would be changed to
// an array.
PCR_AUTHVALUE pcrAuthValues;
} STATE_CLEAR_DATA;
extern STATE_CLEAR_DATA gc;
//
//
//
// State Reset Data
//
// This structure contains data is that is saved on Shutdown(STATE) and restored on the subsequent
// Startup(ANY). That is, the data is preserved across TPM Resume and TPM Restart.
// If a default value is specified in the comments this value is applied on TPM Reset.
//
typedef struct state_reset_data
{
//*****************************************************************************
// Hierarchy Control
//*****************************************************************************
TPM2B_AUTH nullProof; // The proof value associated with
// the TPM_RH_NULL hierarchy. The
// default reset value is from the RNG.
TPM2B_SEED nullSeed; // The seed value for the TPM_RN_NULL
// hierarchy. The default reset value
// is from the RNG.
//*****************************************************************************
// Context
//*****************************************************************************
// The 'clearCount' counter is incremented each time the TPM successfully executes
// a TPM Resume. The counter is included in each saved context that has 'stClear'
// SET (including descendants of keys that have 'stClear' SET). This prevents these
// objects from being loaded after a TPM Resume.
// If 'clearCount' at its maximum value when the TPM receives a Shutdown(STATE),
// the TPM will return TPM_RC_RANGE and the TPM will only accept Shutdown(CLEAR).
UINT32 clearCount; // The default reset value is 0.
UINT64 objectContextID; // This is the context ID for a saved
// object context. The default reset
// value is 0.
CONTEXT_SLOT contextArray[MAX_ACTIVE_SESSIONS];
// This is the value from which the
// 'contextID' is derived. The
// default reset value is {0}.
CONTEXT_COUNTER contextCounter; // This array contains contains the
// values used to track the version
// numbers of saved contexts (see
// Session.c in for details). The
// default reset value is 0.
//*****************************************************************************
// Command Audit
//*****************************************************************************
// When an audited command completes, ExecuteCommand() checks the return
// value. If it is TPM_RC_SUCCESS, and the command is an audited command, the
// TPM will extend the cpHash and rpHash for the command to this value. If this
// digest was the Zero Digest before the cpHash was extended, the audit counter
// is incremented.
TPM2B_DIGEST commandAuditDigest; // This value is set to an Empty Digest
// by TPM2_GetCommandAuditDigest() or a
// TPM Reset.
//*****************************************************************************
// Boot counter
//*****************************************************************************
UINT32 restartCount; // This counter counts TPM Restarts.
// The default reset value is 0.
//
//*********************************************************************************
// PCR
//*********************************************************************************
// This counter increments whenever the PCR are updated. This counter is preserved
// across TPM Resume even though the PCR are not preserved. This is because
// sessions remain active across TPM Restart and the count value in the session
// is compared to this counter so this counter must have values that are unique
// as long as the sessions are active.
// NOTE: A platform-specific specification may designate that certain PCR changes
// do not increment this counter to increment.
UINT32 pcrCounter; // The default reset value is 0.
#ifdef TPM_ALG_ECC
//*****************************************************************************
// ECDAA
//*****************************************************************************
UINT64 commitCounter; // This counter increments each time
// TPM2_Commit() returns
// TPM_RC_SUCCESS. The default reset
// value is 0.
TPM2B_NONCE commitNonce; // This random value is used to compute
// the commit values. The default reset
// value is from the RNG.
// This implementation relies on the number of bits in g_commitArray being a
// power of 2 (8, 16, 32, 64, etc.) and no greater than 64K.
BYTE commitArray[16]; // The default reset value is {0}.
#endif //TPM_ALG_ECC
} STATE_RESET_DATA;
extern STATE_RESET_DATA gr;
//
//
// Global Macro Definitions
//
// This macro is used to ensure that a handle, session, or parameter number is only added if the response
// code is FMT1.
//
#define RcSafeAddToResult(r, v) \
((r) + (((r) & RC_FMT1) ? (v) : 0))
//
// This macro is used when a parameter is not otherwise referenced in a function. This macro is normally
// not used by itself but is paired with a pAssert() within a #ifdef pAssert. If pAssert is not defined, then a
// parameter might not otherwise be referenced. This macro uses the parameter from the perspective of the
// compiler so it doesn't complain.
//
#define UNREFERENCED(a) ((void)(a))
//
//
// Private data
//
#if defined SESSION_PROCESS_C || defined GLOBAL_C || defined MANUFACTURE_C
//
// From SessionProcess.c
// The following arrays are used to save command sessions information so that the command
// handle/session buffer does not have to be preserved for the duration of the command. These arrays are
// indexed by the session index in accordance with the order of sessions in the session area of the
// command.
//
// Array of the authorization session handles
//
extern TPM_HANDLE s_sessionHandles[MAX_SESSION_NUM];
//
// Array of authorization session attributes
//
extern TPMA_SESSION s_attributes[MAX_SESSION_NUM];
//
// Array of handles authorized by the corresponding authorization sessions; and if none, then
// TPM_RH_UNASSIGNED value is used
//
extern TPM_HANDLE s_associatedHandles[MAX_SESSION_NUM];
//
// Array of nonces provided by the caller for the corresponding sessions
//
extern TPM2B_NONCE s_nonceCaller[MAX_SESSION_NUM];
//
// Array of authorization values (HMAC's or passwords) for the corresponding sessions
//
extern TPM2B_AUTH s_inputAuthValues[MAX_SESSION_NUM];
//
// Special value to indicate an undefined session index
//
#define UNDEFINED_INDEX (0xFFFF)
//
// Index of the session used for encryption of a response parameter
//
extern UINT32 s_encryptSessionIndex;
//
// Index of the session used for decryption of a command parameter
//
extern UINT32 s_decryptSessionIndex;
//
// Index of a session used for audit
//
extern UINT32 s_auditSessionIndex;
//
// The cpHash for an audit session
//
extern TPM2B_DIGEST s_cpHashForAudit;
//
// The cpHash for command audit
//
#ifdef TPM_CC_GetCommandAuditDigest
extern TPM2B_DIGEST s_cpHashForCommandAudit;
#endif
//
// Number of authorization sessions present in the command
//
extern UINT32 s_sessionNum;
//
// Flag indicating if NV update is pending for the lockOutAuthEnabled or failedTries DA parameter
//
extern BOOL s_DAPendingOnNV;
#endif // SESSION_PROCESS_C
#if defined DA_C || defined GLOBAL_C || defined MANUFACTURE_C
//
// From DA.c
//
// This variable holds the accumulated time since the last time that failedTries was decremented. This value
// is in millisecond.
//
extern UINT64 s_selfHealTimer;
//
// This variable holds the accumulated time that the lockoutAuth has been blocked.
//
extern UINT64 s_lockoutTimer;
#endif // DA_C
#if defined NV_C || defined GLOBAL_C
//
// From NV.c
// List of pre-defined address of reserved data
//
extern UINT32 s_reservedAddr[NV_RESERVE_LAST];
//
// List of pre-defined reserved data size in byte
//
extern UINT32 s_reservedSize[NV_RESERVE_LAST];
//
// Size of data in RAM index buffer
//
extern UINT32 s_ramIndexSize;
//
// Reserved RAM space for frequently updated NV Index. The data layout in ram buffer is {NV_handle(),
// size of data, data} for each NV index data stored in RAM
//
extern BYTE s_ramIndex[RAM_INDEX_SPACE];
//
// Address of size of RAM index space in NV
//
extern UINT32 s_ramIndexSizeAddr;
//
// Address of NV copy of RAM index space
//
extern UINT32 s_ramIndexAddr;
//
// Address of maximum counter value; an auxiliary variable to implement NV counters
//
extern UINT32 s_maxCountAddr;
//
// Beginning of NV dynamic area; starts right after the s_maxCountAddr and s_evictHandleMapAddr
// variables
//
extern UINT32 s_evictNvStart;
//
// Beginning of NV dynamic area; also the beginning of the predefined reserved data area.
//
extern UINT32 s_evictNvEnd;
//
// NV availability is sampled as the start of each command and stored here so that its value remains
// consistent during the command execution
//
extern TPM_RC s_NvStatus;
#endif
#if defined OBJECT_C || defined GLOBAL_C
//
// From Object.c
//
// This type is the container for an object.
//
typedef struct
{
BOOL occupied;
ANY_OBJECT object;
} OBJECT_SLOT;
//
// This is the memory that holds the loaded objects.
//
extern OBJECT_SLOT s_objects[MAX_LOADED_OBJECTS];
#endif // OBJECT_C
#if defined PCR_C || defined GLOBAL_C
//
// From PCR.c
//
typedef struct
{
#ifdef TPM_ALG_SHA1
// SHA1 PCR
BYTE sha1Pcr[SHA1_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SHA256
// SHA256 PCR
BYTE sha256Pcr[SHA256_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SHA384
// SHA384 PCR
BYTE sha384Pcr[SHA384_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SHA512
// SHA512 PCR
BYTE sha512Pcr[SHA512_DIGEST_SIZE];
#endif
#ifdef TPM_ALG_SM3_256
// SHA256 PCR
BYTE sm3_256Pcr[SM3_256_DIGEST_SIZE];
#endif
} PCR;
typedef struct
{
unsigned int stateSave : 1; // if the PCR value should be
// saved in state save
unsigned int resetLocality : 5; // The locality that the PCR
// can be reset
unsigned int extendLocality : 5; // The locality that the PCR
// can be extend
} PCR_Attributes;
extern PCR s_pcrs[IMPLEMENTATION_PCR];
#endif // PCR_C
#if defined SESSION_C || defined GLOBAL_C
//
// From Session.c
// Container for HMAC or policy session tracking information
//
typedef struct
{
BOOL occupied;
SESSION session; // session structure
} SESSION_SLOT;
extern SESSION_SLOT s_sessions[MAX_LOADED_SESSIONS];
//
//
//
//
// The index in conextArray that has the value of the oldest saved session context. When no context is
// saved, this will have a value that is greater than or equal to MAX_ACTIVE_SESSIONS.
//
extern UINT32 s_oldestSavedSession;
//
// The number of available session slot openings. When this is 1, a session can't be created or loaded if the
// GAP is maxed out. The exception is that the oldest saved session context can always be loaded
// (assuming that there is a space in memory to put it)
//
extern int s_freeSessionSlots;
#endif // SESSION_C
//
// From Manufacture.c
//
extern BOOL g_manufactured;
#if defined POWER_C || defined GLOBAL_C
//
// From Power.c
// This value indicates if a TPM2_Startup() commands has been receive since the power on event. This
// flag is maintained in power simulation module because this is the only place that may reliably set this flag
// to FALSE.
//
extern BOOL s_initialized;
#endif // POWER_C
#if defined MEMORY_LIB_C || defined GLOBAL_C
//
// The s_actionOutputBuffer should not be modifiable by the host system until the TPM has returned a
// response code. The s_actionOutputBuffer should not be accessible until response parameter encryption,
// if any, is complete.
//
extern UINT32 s_actionInputBuffer[1024]; // action input buffer
extern UINT32 s_actionOutputBuffer[1024]; // action output buffer
extern BYTE s_responseBuffer[MAX_RESPONSE_SIZE];// response buffer
#endif // MEMORY_LIB_C
//
// From TPMFail.c
// This value holds the address of the string containing the name of the function in which the failure
// occurred. This address value isn't useful for anything other than helping the vendor to know in which file
// the failure occurred.
//
#ifndef EMBEDDED_MODE
extern jmp_buf g_jumpBuffer; // the jump buffer
#endif
extern BOOL g_inFailureMode; // Indicates that the TPM is in failure mode
extern BOOL g_forceFailureMode; // flag to force failure mode during test
#if defined TPM_FAIL_C || defined GLOBAL_C || 1
extern UINT32 s_failFunction;
extern UINT32 s_failLine; // the line in the file at which
// the error was signaled
extern UINT32 s_failCode; // the error code used
#endif // TPM_FAIL_C
#endif // GLOBAL_H