/*
* Copyright (C) 2006 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
FILE_LICENCE ( GPL2_OR_LATER );
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <strings.h>
#include <gpxe/io.h>
#include <gpxe/list.h>
#include <gpxe/init.h>
#include <gpxe/malloc.h>
/** @file
*
* Dynamic memory allocation
*
*/
/** A free block of memory */
struct memory_block {
/** List of free blocks */
struct list_head list;
/** Size of this block */
size_t size;
};
#define MIN_MEMBLOCK_SIZE \
( ( size_t ) ( 1 << ( fls ( sizeof ( struct memory_block ) - 1 ) ) ) )
/** A block of allocated memory complete with size information */
struct autosized_block {
/** Size of this block */
size_t size;
/** Remaining data */
char data[0];
};
/**
* Address for zero-length memory blocks
*
* @c malloc(0) or @c realloc(ptr,0) will return the special value @c
* NOWHERE. Calling @c free(NOWHERE) will have no effect.
*
* This is consistent with the ANSI C standards, which state that
* "either NULL or a pointer suitable to be passed to free()" must be
* returned in these cases. Using a special non-NULL value means that
* the caller can take a NULL return value to indicate failure,
* without first having to check for a requested size of zero.
*
* Code outside of malloc.c do not ever need to refer to the actual
* value of @c NOWHERE; this is an internal definition.
*/
#define NOWHERE ( ( void * ) ~( ( intptr_t ) 0 ) )
/** List of free memory blocks */
static LIST_HEAD ( free_blocks );
/** Total amount of free memory */
size_t freemem;
/**
* Heap size
*
* Currently fixed at 512kB.
*/
#define HEAP_SIZE ( 512 * 1024 )
/** The heap itself */
static char heap[HEAP_SIZE] __attribute__ (( aligned ( __alignof__(void *) )));
/**
* Allocate a memory block
*
* @v size Requested size
* @v align Physical alignment
* @ret ptr Memory block, or NULL
*
* Allocates a memory block @b physically aligned as requested. No
* guarantees are provided for the alignment of the virtual address.
*
* @c align must be a power of two. @c size may not be zero.
*/
void * alloc_memblock ( size_t size, size_t align ) {
struct memory_block *block;
size_t align_mask;
size_t pre_size;
ssize_t post_size;
struct memory_block *pre;
struct memory_block *post;
/* Round up size to multiple of MIN_MEMBLOCK_SIZE and
* calculate alignment mask.
*/
size = ( size + MIN_MEMBLOCK_SIZE - 1 ) & ~( MIN_MEMBLOCK_SIZE - 1 );
align_mask = ( align - 1 ) | ( MIN_MEMBLOCK_SIZE - 1 );
DBG ( "Allocating %#zx (aligned %#zx)\n", size, align );
/* Search through blocks for the first one with enough space */
list_for_each_entry ( block, &free_blocks, list ) {
pre_size = ( - virt_to_phys ( block ) ) & align_mask;
post_size = block->size - pre_size - size;
if ( post_size >= 0 ) {
/* Split block into pre-block, block, and
* post-block. After this split, the "pre"
* block is the one currently linked into the
* free list.
*/
pre = block;
block = ( ( ( void * ) pre ) + pre_size );
post = ( ( ( void * ) block ) + size );
DBG ( "[%p,%p) -> [%p,%p) + [%p,%p)\n", pre,
( ( ( void * ) pre ) + pre->size ), pre, block,
post, ( ( ( void * ) pre ) + pre->size ) );
/* If there is a "post" block, add it in to
* the free list. Leak it if it is too small
* (which can happen only at the very end of
* the heap).
*/
if ( ( size_t ) post_size >= MIN_MEMBLOCK_SIZE ) {
post->size = post_size;
list_add ( &post->list, &pre->list );
}
/* Shrink "pre" block, leaving the main block
* isolated and no longer part of the free
* list.
*/
pre->size = pre_size;
/* If there is no "pre" block, remove it from
* the list. Also remove it (i.e. leak it) if
* it is too small, which can happen only at
* the very start of the heap.
*/
if ( pre_size < MIN_MEMBLOCK_SIZE )
list_del ( &pre->list );
/* Update total free memory */
freemem -= size;
/* Return allocated block */
DBG ( "Allocated [%p,%p)\n", block,
( ( ( void * ) block ) + size ) );
return block;
}
}
DBG ( "Failed to allocate %#zx (aligned %#zx)\n", size, align );
return NULL;
}
/**
* Free a memory block
*
* @v ptr Memory allocated by alloc_memblock(), or NULL
* @v size Size of the memory
*
* If @c ptr is NULL, no action is taken.
*/
void free_memblock ( void *ptr, size_t size ) {
struct memory_block *freeing;
struct memory_block *block;
ssize_t gap_before;
ssize_t gap_after = -1;
/* Allow for ptr==NULL */
if ( ! ptr )
return;
/* Round up size to match actual size that alloc_memblock()
* would have used.
*/
size = ( size + MIN_MEMBLOCK_SIZE - 1 ) & ~( MIN_MEMBLOCK_SIZE - 1 );
freeing = ptr;
freeing->size = size;
DBG ( "Freeing [%p,%p)\n", freeing, ( ( ( void * ) freeing ) + size ));
/* Insert/merge into free list */
list_for_each_entry ( block, &free_blocks, list ) {
/* Calculate gaps before and after the "freeing" block */
gap_before = ( ( ( void * ) freeing ) -
( ( ( void * ) block ) + block->size ) );
gap_after = ( ( ( void * ) block ) -
( ( ( void * ) freeing ) + freeing->size ) );
/* Merge with immediately preceding block, if possible */
if ( gap_before == 0 ) {
DBG ( "[%p,%p) + [%p,%p) -> [%p,%p)\n", block,
( ( ( void * ) block ) + block->size ), freeing,
( ( ( void * ) freeing ) + freeing->size ),block,
( ( ( void * ) freeing ) + freeing->size ) );
block->size += size;
list_del ( &block->list );
freeing = block;
}
/* Stop processing as soon as we reach a following block */
if ( gap_after >= 0 )
break;
}
/* Insert before the immediately following block. If
* possible, merge the following block into the "freeing"
* block.
*/
DBG ( "[%p,%p)\n", freeing, ( ( ( void * ) freeing ) + freeing->size));
list_add_tail ( &freeing->list, &block->list );
if ( gap_after == 0 ) {
DBG ( "[%p,%p) + [%p,%p) -> [%p,%p)\n", freeing,
( ( ( void * ) freeing ) + freeing->size ), block,
( ( ( void * ) block ) + block->size ), freeing,
( ( ( void * ) block ) + block->size ) );
freeing->size += block->size;
list_del ( &block->list );
}
/* Update free memory counter */
freemem += size;
}
/**
* Reallocate memory
*
* @v old_ptr Memory previously allocated by malloc(), or NULL
* @v new_size Requested size
* @ret new_ptr Allocated memory, or NULL
*
* Allocates memory with no particular alignment requirement. @c
* new_ptr will be aligned to at least a multiple of sizeof(void*).
* If @c old_ptr is non-NULL, then the contents of the newly allocated
* memory will be the same as the contents of the previously allocated
* memory, up to the minimum of the old and new sizes. The old memory
* will be freed.
*
* If allocation fails the previously allocated block is left
* untouched and NULL is returned.
*
* Calling realloc() with a new size of zero is a valid way to free a
* memory block.
*/
void * realloc ( void *old_ptr, size_t new_size ) {
struct autosized_block *old_block;
struct autosized_block *new_block;
size_t old_total_size;
size_t new_total_size;
size_t old_size;
void *new_ptr = NOWHERE;
/* Allocate new memory if necessary. If allocation fails,
* return without touching the old block.
*/
if ( new_size ) {
new_total_size = ( new_size +
offsetof ( struct autosized_block, data ) );
new_block = alloc_memblock ( new_total_size, 1 );
if ( ! new_block )
return NULL;
new_block->size = new_total_size;
new_ptr = &new_block->data;
}
/* Copy across relevant part of the old data region (if any),
* then free it. Note that at this point either (a) new_ptr
* is valid, or (b) new_size is 0; either way, the memcpy() is
* valid.
*/
if ( old_ptr && ( old_ptr != NOWHERE ) ) {
old_block = container_of ( old_ptr, struct autosized_block,
data );
old_total_size = old_block->size;
old_size = ( old_total_size -
offsetof ( struct autosized_block, data ) );
memcpy ( new_ptr, old_ptr,
( ( old_size < new_size ) ? old_size : new_size ) );
free_memblock ( old_block, old_total_size );
}
return new_ptr;
}
/**
* Allocate memory
*
* @v size Requested size
* @ret ptr Memory, or NULL
*
* Allocates memory with no particular alignment requirement. @c ptr
* will be aligned to at least a multiple of sizeof(void*).
*/
void * malloc ( size_t size ) {
return realloc ( NULL, size );
}
/**
* Free memory
*
* @v ptr Memory allocated by malloc(), or NULL
*
* Memory allocated with malloc_dma() cannot be freed with free(); it
* must be freed with free_dma() instead.
*
* If @c ptr is NULL, no action is taken.
*/
void free ( void *ptr ) {
realloc ( ptr, 0 );
}
/**
* Allocate cleared memory
*
* @v size Requested size
* @ret ptr Allocated memory
*
* Allocate memory as per malloc(), and zero it.
*
* This function name is non-standard, but pretty intuitive.
* zalloc(size) is always equivalent to calloc(1,size)
*/
void * zalloc ( size_t size ) {
void *data;
data = malloc ( size );
if ( data )
memset ( data, 0, size );
return data;
}
/**
* Add memory to allocation pool
*
* @v start Start address
* @v end End address
*
* Adds a block of memory [start,end) to the allocation pool. This is
* a one-way operation; there is no way to reclaim this memory.
*
* @c start must be aligned to at least a multiple of sizeof(void*).
*/
void mpopulate ( void *start, size_t len ) {
/* Prevent free_memblock() from rounding up len beyond the end
* of what we were actually given...
*/
free_memblock ( start, ( len & ~( MIN_MEMBLOCK_SIZE - 1 ) ) );
}
/**
* Initialise the heap
*
*/
static void init_heap ( void ) {
mpopulate ( heap, sizeof ( heap ) );
}
/** Memory allocator initialisation function */
struct init_fn heap_init_fn __init_fn ( INIT_EARLY ) = {
.initialise = init_heap,
};
#if 0
#include <stdio.h>
/**
* Dump free block list
*
*/
void mdumpfree ( void ) {
struct memory_block *block;
printf ( "Free block list:\n" );
list_for_each_entry ( block, &free_blocks, list ) {
printf ( "[%p,%p] (size %#zx)\n", block,
( ( ( void * ) block ) + block->size ), block->size );
}
}
#endif