/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkCodec.h"
#include "SkCodecPriv.h"
#include "SkColorPriv.h"
#include "SkColorSpace.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkColorSpaceXform_Base.h"
#include "Test.h"
static constexpr int kChannels = 3;
class ColorSpaceXformTest {
public:
static std::unique_ptr<SkColorSpaceXform> CreateIdentityXform(const sk_sp<SkGammas>& gammas) {
// Logically we can pass any matrix here. For simplicty, pass I(), i.e. D50 XYZ gamut.
sk_sp<SkColorSpace> space(new SkColorSpace_XYZ(
kNonStandard_SkGammaNamed, gammas, SkMatrix::I(), nullptr));
// Use special testing entry point, so we don't skip the xform, even though src == dst.
return SlowIdentityXform(static_cast<SkColorSpace_XYZ*>(space.get()));
}
static std::unique_ptr<SkColorSpaceXform> CreateIdentityXform_A2B(
SkGammaNamed gammaNamed, const sk_sp<SkGammas>& gammas) {
std::vector<SkColorSpace_A2B::Element> srcElements;
// sRGB
const float values[16] = {
0.4358f, 0.3853f, 0.1430f, 0.0f,
0.2224f, 0.7170f, 0.0606f, 0.0f,
0.0139f, 0.0971f, 0.7139f, 0.0f,
0.0000f, 0.0000f, 0.0000f, 1.0f
};
SkMatrix44 arbitraryMatrix{SkMatrix44::kUninitialized_Constructor};
arbitraryMatrix.setRowMajorf(values);
if (kNonStandard_SkGammaNamed == gammaNamed) {
SkASSERT(gammas);
srcElements.push_back(SkColorSpace_A2B::Element(gammas));
} else {
srcElements.push_back(SkColorSpace_A2B::Element(gammaNamed, kChannels));
}
srcElements.push_back(SkColorSpace_A2B::Element(arbitraryMatrix));
auto srcSpace =
ColorSpaceXformTest::CreateA2BSpace(SkColorSpace_A2B::PCS::kXYZ,
std::move(srcElements));
sk_sp<SkColorSpace> dstSpace(new SkColorSpace_XYZ(gammaNamed, gammas, arbitraryMatrix,
nullptr));
return SkColorSpaceXform::New(static_cast<SkColorSpace_A2B*>(srcSpace.get()),
static_cast<SkColorSpace_XYZ*>(dstSpace.get()));
}
static sk_sp<SkColorSpace> CreateA2BSpace(SkColorSpace_A2B::PCS pcs,
std::vector<SkColorSpace_A2B::Element> elements) {
return sk_sp<SkColorSpace>(new SkColorSpace_A2B(SkColorSpace::kRGB_Type,
std::move(elements),
pcs, nullptr));
}
};
static bool almost_equal(int x, int y, int tol=1) {
return SkTAbs(x-y) <= tol;
}
static void test_identity_xform(skiatest::Reporter* r, const sk_sp<SkGammas>& gammas,
bool repeat) {
// Arbitrary set of 10 pixels
constexpr int width = 10;
constexpr uint32_t srcPixels[width] = {
0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271,
0xFF32AB52, 0xFF0383BC, 0xFF000102, 0xFFFFFFFF, 0xFFDDEEFF, };
uint32_t dstPixels[width];
// Create and perform an identity xform.
std::unique_ptr<SkColorSpaceXform> xform = ColorSpaceXformTest::CreateIdentityXform(gammas);
bool result = xform->apply(select_xform_format(kN32_SkColorType), dstPixels,
SkColorSpaceXform::kBGRA_8888_ColorFormat, srcPixels, width,
kOpaque_SkAlphaType);
REPORTER_ASSERT(r, result);
// Since the src->dst matrix is the identity, and the gamma curves match,
// the pixels should be unchanged.
for (int i = 0; i < width; i++) {
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 0) & 0xFF),
SkGetPackedB32(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 8) & 0xFF),
SkGetPackedG32(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 16) & 0xFF),
SkGetPackedR32(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 24) & 0xFF),
SkGetPackedA32(dstPixels[i])));
}
if (repeat) {
// We should cache part of the transform after the run. So it is interesting
// to make sure it still runs correctly the second time.
test_identity_xform(r, gammas, false);
}
}
static void test_identity_xform_A2B(skiatest::Reporter* r, SkGammaNamed gammaNamed,
const sk_sp<SkGammas>& gammas, int tol=1) {
// Arbitrary set of 10 pixels
constexpr int width = 10;
constexpr uint32_t srcPixels[width] = {
0xFFABCDEF, 0xFF146829, 0xFF382759, 0xFF184968, 0xFFDE8271,
0xFF32AB52, 0xFF0383BC, 0xFF000102, 0xFFFFFFFF, 0xFFDDEEFF, };
uint32_t dstPixels[width];
// Create and perform an identity xform.
auto xform = ColorSpaceXformTest::CreateIdentityXform_A2B(gammaNamed, gammas);
bool result = xform->apply(select_xform_format(kN32_SkColorType), dstPixels,
SkColorSpaceXform::kBGRA_8888_ColorFormat, srcPixels, width,
kOpaque_SkAlphaType);
REPORTER_ASSERT(r, result);
// Since the src->dst matrix is the identity, and the gamma curves match,
// the pixels should be ~unchanged.
for (int i = 0; i < width; i++) {
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 0) & 0xFF),
SkGetPackedB32(dstPixels[i]), tol));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 8) & 0xFF),
SkGetPackedG32(dstPixels[i]), tol));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 16) & 0xFF),
SkGetPackedR32(dstPixels[i]), tol));
REPORTER_ASSERT(r, almost_equal(((srcPixels[i] >> 24) & 0xFF),
SkGetPackedA32(dstPixels[i]), tol));
}
}
DEF_TEST(ColorSpaceXform_TableGamma, r) {
// Lookup-table based gamma curves
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize);
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(kChannels));
for (int i = 0; i < kChannels; ++i) {
gammas->fType[i] = SkGammas::Type::kTable_Type;
gammas->fData[i].fTable.fSize = tableSize;
gammas->fData[i].fTable.fOffset = 0;
}
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.05f;
table[2] = 0.10f;
table[3] = 0.15f;
table[4] = 0.25f;
table[5] = 0.35f;
table[6] = 0.45f;
table[7] = 0.60f;
table[8] = 0.75f;
table[9] = 1.00f;
// This table's pretty small compared to real ones in the wild (think 256),
// so we give test_identity_xform_A2B a wide tolerance.
// This lets us implement table transfer functions with a single lookup.
const int tolerance = 13;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas, tolerance);
}
DEF_TEST(ColorSpaceXform_ParametricGamma, r) {
// Parametric gamma curves
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(SkColorSpaceTransferFn));
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(kChannels));
for (int i = 0; i < kChannels; ++i) {
gammas->fType[i] = SkGammas::Type::kParam_Type;
gammas->fData[i].fParamOffset = 0;
}
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>
(memory, sizeof(SkGammas));
// Interval.
params->fD = 0.04045f;
// First equation:
params->fC = 1.0f / 12.92f;
params->fF = 0.0f;
// Second equation:
// Note that the function is continuous (it's actually sRGB).
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fE = 0.0f;
params->fG = 2.4f;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas);
}
DEF_TEST(ColorSpaceXform_ExponentialGamma, r) {
// Exponential gamma curves
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new SkGammas(kChannels));
for (int i = 0; i < kChannels; ++i) {
gammas->fType[i] = SkGammas::Type::kValue_Type;
gammas->fData[i].fValue = 1.4f;
}
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas);
}
DEF_TEST(ColorSpaceXform_NamedGamma, r) {
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new SkGammas(kChannels));
gammas->fType[0] = gammas->fType[1] = gammas->fType[2] = SkGammas::Type::kNamed_Type;
gammas->fData[0].fNamed = kSRGB_SkGammaNamed;
gammas->fData[1].fNamed = k2Dot2Curve_SkGammaNamed;
gammas->fData[2].fNamed = kLinear_SkGammaNamed;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas);
test_identity_xform_A2B(r, kSRGB_SkGammaNamed, nullptr);
test_identity_xform_A2B(r, k2Dot2Curve_SkGammaNamed, nullptr);
test_identity_xform_A2B(r, kLinear_SkGammaNamed, nullptr);
}
DEF_TEST(ColorSpaceXform_NonMatchingGamma, r) {
constexpr size_t tableSize = 10;
void* memory = sk_malloc_throw(sizeof(SkGammas) + sizeof(float) * tableSize +
sizeof(SkColorSpaceTransferFn));
sk_sp<SkGammas> gammas = sk_sp<SkGammas>(new (memory) SkGammas(kChannels));
float* table = SkTAddOffset<float>(memory, sizeof(SkGammas));
table[0] = 0.00f;
table[1] = 0.15f;
table[2] = 0.20f;
table[3] = 0.25f;
table[4] = 0.35f;
table[5] = 0.45f;
table[6] = 0.55f;
table[7] = 0.70f;
table[8] = 0.85f;
table[9] = 1.00f;
SkColorSpaceTransferFn* params = SkTAddOffset<SkColorSpaceTransferFn>(memory,
sizeof(SkGammas) + sizeof(float) * tableSize);
params->fA = 1.0f / 1.055f;
params->fB = 0.055f / 1.055f;
params->fC = 1.0f / 12.92f;
params->fD = 0.04045f;
params->fE = 0.0f;
params->fF = 0.0f;
params->fG = 2.4f;
gammas->fType[0] = SkGammas::Type::kValue_Type;
gammas->fData[0].fValue = 1.2f;
// See ColorSpaceXform_TableGamma... we've decided to allow some tolerance
// for SkJumper's implementation of tables.
const int tolerance = 12;
gammas->fType[1] = SkGammas::Type::kTable_Type;
gammas->fData[1].fTable.fSize = tableSize;
gammas->fData[1].fTable.fOffset = 0;
gammas->fType[2] = SkGammas::Type::kParam_Type;
gammas->fData[2].fParamOffset = sizeof(float) * tableSize;
test_identity_xform(r, gammas, true);
test_identity_xform_A2B(r, kNonStandard_SkGammaNamed, gammas, tolerance);
}
DEF_TEST(ColorSpaceXform_A2BCLUT, r) {
constexpr int inputChannels = 3;
constexpr int gp = 4; // # grid points
constexpr int numEntries = gp*gp*gp*3;
const uint8_t gridPoints[3] = {gp, gp, gp};
void* memory = sk_malloc_throw(sizeof(SkColorLookUpTable) + sizeof(float) * numEntries);
sk_sp<SkColorLookUpTable> colorLUT(new (memory) SkColorLookUpTable(inputChannels, gridPoints));
// make a CLUT that rotates R, G, and B ie R->G, G->B, B->R
float* table = SkTAddOffset<float>(memory, sizeof(SkColorLookUpTable));
for (int r = 0; r < gp; ++r) {
for (int g = 0; g < gp; ++g) {
for (int b = 0; b < gp; ++b) {
table[3*(gp*gp*r + gp*g + b) + 0] = g * (1.f / (gp - 1.f));
table[3*(gp*gp*r + gp*g + b) + 1] = b * (1.f / (gp - 1.f));
table[3*(gp*gp*r + gp*g + b) + 2] = r * (1.f / (gp - 1.f));
}
}
}
// build an even distribution of pixels every (7 / 255) steps
// to test the xform on
constexpr int pixelgp = 7;
constexpr int numPixels = pixelgp*pixelgp*pixelgp;
SkAutoTMalloc<uint32_t> srcPixels(numPixels);
int srcIndex = 0;
for (int r = 0; r < pixelgp; ++r) {
for (int g = 0; g < pixelgp; ++g) {
for (int b = 0; b < pixelgp; ++b) {
const int red = (int) (r * (255.f / (pixelgp - 1.f)));
const int green = (int) (g * (255.f / (pixelgp - 1.f)));
const int blue = (int) (b * (255.f / (pixelgp - 1.f)));
srcPixels[srcIndex] = SkColorSetRGB(red, green, blue);
++srcIndex;
}
}
}
SkAutoTMalloc<uint32_t> dstPixels(numPixels);
// src space is identity besides CLUT
std::vector<SkColorSpace_A2B::Element> srcElements;
srcElements.push_back(SkColorSpace_A2B::Element(std::move(colorLUT)));
auto srcSpace = ColorSpaceXformTest::CreateA2BSpace(SkColorSpace_A2B::PCS::kXYZ,
std::move(srcElements));
// dst space is entirely identity
auto dstSpace = SkColorSpace::MakeRGB(SkColorSpace::kLinear_RenderTargetGamma, SkMatrix44::I());
auto xform = SkColorSpaceXform::New(srcSpace.get(), dstSpace.get());
bool result = xform->apply(SkColorSpaceXform::kRGBA_8888_ColorFormat, dstPixels.get(),
SkColorSpaceXform::kRGBA_8888_ColorFormat, srcPixels.get(),
numPixels, kOpaque_SkAlphaType);
REPORTER_ASSERT(r, result);
for (int i = 0; i < numPixels; ++i) {
REPORTER_ASSERT(r, almost_equal(SkColorGetR(srcPixels[i]),
SkColorGetG(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(SkColorGetG(srcPixels[i]),
SkColorGetB(dstPixels[i])));
REPORTER_ASSERT(r, almost_equal(SkColorGetB(srcPixels[i]),
SkColorGetR(dstPixels[i])));
}
}
DEF_TEST(SkColorSpaceXform_LoadTail, r) {
std::unique_ptr<uint64_t[]> srcPixel(new uint64_t[1]);
srcPixel[0] = 0;
uint32_t dstPixel;
sk_sp<SkColorSpace> p3 = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
SkColorSpace::kDCIP3_D65_Gamut);
sk_sp<SkColorSpace> srgb = SkColorSpace::MakeSRGB();
std::unique_ptr<SkColorSpaceXform> xform = SkColorSpaceXform::New(p3.get(), srgb.get());
// ASAN will catch us if we read past the tail.
bool success = xform->apply(SkColorSpaceXform::kRGBA_8888_ColorFormat, &dstPixel,
SkColorSpaceXform::kRGBA_U16_BE_ColorFormat, srcPixel.get(), 1,
kUnpremul_SkAlphaType);
REPORTER_ASSERT(r, success);
}