/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrVkGpuCommandBuffer.h"
#include "GrFixedClip.h"
#include "GrMesh.h"
#include "GrOpFlushState.h"
#include "GrPipeline.h"
#include "GrRenderTargetPriv.h"
#include "GrTexturePriv.h"
#include "GrVkCommandBuffer.h"
#include "GrVkGpu.h"
#include "GrVkPipeline.h"
#include "GrVkRenderPass.h"
#include "GrVkRenderTarget.h"
#include "GrVkResourceProvider.h"
#include "GrVkTexture.h"
#include "SkRect.h"
void GrVkGpuTextureCommandBuffer::copy(GrSurface* src, GrSurfaceOrigin srcOrigin,
const SkIRect& srcRect, const SkIPoint& dstPoint) {
fCopies.emplace_back(src, srcOrigin, srcRect, dstPoint);
}
void GrVkGpuTextureCommandBuffer::insertEventMarker(const char* msg) {
// TODO: does Vulkan have a correlate?
}
void GrVkGpuTextureCommandBuffer::submit() {
for (int i = 0; i < fCopies.count(); ++i) {
CopyInfo& copyInfo = fCopies[i];
fGpu->copySurface(fTexture, fOrigin, copyInfo.fSrc, copyInfo.fSrcOrigin, copyInfo.fSrcRect,
copyInfo.fDstPoint);
}
}
GrVkGpuTextureCommandBuffer::~GrVkGpuTextureCommandBuffer() {}
////////////////////////////////////////////////////////////////////////////////
void get_vk_load_store_ops(GrLoadOp loadOpIn, GrStoreOp storeOpIn,
VkAttachmentLoadOp* loadOp, VkAttachmentStoreOp* storeOp) {
switch (loadOpIn) {
case GrLoadOp::kLoad:
*loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
break;
case GrLoadOp::kClear:
*loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
break;
case GrLoadOp::kDiscard:
*loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
break;
default:
SK_ABORT("Invalid LoadOp");
*loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
}
switch (storeOpIn) {
case GrStoreOp::kStore:
*storeOp = VK_ATTACHMENT_STORE_OP_STORE;
break;
case GrStoreOp::kDiscard:
*storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
break;
default:
SK_ABORT("Invalid StoreOp");
*storeOp = VK_ATTACHMENT_STORE_OP_STORE;
}
}
GrVkGpuRTCommandBuffer::GrVkGpuRTCommandBuffer(GrVkGpu* gpu,
GrRenderTarget* rt, GrSurfaceOrigin origin,
const LoadAndStoreInfo& colorInfo,
const StencilLoadAndStoreInfo& stencilInfo)
: INHERITED(rt, origin)
, fGpu(gpu)
, fClearColor(GrColor4f::FromGrColor(colorInfo.fClearColor))
, fLastPipelineState(nullptr) {
get_vk_load_store_ops(colorInfo.fLoadOp, colorInfo.fStoreOp,
&fVkColorLoadOp, &fVkColorStoreOp);
get_vk_load_store_ops(stencilInfo.fLoadOp, stencilInfo.fStoreOp,
&fVkStencilLoadOp, &fVkStencilStoreOp);
fCurrentCmdInfo = -1;
this->init();
}
void GrVkGpuRTCommandBuffer::init() {
GrVkRenderPass::LoadStoreOps vkColorOps(fVkColorLoadOp, fVkColorStoreOp);
GrVkRenderPass::LoadStoreOps vkStencilOps(fVkStencilLoadOp, fVkStencilStoreOp);
CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back();
SkASSERT(fCommandBufferInfos.count() == 1);
fCurrentCmdInfo = 0;
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
const GrVkResourceProvider::CompatibleRPHandle& rpHandle = vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
cbInfo.fColorClearValue.color.float32[0] = fClearColor.fRGBA[0];
cbInfo.fColorClearValue.color.float32[1] = fClearColor.fRGBA[1];
cbInfo.fColorClearValue.color.float32[2] = fClearColor.fRGBA[2];
cbInfo.fColorClearValue.color.float32[3] = fClearColor.fRGBA[3];
if (VK_ATTACHMENT_LOAD_OP_CLEAR == fVkColorLoadOp) {
cbInfo.fBounds = SkRect::MakeWH(vkRT->width(), vkRT->height());
} else {
cbInfo.fBounds.setEmpty();
}
if (VK_ATTACHMENT_LOAD_OP_CLEAR == fVkColorLoadOp) {
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithClear;
} else if (VK_ATTACHMENT_LOAD_OP_LOAD == fVkColorLoadOp &&
VK_ATTACHMENT_STORE_OP_STORE == fVkColorStoreOp) {
cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore;
} else if (VK_ATTACHMENT_LOAD_OP_DONT_CARE == fVkColorLoadOp) {
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithDiscard;
}
cbInfo.fCommandBuffers.push_back(fGpu->resourceProvider().findOrCreateSecondaryCommandBuffer());
cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass);
}
GrVkGpuRTCommandBuffer::~GrVkGpuRTCommandBuffer() {
for (int i = 0; i < fCommandBufferInfos.count(); ++i) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[i];
for (int j = 0; j < cbInfo.fCommandBuffers.count(); ++j) {
cbInfo.fCommandBuffers[j]->unref(fGpu);
}
cbInfo.fRenderPass->unref(fGpu);
}
}
GrGpu* GrVkGpuRTCommandBuffer::gpu() { return fGpu; }
void GrVkGpuRTCommandBuffer::end() {
if (fCurrentCmdInfo >= 0) {
fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf()->end(fGpu);
}
}
void GrVkGpuRTCommandBuffer::submit() {
if (!fRenderTarget) {
return;
}
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
GrVkImage* targetImage = vkRT->msaaImage() ? vkRT->msaaImage() : vkRT;
GrStencilAttachment* stencil = fRenderTarget->renderTargetPriv().getStencilAttachment();
for (int i = 0; i < fCommandBufferInfos.count(); ++i) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[i];
for (int j = 0; j < cbInfo.fPreDrawUploads.count(); ++j) {
InlineUploadInfo& iuInfo = cbInfo.fPreDrawUploads[j];
iuInfo.fFlushState->doUpload(iuInfo.fUpload);
}
for (int j = 0; j < cbInfo.fPreCopies.count(); ++j) {
CopyInfo& copyInfo = cbInfo.fPreCopies[j];
fGpu->copySurface(fRenderTarget, fOrigin, copyInfo.fSrc, copyInfo.fSrcOrigin,
copyInfo.fSrcRect, copyInfo.fDstPoint, copyInfo.fShouldDiscardDst);
}
// Make sure we do the following layout changes after all copies, uploads, or any other pre
// work is done since we may change the layouts in the pre-work. Also since the draws will
// be submitted in different render passes, we need to guard againts write and write issues.
// Change layout of our render target so it can be used as the color attachment.
targetImage->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
false);
// If we are using a stencil attachment we also need to update its layout
if (stencil) {
GrVkStencilAttachment* vkStencil = (GrVkStencilAttachment*)stencil;
vkStencil->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
false);
}
// If we have any sampled images set their layout now.
for (int j = 0; j < cbInfo.fSampledImages.count(); ++j) {
cbInfo.fSampledImages[j]->setImageLayout(fGpu,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_ACCESS_SHADER_READ_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
false);
}
// TODO: We can't add this optimization yet since many things create a scratch texture which
// adds the discard immediately, but then don't draw to it right away. This causes the
// discard to be ignored and we get yelled at for loading uninitialized data. However, once
// MDB lands, the discard will get reordered with the rest of the draw commands and we can
// re-enable this.
#if 0
if (cbInfo.fIsEmpty && cbInfo.fLoadStoreState != kStartsWithClear) {
// We have sumbitted no actual draw commands to the command buffer and we are not using
// the render pass to do a clear so there is no need to submit anything.
continue;
}
#endif
if (cbInfo.fBounds.intersect(0, 0,
SkIntToScalar(fRenderTarget->width()),
SkIntToScalar(fRenderTarget->height()))) {
SkIRect iBounds;
cbInfo.fBounds.roundOut(&iBounds);
fGpu->submitSecondaryCommandBuffer(cbInfo.fCommandBuffers, cbInfo.fRenderPass,
&cbInfo.fColorClearValue, vkRT, fOrigin, iBounds);
}
}
}
void GrVkGpuRTCommandBuffer::discard() {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
if (cbInfo.fIsEmpty) {
// Change the render pass to do a don't-care load for both color & stencil
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE);
GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE);
const GrVkRenderPass* oldRP = cbInfo.fRenderPass;
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP));
oldRP->unref(fGpu);
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithDiscard;
// If we are going to discard the whole render target then the results of any copies we did
// immediately before to the target won't matter, so just drop them.
cbInfo.fPreCopies.reset();
}
}
void GrVkGpuRTCommandBuffer::insertEventMarker(const char* msg) {
// TODO: does Vulkan have a correlate?
}
void GrVkGpuRTCommandBuffer::onClearStencilClip(const GrFixedClip& clip, bool insideStencilMask) {
SkASSERT(!clip.hasWindowRectangles());
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
GrStencilAttachment* sb = fRenderTarget->renderTargetPriv().getStencilAttachment();
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(sb);
int stencilBitCount = sb->bits();
// The contract with the callers does not guarantee that we preserve all bits in the stencil
// during this clear. Thus we will clear the entire stencil to the desired value.
VkClearDepthStencilValue vkStencilColor;
memset(&vkStencilColor, 0, sizeof(VkClearDepthStencilValue));
if (insideStencilMask) {
vkStencilColor.stencil = (1 << (stencilBitCount - 1));
} else {
vkStencilColor.stencil = 0;
}
VkClearRect clearRect;
// Flip rect if necessary
SkIRect vkRect;
if (!clip.scissorEnabled()) {
vkRect.setXYWH(0, 0, fRenderTarget->width(), fRenderTarget->height());
} else if (kBottomLeft_GrSurfaceOrigin != fOrigin) {
vkRect = clip.scissorRect();
} else {
const SkIRect& scissor = clip.scissorRect();
vkRect.setLTRB(scissor.fLeft, fRenderTarget->height() - scissor.fBottom,
scissor.fRight, fRenderTarget->height() - scissor.fTop);
}
clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop };
clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() };
clearRect.baseArrayLayer = 0;
clearRect.layerCount = 1;
uint32_t stencilIndex;
SkAssertResult(cbInfo.fRenderPass->stencilAttachmentIndex(&stencilIndex));
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
attachment.colorAttachment = 0; // this value shouldn't matter
attachment.clearValue.depthStencil = vkStencilColor;
cbInfo.currentCmdBuf()->clearAttachments(fGpu, 1, &attachment, 1, &clearRect);
cbInfo.fIsEmpty = false;
// Update command buffer bounds
if (!clip.scissorEnabled()) {
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
} else {
cbInfo.fBounds.join(SkRect::Make(clip.scissorRect()));
}
}
void GrVkGpuRTCommandBuffer::onClear(const GrFixedClip& clip, GrColor color) {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
// parent class should never let us get here with no RT
SkASSERT(!clip.hasWindowRectangles());
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
VkClearColorValue vkColor;
GrColorToRGBAFloat(color, vkColor.float32);
if (cbInfo.fIsEmpty && !clip.scissorEnabled()) {
// Change the render pass to do a clear load
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_CLEAR,
VK_ATTACHMENT_STORE_OP_STORE);
// Preserve the stencil buffer's load & store settings
GrVkRenderPass::LoadStoreOps vkStencilOps(fVkStencilLoadOp, fVkStencilStoreOp);
const GrVkRenderPass* oldRP = cbInfo.fRenderPass;
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP));
oldRP->unref(fGpu);
GrColorToRGBAFloat(color, cbInfo.fColorClearValue.color.float32);
cbInfo.fLoadStoreState = LoadStoreState::kStartsWithClear;
// If we are going to clear the whole render target then the results of any copies we did
// immediately before to the target won't matter, so just drop them.
cbInfo.fPreCopies.reset();
// Update command buffer bounds
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
return;
}
// We always do a sub rect clear with clearAttachments since we are inside a render pass
VkClearRect clearRect;
// Flip rect if necessary
SkIRect vkRect;
if (!clip.scissorEnabled()) {
vkRect.setXYWH(0, 0, fRenderTarget->width(), fRenderTarget->height());
} else if (kBottomLeft_GrSurfaceOrigin != fOrigin) {
vkRect = clip.scissorRect();
} else {
const SkIRect& scissor = clip.scissorRect();
vkRect.setLTRB(scissor.fLeft, fRenderTarget->height() - scissor.fBottom,
scissor.fRight, fRenderTarget->height() - scissor.fTop);
}
clearRect.rect.offset = { vkRect.fLeft, vkRect.fTop };
clearRect.rect.extent = { (uint32_t)vkRect.width(), (uint32_t)vkRect.height() };
clearRect.baseArrayLayer = 0;
clearRect.layerCount = 1;
uint32_t colorIndex;
SkAssertResult(cbInfo.fRenderPass->colorAttachmentIndex(&colorIndex));
VkClearAttachment attachment;
attachment.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
attachment.colorAttachment = colorIndex;
attachment.clearValue.color = vkColor;
cbInfo.currentCmdBuf()->clearAttachments(fGpu, 1, &attachment, 1, &clearRect);
cbInfo.fIsEmpty = false;
// Update command buffer bounds
if (!clip.scissorEnabled()) {
cbInfo.fBounds.join(fRenderTarget->getBoundsRect());
} else {
cbInfo.fBounds.join(SkRect::Make(clip.scissorRect()));
}
return;
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuRTCommandBuffer::addAdditionalCommandBuffer() {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
cbInfo.currentCmdBuf()->end(fGpu);
cbInfo.fCommandBuffers.push_back(fGpu->resourceProvider().findOrCreateSecondaryCommandBuffer());
cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass);
}
void GrVkGpuRTCommandBuffer::addAdditionalRenderPass() {
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf()->end(fGpu);
CommandBufferInfo& cbInfo = fCommandBufferInfos.push_back();
fCurrentCmdInfo++;
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore;
cbInfo.fCommandBuffers.push_back(fGpu->resourceProvider().findOrCreateSecondaryCommandBuffer());
// It shouldn't matter what we set the clear color to here since we will assume loading of the
// attachment.
memset(&cbInfo.fColorClearValue, 0, sizeof(VkClearValue));
cbInfo.fBounds.setEmpty();
cbInfo.currentCmdBuf()->begin(fGpu, vkRT->framebuffer(), cbInfo.fRenderPass);
}
void GrVkGpuRTCommandBuffer::inlineUpload(GrOpFlushState* state,
GrDeferredTextureUploadFn& upload) {
if (!fCommandBufferInfos[fCurrentCmdInfo].fIsEmpty) {
this->addAdditionalRenderPass();
}
fCommandBufferInfos[fCurrentCmdInfo].fPreDrawUploads.emplace_back(state, upload);
}
void GrVkGpuRTCommandBuffer::copy(GrSurface* src, GrSurfaceOrigin srcOrigin, const SkIRect& srcRect,
const SkIPoint& dstPoint) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
if (!cbInfo.fIsEmpty || LoadStoreState::kStartsWithClear == cbInfo.fLoadStoreState) {
this->addAdditionalRenderPass();
}
fCommandBufferInfos[fCurrentCmdInfo].fPreCopies.emplace_back(
src, srcOrigin, srcRect, dstPoint,
LoadStoreState::kStartsWithDiscard == cbInfo.fLoadStoreState);
if (LoadStoreState::kLoadAndStore != cbInfo.fLoadStoreState) {
// Change the render pass to do a load and store so we don't lose the results of our copy
GrVkRenderPass::LoadStoreOps vkColorOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
GrVkRenderPass::LoadStoreOps vkStencilOps(VK_ATTACHMENT_LOAD_OP_LOAD,
VK_ATTACHMENT_STORE_OP_STORE);
const GrVkRenderPass* oldRP = cbInfo.fRenderPass;
GrVkRenderTarget* vkRT = static_cast<GrVkRenderTarget*>(fRenderTarget);
const GrVkResourceProvider::CompatibleRPHandle& rpHandle =
vkRT->compatibleRenderPassHandle();
if (rpHandle.isValid()) {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(rpHandle,
vkColorOps,
vkStencilOps);
} else {
cbInfo.fRenderPass = fGpu->resourceProvider().findRenderPass(*vkRT,
vkColorOps,
vkStencilOps);
}
SkASSERT(cbInfo.fRenderPass->isCompatible(*oldRP));
oldRP->unref(fGpu);
cbInfo.fLoadStoreState = LoadStoreState::kLoadAndStore;
}
}
////////////////////////////////////////////////////////////////////////////////
void GrVkGpuRTCommandBuffer::bindGeometry(const GrPrimitiveProcessor& primProc,
const GrBuffer* indexBuffer,
const GrBuffer* vertexBuffer,
const GrBuffer* instanceBuffer) {
GrVkSecondaryCommandBuffer* currCmdBuf = fCommandBufferInfos[fCurrentCmdInfo].currentCmdBuf();
// There is no need to put any memory barriers to make sure host writes have finished here.
// When a command buffer is submitted to a queue, there is an implicit memory barrier that
// occurs for all host writes. Additionally, BufferMemoryBarriers are not allowed inside of
// an active RenderPass.
// Here our vertex and instance inputs need to match the same 0-based bindings they were
// assigned in GrVkPipeline. That is, vertex first (if any) followed by instance.
uint32_t binding = 0;
if (primProc.hasVertexAttribs()) {
SkASSERT(vertexBuffer);
SkASSERT(!vertexBuffer->isCPUBacked());
SkASSERT(!vertexBuffer->isMapped());
currCmdBuf->bindInputBuffer(fGpu, binding++,
static_cast<const GrVkVertexBuffer*>(vertexBuffer));
}
if (primProc.hasInstanceAttribs()) {
SkASSERT(instanceBuffer);
SkASSERT(!instanceBuffer->isCPUBacked());
SkASSERT(!instanceBuffer->isMapped());
currCmdBuf->bindInputBuffer(fGpu, binding++,
static_cast<const GrVkVertexBuffer*>(instanceBuffer));
}
if (indexBuffer) {
SkASSERT(indexBuffer);
SkASSERT(!indexBuffer->isMapped());
SkASSERT(!indexBuffer->isCPUBacked());
currCmdBuf->bindIndexBuffer(fGpu, static_cast<const GrVkIndexBuffer*>(indexBuffer));
}
}
GrVkPipelineState* GrVkGpuRTCommandBuffer::prepareDrawState(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
GrPrimitiveType primitiveType,
bool hasDynamicState) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
SkASSERT(cbInfo.fRenderPass);
GrVkPipelineState* pipelineState =
fGpu->resourceProvider().findOrCreateCompatiblePipelineState(pipeline,
primProc,
primitiveType,
*cbInfo.fRenderPass);
if (!pipelineState) {
return pipelineState;
}
if (!cbInfo.fIsEmpty &&
fLastPipelineState && fLastPipelineState != pipelineState &&
fGpu->vkCaps().newCBOnPipelineChange()) {
this->addAdditionalCommandBuffer();
}
fLastPipelineState = pipelineState;
pipelineState->setData(fGpu, primProc, pipeline);
pipelineState->bind(fGpu, cbInfo.currentCmdBuf());
GrRenderTarget* rt = pipeline.renderTarget();
if (!pipeline.getScissorState().enabled()) {
GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(),
rt, pipeline.proxy()->origin(),
SkIRect::MakeWH(rt->width(), rt->height()));
} else if (!hasDynamicState) {
GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(),
rt, pipeline.proxy()->origin(),
pipeline.getScissorState().rect());
}
GrVkPipeline::SetDynamicViewportState(fGpu, cbInfo.currentCmdBuf(), rt);
GrVkPipeline::SetDynamicBlendConstantState(fGpu, cbInfo.currentCmdBuf(), rt->config(),
pipeline.getXferProcessor());
return pipelineState;
}
static void prepare_sampled_images(const GrResourceIOProcessor& processor,
SkTArray<GrVkImage*>* sampledImages,
GrVkGpu* gpu) {
for (int i = 0; i < processor.numTextureSamplers(); ++i) {
const GrResourceIOProcessor::TextureSampler& sampler = processor.textureSampler(i);
GrVkTexture* vkTexture = static_cast<GrVkTexture*>(sampler.peekTexture());
// We may need to resolve the texture first if it is also a render target
GrVkRenderTarget* texRT = static_cast<GrVkRenderTarget*>(vkTexture->asRenderTarget());
if (texRT) {
gpu->onResolveRenderTarget(texRT, sampler.proxy()->origin());
}
// Check if we need to regenerate any mip maps
if (GrSamplerState::Filter::kMipMap == sampler.samplerState().filter()) {
if (vkTexture->texturePriv().mipMapsAreDirty()) {
gpu->generateMipmap(vkTexture, sampler.proxy()->origin());
vkTexture->texturePriv().markMipMapsClean();
}
}
sampledImages->push_back(vkTexture);
}
}
void GrVkGpuRTCommandBuffer::onDraw(const GrPipeline& pipeline,
const GrPrimitiveProcessor& primProc,
const GrMesh meshes[],
const GrPipeline::DynamicState dynamicStates[],
int meshCount,
const SkRect& bounds) {
SkASSERT(pipeline.renderTarget() == fRenderTarget);
if (!meshCount) {
return;
}
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
prepare_sampled_images(primProc, &cbInfo.fSampledImages, fGpu);
GrFragmentProcessor::Iter iter(pipeline);
while (const GrFragmentProcessor* fp = iter.next()) {
prepare_sampled_images(*fp, &cbInfo.fSampledImages, fGpu);
}
if (GrTexture* dstTexture = pipeline.peekDstTexture()) {
cbInfo.fSampledImages.push_back(static_cast<GrVkTexture*>(dstTexture));
}
GrPrimitiveType primitiveType = meshes[0].primitiveType();
GrVkPipelineState* pipelineState = this->prepareDrawState(pipeline,
primProc,
primitiveType,
SkToBool(dynamicStates));
if (!pipelineState) {
return;
}
for (int i = 0; i < meshCount; ++i) {
const GrMesh& mesh = meshes[i];
if (mesh.primitiveType() != primitiveType) {
// Technically we don't have to call this here (since there is a safety check in
// pipelineState:setData but this will allow for quicker freeing of resources if the
// pipelineState sits in a cache for a while.
pipelineState->freeTempResources(fGpu);
SkDEBUGCODE(pipelineState = nullptr);
primitiveType = mesh.primitiveType();
pipelineState = this->prepareDrawState(pipeline,
primProc,
primitiveType,
SkToBool(dynamicStates));
if (!pipelineState) {
return;
}
}
if (dynamicStates) {
if (pipeline.getScissorState().enabled()) {
GrVkPipeline::SetDynamicScissorRectState(fGpu, cbInfo.currentCmdBuf(),
fRenderTarget, pipeline.proxy()->origin(),
dynamicStates[i].fScissorRect);
}
}
SkASSERT(pipelineState);
mesh.sendToGpu(primProc, this);
}
cbInfo.fBounds.join(bounds);
cbInfo.fIsEmpty = false;
// Technically we don't have to call this here (since there is a safety check in
// pipelineState:setData but this will allow for quicker freeing of resources if the
// pipelineState sits in a cache for a while.
pipelineState->freeTempResources(fGpu);
}
void GrVkGpuRTCommandBuffer::sendInstancedMeshToGpu(const GrPrimitiveProcessor& primProc,
GrPrimitiveType,
const GrBuffer* vertexBuffer,
int vertexCount,
int baseVertex,
const GrBuffer* instanceBuffer,
int instanceCount,
int baseInstance) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
this->bindGeometry(primProc, nullptr, vertexBuffer, instanceBuffer);
cbInfo.currentCmdBuf()->draw(fGpu, vertexCount, instanceCount, baseVertex, baseInstance);
fGpu->stats()->incNumDraws();
}
void GrVkGpuRTCommandBuffer::sendIndexedInstancedMeshToGpu(const GrPrimitiveProcessor& primProc,
GrPrimitiveType,
const GrBuffer* indexBuffer,
int indexCount,
int baseIndex,
const GrBuffer* vertexBuffer,
int baseVertex,
const GrBuffer* instanceBuffer,
int instanceCount,
int baseInstance) {
CommandBufferInfo& cbInfo = fCommandBufferInfos[fCurrentCmdInfo];
this->bindGeometry(primProc, indexBuffer, vertexBuffer, instanceBuffer);
cbInfo.currentCmdBuf()->drawIndexed(fGpu, indexCount, instanceCount,
baseIndex, baseVertex, baseInstance);
fGpu->stats()->incNumDraws();
}