/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrShaderVar.h"
#include "GrShaderCaps.h"
#include "GrSwizzle.h"
#include "glsl/GrGLSLShaderBuilder.h"
#include "glsl/GrGLSLColorSpaceXformHelper.h"
#include "glsl/GrGLSLProgramBuilder.h"
GrGLSLShaderBuilder::GrGLSLShaderBuilder(GrGLSLProgramBuilder* program)
: fProgramBuilder(program)
, fInputs(GrGLSLProgramBuilder::kVarsPerBlock)
, fOutputs(GrGLSLProgramBuilder::kVarsPerBlock)
, fFeaturesAddedMask(0)
, fCodeIndex(kCode)
, fFinalized(false) {
// We push back some dummy pointers which will later become our header
for (int i = 0; i <= kCode; i++) {
fShaderStrings.push_back();
fCompilerStrings.push_back(nullptr);
fCompilerStringLengths.push_back(0);
}
this->main() = "void main() {";
}
void GrGLSLShaderBuilder::declAppend(const GrShaderVar& var) {
SkString tempDecl;
var.appendDecl(fProgramBuilder->shaderCaps(), &tempDecl);
this->codeAppendf("%s;", tempDecl.c_str());
}
void GrGLSLShaderBuilder::declareGlobal(const GrShaderVar& v) {
v.appendDecl(this->getProgramBuilder()->shaderCaps(), &this->definitions());
this->definitions().append(";");
}
void GrGLSLShaderBuilder::emitFunction(GrSLType returnType,
const char* name,
int argCnt,
const GrShaderVar* args,
const char* body,
SkString* outName) {
this->functions().append(GrGLSLTypeString(fProgramBuilder->shaderCaps(), returnType));
fProgramBuilder->nameVariable(outName, '\0', name);
this->functions().appendf(" %s", outName->c_str());
this->functions().append("(");
for (int i = 0; i < argCnt; ++i) {
args[i].appendDecl(fProgramBuilder->shaderCaps(), &this->functions());
if (i < argCnt - 1) {
this->functions().append(", ");
}
}
this->functions().append(") {\n");
this->functions().append(body);
this->functions().append("}\n\n");
}
static inline void append_texture_swizzle(SkString* out, GrSwizzle swizzle) {
if (swizzle != GrSwizzle::RGBA()) {
out->appendf(".%s", swizzle.c_str());
}
}
void GrGLSLShaderBuilder::appendTextureLookup(SkString* out,
SamplerHandle samplerHandle,
const char* coordName,
GrSLType varyingType) const {
const GrShaderVar& sampler = fProgramBuilder->samplerVariable(samplerHandle);
out->appendf("texture(%s, %s)", sampler.c_str(), coordName);
append_texture_swizzle(out, fProgramBuilder->samplerSwizzle(samplerHandle));
}
void GrGLSLShaderBuilder::appendTextureLookup(SamplerHandle samplerHandle,
const char* coordName,
GrSLType varyingType,
GrGLSLColorSpaceXformHelper* colorXformHelper) {
if (colorXformHelper && colorXformHelper->isValid()) {
// With a color gamut transform, we need to wrap the lookup in another function call
SkString lookup;
this->appendTextureLookup(&lookup, samplerHandle, coordName, varyingType);
this->appendColorGamutXform(lookup.c_str(), colorXformHelper);
} else {
this->appendTextureLookup(&this->code(), samplerHandle, coordName, varyingType);
}
}
void GrGLSLShaderBuilder::appendTextureLookupAndModulate(
const char* modulation,
SamplerHandle samplerHandle,
const char* coordName,
GrSLType varyingType,
GrGLSLColorSpaceXformHelper* colorXformHelper) {
SkString lookup;
this->appendTextureLookup(&lookup, samplerHandle, coordName, varyingType);
if (colorXformHelper && colorXformHelper->isValid()) {
SkString xform;
this->appendColorGamutXform(&xform, lookup.c_str(), colorXformHelper);
if (modulation) {
this->codeAppendf("%s * %s", modulation, xform.c_str());
} else {
this->codeAppendf("%s", xform.c_str());
}
} else {
if (modulation) {
this->codeAppendf("%s * %s", modulation, lookup.c_str());
} else {
this->codeAppendf("%s", lookup.c_str());
}
}
}
void GrGLSLShaderBuilder::appendColorGamutXform(SkString* out,
const char* srcColor,
GrGLSLColorSpaceXformHelper* colorXformHelper) {
GrGLSLUniformHandler* uniformHandler = fProgramBuilder->uniformHandler();
// We define up to three helper functions, to keep things clearer. One does inverse sRGB,
// one does an arbitrary transfer function, and the last does gamut xform. Any combination of
// these may be present, although some configurations are much more likely.
SkString inverseSrgbFuncName;
if (colorXformHelper->applyInverseSRGB()) {
static const GrShaderVar gInverseSRGBArgs[] = { GrShaderVar("x", kHalf_GrSLType) };
SkString body;
body.append("return (x <= 0.0031308) ? (x * 12.92) : (1.055 * pow(x, 0.4166667) - 0.055);");
this->emitFunction(kHalf_GrSLType, "inverse_srgb", SK_ARRAY_COUNT(gInverseSRGBArgs),
gInverseSRGBArgs, body.c_str(), &inverseSrgbFuncName);
}
SkString transferFnFuncName;
if (colorXformHelper->applyTransferFn()) {
static const GrShaderVar gTransferFnArgs[] = { GrShaderVar("x", kHalf_GrSLType) };
const char* coeffs = uniformHandler->getUniformCStr(colorXformHelper->transferFnUniform());
SkString body;
// Temporaries to make evaluation line readable
body.appendf("half G = %s[0];", coeffs);
body.appendf("half A = %s[1];", coeffs);
body.appendf("half B = %s[2];", coeffs);
body.appendf("half C = %s[3];", coeffs);
body.appendf("half D = %s[4];", coeffs);
body.appendf("half E = %s[5];", coeffs);
body.appendf("half F = %s[6];", coeffs);
body.append("half s = sign(x);");
body.append("x = abs(x);");
body.appendf("return s * ((x < D) ? (C * x) + F : pow(A * x + B, G) + E);");
this->emitFunction(kHalf_GrSLType, "transfer_fn", SK_ARRAY_COUNT(gTransferFnArgs),
gTransferFnArgs, body.c_str(), &transferFnFuncName);
}
SkString gamutXformFuncName;
if (colorXformHelper->applyGamutXform()) {
// Our color is (r, g, b, a), but we want to multiply (r, g, b, 1) by our matrix, then
// re-insert the original alpha.
static const GrShaderVar gGamutXformArgs[] = { GrShaderVar("color", kHalf4_GrSLType) };
const char* xform = uniformHandler->getUniformCStr(colorXformHelper->gamutXformUniform());
SkString body;
body.appendf("color.rgb = clamp((%s * half4(color.rgb, 1.0)).rgb, 0.0, color.a);", xform);
body.append("return color;");
this->emitFunction(kHalf4_GrSLType, "gamut_xform", SK_ARRAY_COUNT(gGamutXformArgs),
gGamutXformArgs, body.c_str(), &gamutXformFuncName);
}
// Now define a wrapper function that applies all the intermediate steps
{
static const GrShaderVar gColorXformArgs[] = { GrShaderVar("color", kHalf4_GrSLType) };
SkString body;
if (colorXformHelper->applyInverseSRGB()) {
body.appendf("color.r = %s(color.r);", inverseSrgbFuncName.c_str());
body.appendf("color.g = %s(color.g);", inverseSrgbFuncName.c_str());
body.appendf("color.b = %s(color.b);", inverseSrgbFuncName.c_str());
}
if (colorXformHelper->applyTransferFn()) {
body.appendf("color.r = %s(color.r);", transferFnFuncName.c_str());
body.appendf("color.g = %s(color.g);", transferFnFuncName.c_str());
body.appendf("color.b = %s(color.b);", transferFnFuncName.c_str());
}
if (colorXformHelper->applyGamutXform()) {
body.appendf("color = %s(color);", gamutXformFuncName.c_str());
}
body.append("return color;");
SkString colorXformFuncName;
this->emitFunction(kHalf4_GrSLType, "color_xform", SK_ARRAY_COUNT(gColorXformArgs),
gColorXformArgs, body.c_str(), &colorXformFuncName);
out->appendf("%s(%s)", colorXformFuncName.c_str(), srcColor);
}
}
void GrGLSLShaderBuilder::appendColorGamutXform(const char* srcColor,
GrGLSLColorSpaceXformHelper* colorXformHelper) {
SkString xform;
this->appendColorGamutXform(&xform, srcColor, colorXformHelper);
this->codeAppend(xform.c_str());
}
void GrGLSLShaderBuilder::appendTexelFetch(SkString* out,
TexelBufferHandle texelBufferHandle,
const char* coordExpr) const {
const GrShaderVar& texelBuffer = fProgramBuilder->texelBufferVariable(texelBufferHandle);
SkASSERT(fProgramBuilder->shaderCaps()->texelFetchSupport());
out->appendf("texelFetch(%s, %s)", texelBuffer.c_str(), coordExpr);
}
void GrGLSLShaderBuilder::appendTexelFetch(TexelBufferHandle texelBufferHandle,
const char* coordExpr) {
this->appendTexelFetch(&this->code(), texelBufferHandle, coordExpr);
}
bool GrGLSLShaderBuilder::addFeature(uint32_t featureBit, const char* extensionName) {
if (featureBit & fFeaturesAddedMask) {
return false;
}
this->extensions().appendf("#extension %s: require\n", extensionName);
fFeaturesAddedMask |= featureBit;
return true;
}
void GrGLSLShaderBuilder::appendDecls(const VarArray& vars, SkString* out) const {
for (int i = 0; i < vars.count(); ++i) {
vars[i].appendDecl(fProgramBuilder->shaderCaps(), out);
out->append(";\n");
}
}
void GrGLSLShaderBuilder::addLayoutQualifier(const char* param, InterfaceQualifier interface) {
SkASSERT(fProgramBuilder->shaderCaps()->generation() >= k330_GrGLSLGeneration ||
fProgramBuilder->shaderCaps()->mustEnableAdvBlendEqs());
fLayoutParams[interface].push_back() = param;
}
void GrGLSLShaderBuilder::compileAndAppendLayoutQualifiers() {
static const char* interfaceQualifierNames[] = {
"in",
"out"
};
for (int interface = 0; interface <= kLastInterfaceQualifier; ++interface) {
const SkTArray<SkString>& params = fLayoutParams[interface];
if (params.empty()) {
continue;
}
this->layoutQualifiers().appendf("layout(%s", params[0].c_str());
for (int i = 1; i < params.count(); ++i) {
this->layoutQualifiers().appendf(", %s", params[i].c_str());
}
this->layoutQualifiers().appendf(") %s;\n", interfaceQualifierNames[interface]);
}
GR_STATIC_ASSERT(0 == GrGLSLShaderBuilder::kIn_InterfaceQualifier);
GR_STATIC_ASSERT(1 == GrGLSLShaderBuilder::kOut_InterfaceQualifier);
GR_STATIC_ASSERT(SK_ARRAY_COUNT(interfaceQualifierNames) == kLastInterfaceQualifier + 1);
}
void GrGLSLShaderBuilder::finalize(uint32_t visibility) {
SkASSERT(!fFinalized);
this->versionDecl() = fProgramBuilder->shaderCaps()->versionDeclString();
this->compileAndAppendLayoutQualifiers();
SkASSERT(visibility);
fProgramBuilder->appendUniformDecls((GrShaderFlags) visibility, &this->uniforms());
this->appendDecls(fInputs, &this->inputs());
this->appendDecls(fOutputs, &this->outputs());
this->onFinalize();
// append the 'footer' to code
this->code().append("}");
for (int i = 0; i <= fCodeIndex; i++) {
fCompilerStrings[i] = fShaderStrings[i].c_str();
fCompilerStringLengths[i] = (int)fShaderStrings[i].size();
}
fFinalized = true;
}