/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkCoreBlitters.h"
#include "SkColorData.h"
#include "SkShader.h"
#include "SkUtils.h"
#include "SkXfermodePriv.h"
#include "SkBlitMask.h"
///////////////////////////////////////////////////////////////////////////////
static void SkARGB32_Blit32(const SkPixmap& device, const SkMask& mask,
const SkIRect& clip, SkPMColor srcColor) {
U8CPU alpha = SkGetPackedA32(srcColor);
unsigned flags = SkBlitRow::kSrcPixelAlpha_Flag32;
if (alpha != 255) {
flags |= SkBlitRow::kGlobalAlpha_Flag32;
}
SkBlitRow::Proc32 proc = SkBlitRow::Factory32(flags);
int x = clip.fLeft;
int y = clip.fTop;
int width = clip.width();
int height = clip.height();
SkPMColor* dstRow = device.writable_addr32(x, y);
const SkPMColor* srcRow = reinterpret_cast<const SkPMColor*>(mask.getAddr8(x, y));
do {
proc(dstRow, srcRow, width, alpha);
dstRow = (SkPMColor*)((char*)dstRow + device.rowBytes());
srcRow = (const SkPMColor*)((const char*)srcRow + mask.fRowBytes);
} while (--height != 0);
}
//////////////////////////////////////////////////////////////////////////////////////
SkARGB32_Blitter::SkARGB32_Blitter(const SkPixmap& device, const SkPaint& paint)
: INHERITED(device) {
SkColor color = paint.getColor();
fColor = color;
fSrcA = SkColorGetA(color);
unsigned scale = SkAlpha255To256(fSrcA);
fSrcR = SkAlphaMul(SkColorGetR(color), scale);
fSrcG = SkAlphaMul(SkColorGetG(color), scale);
fSrcB = SkAlphaMul(SkColorGetB(color), scale);
fPMColor = SkPackARGB32(fSrcA, fSrcR, fSrcG, fSrcB);
}
const SkPixmap* SkARGB32_Blitter::justAnOpaqueColor(uint32_t* value) {
if (255 == fSrcA) {
*value = fPMColor;
return &fDevice;
}
return nullptr;
}
#if defined _WIN32 // disable warning : local variable used without having been initialized
#pragma warning ( push )
#pragma warning ( disable : 4701 )
#endif
void SkARGB32_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.writable_addr32(x, y);
SkBlitRow::Color32(device, device, width, fPMColor);
}
void SkARGB32_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
if (fSrcA == 0) {
return;
}
uint32_t color = fPMColor;
uint32_t* device = fDevice.writable_addr32(x, y);
unsigned opaqueMask = fSrcA; // if fSrcA is 0xFF, then we will catch the fast opaque case
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if ((opaqueMask & aa) == 255) {
sk_memset32(device, color, count);
} else {
uint32_t sc = SkAlphaMulQ(color, SkAlpha255To256(aa));
SkBlitRow::Color32(device, device, count, sc);
}
}
runs += count;
antialias += count;
device += count;
}
}
void SkARGB32_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);)
device[0] = SkBlendARGB32(fPMColor, device[0], a0);
device[1] = SkBlendARGB32(fPMColor, device[1], a1);
}
void SkARGB32_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);)
device[0] = SkBlendARGB32(fPMColor, device[0], a0);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
device[0] = SkBlendARGB32(fPMColor, device[0], a1);
}
//////////////////////////////////////////////////////////////////////////////////////
#define solid_8_pixels(mask, dst, color) \
do { \
if (mask & 0x80) dst[0] = color; \
if (mask & 0x40) dst[1] = color; \
if (mask & 0x20) dst[2] = color; \
if (mask & 0x10) dst[3] = color; \
if (mask & 0x08) dst[4] = color; \
if (mask & 0x04) dst[5] = color; \
if (mask & 0x02) dst[6] = color; \
if (mask & 0x01) dst[7] = color; \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlitBW
#define SK_BLITBWMASK_ARGS , SkPMColor color
#define SK_BLITBWMASK_BLIT8(mask, dst) solid_8_pixels(mask, dst, color)
#define SK_BLITBWMASK_GETADDR writable_addr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "SkBlitBWMaskTemplate.h"
#define blend_8_pixels(mask, dst, sc, dst_scale) \
do { \
if (mask & 0x80) { dst[0] = sc + SkAlphaMulQ(dst[0], dst_scale); } \
if (mask & 0x40) { dst[1] = sc + SkAlphaMulQ(dst[1], dst_scale); } \
if (mask & 0x20) { dst[2] = sc + SkAlphaMulQ(dst[2], dst_scale); } \
if (mask & 0x10) { dst[3] = sc + SkAlphaMulQ(dst[3], dst_scale); } \
if (mask & 0x08) { dst[4] = sc + SkAlphaMulQ(dst[4], dst_scale); } \
if (mask & 0x04) { dst[5] = sc + SkAlphaMulQ(dst[5], dst_scale); } \
if (mask & 0x02) { dst[6] = sc + SkAlphaMulQ(dst[6], dst_scale); } \
if (mask & 0x01) { dst[7] = sc + SkAlphaMulQ(dst[7], dst_scale); } \
} while (0)
#define SK_BLITBWMASK_NAME SkARGB32_BlendBW
#define SK_BLITBWMASK_ARGS , uint32_t sc, unsigned dst_scale
#define SK_BLITBWMASK_BLIT8(mask, dst) blend_8_pixels(mask, dst, sc, dst_scale)
#define SK_BLITBWMASK_GETADDR writable_addr32
#define SK_BLITBWMASK_DEVTYPE uint32_t
#include "SkBlitBWMaskTemplate.h"
void SkARGB32_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
SkASSERT(fSrcA != 0xFF);
if (fSrcA == 0) {
return;
}
if (SkBlitMask::BlitColor(fDevice, mask, clip, fColor)) {
return;
}
switch (mask.fFormat) {
case SkMask::kBW_Format:
SkARGB32_BlendBW(fDevice, mask, clip, fPMColor, SkAlpha255To256(255 - fSrcA));
break;
case SkMask::kARGB32_Format:
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
break;
default:
SK_ABORT("Mask format not handled.");
}
}
void SkARGB32_Opaque_Blitter::blitMask(const SkMask& mask,
const SkIRect& clip) {
SkASSERT(mask.fBounds.contains(clip));
if (SkBlitMask::BlitColor(fDevice, mask, clip, fColor)) {
return;
}
switch (mask.fFormat) {
case SkMask::kBW_Format:
SkARGB32_BlitBW(fDevice, mask, clip, fPMColor);
break;
case SkMask::kARGB32_Format:
SkARGB32_Blit32(fDevice, mask, clip, fPMColor);
break;
default:
SK_ABORT("Mask format not handled.");
}
}
void SkARGB32_Opaque_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);)
device[0] = SkFastFourByteInterp(fPMColor, device[0], a0);
device[1] = SkFastFourByteInterp(fPMColor, device[1], a1);
}
void SkARGB32_Opaque_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);)
device[0] = SkFastFourByteInterp(fPMColor, device[0], a0);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
device[0] = SkFastFourByteInterp(fPMColor, device[0], a1);
}
///////////////////////////////////////////////////////////////////////////////
void SkARGB32_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
if (alpha == 0 || fSrcA == 0) {
return;
}
uint32_t* device = fDevice.writable_addr32(x, y);
uint32_t color = fPMColor;
if (alpha != 255) {
color = SkAlphaMulQ(color, SkAlpha255To256(alpha));
}
unsigned dst_scale = SkAlpha255To256(255 - SkGetPackedA32(color));
size_t rowBytes = fDevice.rowBytes();
while (--height >= 0) {
device[0] = color + SkAlphaMulQ(device[0], dst_scale);
device = (uint32_t*)((char*)device + rowBytes);
}
}
void SkARGB32_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width() && y + height <= fDevice.height());
if (fSrcA == 0) {
return;
}
uint32_t* device = fDevice.writable_addr32(x, y);
uint32_t color = fPMColor;
size_t rowBytes = fDevice.rowBytes();
while (--height >= 0) {
SkBlitRow::Color32(device, device, width, color);
device = (uint32_t*)((char*)device + rowBytes);
}
}
#if defined _WIN32
#pragma warning ( pop )
#endif
///////////////////////////////////////////////////////////////////////
void SkARGB32_Black_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkPMColor black = (SkPMColor)(SK_A32_MASK << SK_A32_SHIFT);
for (;;) {
int count = runs[0];
SkASSERT(count >= 0);
if (count <= 0) {
return;
}
unsigned aa = antialias[0];
if (aa) {
if (aa == 255) {
sk_memset32(device, black, count);
} else {
SkPMColor src = aa << SK_A32_SHIFT;
unsigned dst_scale = 256 - aa;
int n = count;
do {
--n;
device[n] = src + SkAlphaMulQ(device[n], dst_scale);
} while (n > 0);
}
}
runs += count;
antialias += count;
device += count;
}
}
void SkARGB32_Black_Blitter::blitAntiH2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x + 1, y);)
device[0] = (a0 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a0);
device[1] = (a1 << SK_A32_SHIFT) + SkAlphaMulQ(device[1], 256 - a1);
}
void SkARGB32_Black_Blitter::blitAntiV2(int x, int y, U8CPU a0, U8CPU a1) {
uint32_t* device = fDevice.writable_addr32(x, y);
SkDEBUGCODE((void)fDevice.writable_addr32(x, y + 1);)
device[0] = (a0 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a0);
device = (uint32_t*)((char*)device + fDevice.rowBytes());
device[0] = (a1 << SK_A32_SHIFT) + SkAlphaMulQ(device[0], 256 - a1);
}
///////////////////////////////////////////////////////////////////////////////
// Special version of SkBlitRow::Factory32 that knows we're in kSrc_Mode,
// instead of kSrcOver_Mode
static void blend_srcmode(SkPMColor* SK_RESTRICT device,
const SkPMColor* SK_RESTRICT span,
int count, U8CPU aa) {
int aa256 = SkAlpha255To256(aa);
for (int i = 0; i < count; ++i) {
device[i] = SkFourByteInterp256(span[i], device[i], aa256);
}
}
SkARGB32_Shader_Blitter::SkARGB32_Shader_Blitter(const SkPixmap& device,
const SkPaint& paint, SkShaderBase::Context* shaderContext)
: INHERITED(device, paint, shaderContext)
{
fBuffer = (SkPMColor*)sk_malloc_throw(device.width() * (sizeof(SkPMColor)));
fXfermode = SkXfermode::Peek(paint.getBlendMode());
int flags = 0;
if (!(shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag)) {
flags |= SkBlitRow::kSrcPixelAlpha_Flag32;
}
// we call this on the output from the shader
fProc32 = SkBlitRow::Factory32(flags);
// we call this on the output from the shader + alpha from the aa buffer
fProc32Blend = SkBlitRow::Factory32(flags | SkBlitRow::kGlobalAlpha_Flag32);
fShadeDirectlyIntoDevice = false;
if (fXfermode == nullptr) {
if (shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag) {
fShadeDirectlyIntoDevice = true;
}
} else {
if (SkBlendMode::kSrc == paint.getBlendMode()) {
fShadeDirectlyIntoDevice = true;
fProc32Blend = blend_srcmode;
}
}
fConstInY = SkToBool(shaderContext->getFlags() & SkShaderBase::kConstInY32_Flag);
}
SkARGB32_Shader_Blitter::~SkARGB32_Shader_Blitter() {
sk_free(fBuffer);
}
void SkARGB32_Shader_Blitter::blitH(int x, int y, int width) {
SkASSERT(x >= 0 && y >= 0 && x + width <= fDevice.width());
uint32_t* device = fDevice.writable_addr32(x, y);
if (fShadeDirectlyIntoDevice) {
fShaderContext->shadeSpan(x, y, device, width);
} else {
SkPMColor* span = fBuffer;
fShaderContext->shadeSpan(x, y, span, width);
if (fXfermode) {
fXfermode->xfer32(device, span, width, nullptr);
} else {
fProc32(device, span, width, 255);
}
}
}
void SkARGB32_Shader_Blitter::blitRect(int x, int y, int width, int height) {
SkASSERT(x >= 0 && y >= 0 &&
x + width <= fDevice.width() && y + height <= fDevice.height());
uint32_t* device = fDevice.writable_addr32(x, y);
size_t deviceRB = fDevice.rowBytes();
auto* shaderContext = fShaderContext;
SkPMColor* span = fBuffer;
if (fConstInY) {
if (fShadeDirectlyIntoDevice) {
// shade the first row directly into the device
shaderContext->shadeSpan(x, y, device, width);
span = device;
while (--height > 0) {
device = (uint32_t*)((char*)device + deviceRB);
memcpy(device, span, width << 2);
}
} else {
shaderContext->shadeSpan(x, y, span, width);
SkXfermode* xfer = fXfermode;
if (xfer) {
do {
xfer->xfer32(device, span, width, nullptr);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
SkBlitRow::Proc32 proc = fProc32;
do {
proc(device, span, width, 255);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
}
return;
}
if (fShadeDirectlyIntoDevice) {
do {
shaderContext->shadeSpan(x, y, device, width);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
SkXfermode* xfer = fXfermode;
if (xfer) {
do {
shaderContext->shadeSpan(x, y, span, width);
xfer->xfer32(device, span, width, nullptr);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
SkBlitRow::Proc32 proc = fProc32;
do {
shaderContext->shadeSpan(x, y, span, width);
proc(device, span, width, 255);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
}
}
void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) {
SkPMColor* span = fBuffer;
uint32_t* device = fDevice.writable_addr32(x, y);
auto* shaderContext = fShaderContext;
if (fXfermode && !fShadeDirectlyIntoDevice) {
for (;;) {
SkXfermode* xfer = fXfermode;
int count = *runs;
if (count <= 0)
break;
int aa = *antialias;
if (aa) {
shaderContext->shadeSpan(x, y, span, count);
if (aa == 255) {
xfer->xfer32(device, span, count, nullptr);
} else {
// count is almost always 1
for (int i = count - 1; i >= 0; --i) {
xfer->xfer32(&device[i], &span[i], 1, antialias);
}
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else if (fShadeDirectlyIntoDevice ||
(shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag)) {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
if (aa == 255) {
// cool, have the shader draw right into the device
shaderContext->shadeSpan(x, y, device, count);
} else {
shaderContext->shadeSpan(x, y, span, count);
fProc32Blend(device, span, count, aa);
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
} else {
for (;;) {
int count = *runs;
if (count <= 0) {
break;
}
int aa = *antialias;
if (aa) {
shaderContext->shadeSpan(x, y, span, count);
if (aa == 255) {
fProc32(device, span, count, 255);
} else {
fProc32Blend(device, span, count, aa);
}
}
device += count;
runs += count;
antialias += count;
x += count;
}
}
}
void SkARGB32_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) {
// we only handle kA8 with an xfermode
if (fXfermode && (SkMask::kA8_Format != mask.fFormat)) {
this->INHERITED::blitMask(mask, clip);
return;
}
SkASSERT(mask.fBounds.contains(clip));
auto* shaderContext = fShaderContext;
SkBlitMask::RowProc proc = nullptr;
if (!fXfermode) {
unsigned flags = 0;
if (shaderContext->getFlags() & SkShaderBase::kOpaqueAlpha_Flag) {
flags |= SkBlitMask::kSrcIsOpaque_RowFlag;
}
proc = SkBlitMask::RowFactory(kN32_SkColorType, mask.fFormat,
(SkBlitMask::RowFlags)flags);
if (nullptr == proc) {
this->INHERITED::blitMask(mask, clip);
return;
}
}
const int x = clip.fLeft;
const int width = clip.width();
int y = clip.fTop;
int height = clip.height();
char* dstRow = (char*)fDevice.writable_addr32(x, y);
const size_t dstRB = fDevice.rowBytes();
const uint8_t* maskRow = (const uint8_t*)mask.getAddr(x, y);
const size_t maskRB = mask.fRowBytes;
SkPMColor* span = fBuffer;
if (fXfermode) {
SkASSERT(SkMask::kA8_Format == mask.fFormat);
SkXfermode* xfer = fXfermode;
do {
shaderContext->shadeSpan(x, y, span, width);
xfer->xfer32(reinterpret_cast<SkPMColor*>(dstRow), span, width, maskRow);
dstRow += dstRB;
maskRow += maskRB;
y += 1;
} while (--height > 0);
} else {
do {
shaderContext->shadeSpan(x, y, span, width);
proc(reinterpret_cast<SkPMColor*>(dstRow), maskRow, span, width);
dstRow += dstRB;
maskRow += maskRB;
y += 1;
} while (--height > 0);
}
}
void SkARGB32_Shader_Blitter::blitV(int x, int y, int height, SkAlpha alpha) {
SkASSERT(x >= 0 && y >= 0 && y + height <= fDevice.height());
uint32_t* device = fDevice.writable_addr32(x, y);
size_t deviceRB = fDevice.rowBytes();
auto* shaderContext = fShaderContext;
if (fConstInY) {
SkPMColor c;
shaderContext->shadeSpan(x, y, &c, 1);
if (fShadeDirectlyIntoDevice) {
if (255 == alpha) {
do {
*device = c;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
do {
*device = SkFourByteInterp(c, *device, alpha);
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
} else {
SkXfermode* xfer = fXfermode;
if (xfer) {
do {
xfer->xfer32(device, &c, 1, &alpha);
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend;
do {
proc(device, &c, 1, alpha);
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
}
return;
}
if (fShadeDirectlyIntoDevice) {
if (255 == alpha) {
do {
shaderContext->shadeSpan(x, y, device, 1);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
do {
SkPMColor c;
shaderContext->shadeSpan(x, y, &c, 1);
*device = SkFourByteInterp(c, *device, alpha);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
} else {
SkPMColor* span = fBuffer;
SkXfermode* xfer = fXfermode;
if (xfer) {
do {
shaderContext->shadeSpan(x, y, span, 1);
xfer->xfer32(device, span, 1, &alpha);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
} else {
SkBlitRow::Proc32 proc = (255 == alpha) ? fProc32 : fProc32Blend;
do {
shaderContext->shadeSpan(x, y, span, 1);
proc(device, span, 1, alpha);
y += 1;
device = (uint32_t*)((char*)device + deviceRB);
} while (--height > 0);
}
}
}