/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#include "Test.h"
#if SK_SUPPORT_GPU
#include <random>
#include "GrClip.h"
#include "GrContext.h"
#include "GrContextPriv.h"
#include "GrGpuResource.h"
#include "GrProxyProvider.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "ops/GrMeshDrawOp.h"
#include "ops/GrRectOpFactory.h"
namespace {
class TestOp : public GrMeshDrawOp {
public:
DEFINE_OP_CLASS_ID
static std::unique_ptr<GrDrawOp> Make(std::unique_ptr<GrFragmentProcessor> fp) {
return std::unique_ptr<GrDrawOp>(new TestOp(std::move(fp)));
}
const char* name() const override { return "TestOp"; }
void visitProxies(const VisitProxyFunc& func) const override {
fProcessors.visitProxies(func);
}
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps& caps, const GrAppliedClip* clip,
GrPixelConfigIsClamped dstIsClamped) override {
static constexpr GrProcessorAnalysisColor kUnknownColor;
GrColor overrideColor;
fProcessors.finalize(kUnknownColor, GrProcessorAnalysisCoverage::kNone, clip, false, caps,
dstIsClamped, &overrideColor);
return RequiresDstTexture::kNo;
}
private:
TestOp(std::unique_ptr<GrFragmentProcessor> fp)
: INHERITED(ClassID()), fProcessors(std::move(fp)) {
this->setBounds(SkRect::MakeWH(100, 100), HasAABloat::kNo, IsZeroArea::kNo);
}
void onPrepareDraws(Target* target) override { return; }
bool onCombineIfPossible(GrOp* op, const GrCaps& caps) override { return false; }
GrProcessorSet fProcessors;
typedef GrMeshDrawOp INHERITED;
};
/**
* FP used to test ref/IO counts on owned GrGpuResources. Can also be a parent FP to test counts
* of resources owned by child FPs.
*/
class TestFP : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(std::unique_ptr<GrFragmentProcessor> child) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(std::move(child)));
}
static std::unique_ptr<GrFragmentProcessor> Make(const SkTArray<sk_sp<GrTextureProxy>>& proxies,
const SkTArray<sk_sp<GrBuffer>>& buffers) {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(proxies, buffers));
}
const char* name() const override { return "test"; }
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
// We don't really care about reusing these.
static int32_t gKey = 0;
b->add32(sk_atomic_inc(&gKey));
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return std::unique_ptr<GrFragmentProcessor>(new TestFP(*this));
}
private:
TestFP(const SkTArray<sk_sp<GrTextureProxy>>& proxies, const SkTArray<sk_sp<GrBuffer>>& buffers)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4), fBuffers(4) {
for (const auto& proxy : proxies) {
this->addTextureSampler(&fSamplers.emplace_back(proxy));
}
for (const auto& buffer : buffers) {
this->addBufferAccess(&fBuffers.emplace_back(kRGBA_8888_GrPixelConfig, buffer.get()));
}
}
TestFP(std::unique_ptr<GrFragmentProcessor> child)
: INHERITED(kTestFP_ClassID, kNone_OptimizationFlags), fSamplers(4), fBuffers(4) {
this->registerChildProcessor(std::move(child));
}
explicit TestFP(const TestFP& that)
: INHERITED(kTestFP_ClassID, that.optimizationFlags()), fSamplers(4), fBuffers(4) {
for (int i = 0; i < that.fSamplers.count(); ++i) {
fSamplers.emplace_back(that.fSamplers[i]);
this->addTextureSampler(&fSamplers.back());
}
for (int i = 0; i < that.fBuffers.count(); ++i) {
fBuffers.emplace_back(that.fBuffers[i]);
this->addBufferAccess(&fBuffers.back());
}
for (int i = 0; i < that.numChildProcessors(); ++i) {
this->registerChildProcessor(that.childProcessor(i).clone());
}
}
virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class TestGLSLFP : public GrGLSLFragmentProcessor {
public:
TestGLSLFP() {}
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
}
private:
};
return new TestGLSLFP();
}
bool onIsEqual(const GrFragmentProcessor&) const override { return false; }
GrTAllocator<TextureSampler> fSamplers;
GrTAllocator<BufferAccess> fBuffers;
typedef GrFragmentProcessor INHERITED;
};
}
template <typename T>
inline void testingOnly_getIORefCnts(const T* resource, int* refCnt, int* readCnt, int* writeCnt) {
*refCnt = resource->fRefCnt;
*readCnt = resource->fPendingReads;
*writeCnt = resource->fPendingWrites;
}
void testingOnly_getIORefCnts(GrTextureProxy* proxy, int* refCnt, int* readCnt, int* writeCnt) {
*refCnt = proxy->getBackingRefCnt_TestOnly();
*readCnt = proxy->getPendingReadCnt_TestOnly();
*writeCnt = proxy->getPendingWriteCnt_TestOnly();
}
DEF_GPUTEST_FOR_ALL_CONTEXTS(ProcessorRefTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
GrResourceProvider* resourceProvider = context->contextPriv().resourceProvider();
GrSurfaceDesc desc;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
desc.fWidth = 10;
desc.fHeight = 10;
desc.fConfig = kRGBA_8888_GrPixelConfig;
for (bool makeClone : {false, true}) {
for (int parentCnt = 0; parentCnt < 2; parentCnt++) {
sk_sp<GrRenderTargetContext> renderTargetContext(
context->makeDeferredRenderTargetContext( SkBackingFit::kApprox, 1, 1,
kRGBA_8888_GrPixelConfig, nullptr));
{
bool texelBufferSupport = context->caps()->shaderCaps()->texelBufferSupport();
sk_sp<GrTextureProxy> proxy1 =
proxyProvider->createProxy(desc, SkBackingFit::kExact, SkBudgeted::kYes);
sk_sp<GrTextureProxy> proxy2 =
proxyProvider->createProxy(desc, SkBackingFit::kExact, SkBudgeted::kYes);
sk_sp<GrTextureProxy> proxy3 =
proxyProvider->createProxy(desc, SkBackingFit::kExact, SkBudgeted::kYes);
sk_sp<GrTextureProxy> proxy4 =
proxyProvider->createProxy(desc, SkBackingFit::kExact, SkBudgeted::kYes);
sk_sp<GrBuffer> buffer(texelBufferSupport
? resourceProvider->createBuffer(
1024, GrBufferType::kTexel_GrBufferType,
GrAccessPattern::kStatic_GrAccessPattern, 0)
: nullptr);
{
SkTArray<sk_sp<GrTextureProxy>> proxies;
SkTArray<sk_sp<GrBuffer>> buffers;
proxies.push_back(proxy1);
if (texelBufferSupport) {
buffers.push_back(buffer);
}
auto fp = TestFP::Make(std::move(proxies), std::move(buffers));
for (int i = 0; i < parentCnt; ++i) {
fp = TestFP::Make(std::move(fp));
}
std::unique_ptr<GrFragmentProcessor> clone;
if (makeClone) {
clone = fp->clone();
}
std::unique_ptr<GrDrawOp> op(TestOp::Make(std::move(fp)));
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
if (clone) {
op = TestOp::Make(std::move(clone));
renderTargetContext->priv().testingOnly_addDrawOp(std::move(op));
}
}
int refCnt, readCnt, writeCnt;
testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
// IO counts should be double if there is a clone of the FP.
int ioRefMul = makeClone ? 2 : 1;
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
if (texelBufferSupport) {
testingOnly_getIORefCnts(buffer.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 1 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
}
context->flush();
testingOnly_getIORefCnts(proxy1.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
if (texelBufferSupport) {
testingOnly_getIORefCnts(buffer.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
}
if (texelBufferSupport) {
testingOnly_getIORefCnts(proxy2.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
testingOnly_getIORefCnts(proxy3.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
testingOnly_getIORefCnts(proxy4.get(), &refCnt, &readCnt, &writeCnt);
REPORTER_ASSERT(reporter, 1 == refCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == readCnt);
REPORTER_ASSERT(reporter, ioRefMul * 0 == writeCnt);
}
}
}
}
}
// This test uses the random GrFragmentProcessor test factory, which relies on static initializers.
#if SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
#include "SkCommandLineFlags.h"
DEFINE_bool(randomProcessorTest, false, "Use non-deterministic seed for random processor tests?");
#if GR_TEST_UTILS
static GrColor input_texel_color(int i, int j) {
GrColor color = GrColorPackRGBA((uint8_t)j, (uint8_t)(i + j), (uint8_t)(2 * j - i), (uint8_t)i);
return GrPremulColor(color);
}
static GrColor4f input_texel_color4f(int i, int j) {
return GrColor4f::FromGrColor(input_texel_color(i, j));
}
void test_draw_op(GrRenderTargetContext* rtc, std::unique_ptr<GrFragmentProcessor> fp,
sk_sp<GrTextureProxy> inputDataProxy) {
GrPaint paint;
paint.addColorTextureProcessor(std::move(inputDataProxy), SkMatrix::I());
paint.addColorFragmentProcessor(std::move(fp));
paint.setPorterDuffXPFactory(SkBlendMode::kSrc);
auto op = GrRectOpFactory::MakeNonAAFill(std::move(paint), SkMatrix::I(),
SkRect::MakeWH(rtc->width(), rtc->height()),
GrAAType::kNone);
rtc->addDrawOp(GrNoClip(), std::move(op));
}
/** Initializes the two test texture proxies that are available to the FP test factories. */
bool init_test_textures(GrProxyProvider* proxyProvider, SkRandom* random,
sk_sp<GrTextureProxy> proxies[2]) {
static const int kTestTextureSize = 256;
GrSurfaceDesc desc;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
desc.fWidth = kTestTextureSize;
desc.fHeight = kTestTextureSize;
desc.fConfig = kRGBA_8888_GrPixelConfig;
{
// Put premul data into the RGBA texture that the test FPs can optionally use.
std::unique_ptr<GrColor[]> rgbaData(new GrColor[kTestTextureSize * kTestTextureSize]);
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
rgbaData[kTestTextureSize * y + x] =
input_texel_color(random->nextULessThan(256), random->nextULessThan(256));
}
}
proxies[0] = proxyProvider->createTextureProxy(desc, SkBudgeted::kYes,
rgbaData.get(),
kTestTextureSize * sizeof(GrColor));
}
{
// Put random values into the alpha texture that the test FPs can optionally use.
desc.fConfig = kAlpha_8_GrPixelConfig;
std::unique_ptr<uint8_t[]> alphaData(new uint8_t[kTestTextureSize * kTestTextureSize]);
for (int y = 0; y < kTestTextureSize; ++y) {
for (int x = 0; x < kTestTextureSize; ++x) {
alphaData[kTestTextureSize * y + x] = random->nextULessThan(256);
}
}
proxies[1] = proxyProvider->createTextureProxy(desc, SkBudgeted::kYes,
alphaData.get(), kTestTextureSize);
}
return proxies[0] && proxies[1];
}
// Creates a texture of premul colors used as the output of the fragment processor that precedes
// the fragment processor under test. Color values are those provided by input_texel_color().
sk_sp<GrTextureProxy> make_input_texture(GrProxyProvider* proxyProvider, int width, int height) {
std::unique_ptr<GrColor[]> data(new GrColor[width * height]);
for (int y = 0; y < width; ++y) {
for (int x = 0; x < height; ++x) {
data.get()[width * y + x] = input_texel_color(x, y);
}
}
GrSurfaceDesc desc;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = kRGBA_8888_GrPixelConfig;
return proxyProvider->createTextureProxy(desc, SkBudgeted::kYes,
data.get(), width * sizeof(GrColor));
}
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorOptimizationValidationTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
auto resourceProvider = context->contextPriv().resourceProvider();
using FPFactory = GrFragmentProcessorTestFactory;
uint32_t seed = 0;
if (FLAGS_randomProcessorTest) {
std::random_device rd;
seed = rd();
}
// If a non-deterministic bot fails this test, check the output to see what seed it used, then
// hard-code that value here:
SkRandom random(seed);
// Make the destination context for the test.
static constexpr int kRenderSize = 256;
sk_sp<GrRenderTargetContext> rtc = context->makeDeferredRenderTargetContext(
SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, nullptr);
sk_sp<GrTextureProxy> proxies[2];
if (!init_test_textures(proxyProvider, &random, proxies)) {
ERRORF(reporter, "Could not create test textures");
return;
}
GrProcessorTestData testData(&random, context, rtc.get(), proxies);
auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize);
std::unique_ptr<GrColor[]> readData(new GrColor[kRenderSize * kRenderSize]);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < FPFactory::Count(); ++i) {
int timesToInvokeFactory = 5;
// Increase the number of attempts if the FP has child FPs since optimizations likely depend
// on child optimizations being present.
std::unique_ptr<GrFragmentProcessor> fp = FPFactory::MakeIdx(i, &testData);
for (int j = 0; j < fp->numChildProcessors(); ++j) {
// This value made a reasonable trade off between time and coverage when this test was
// written.
timesToInvokeFactory *= FPFactory::Count() / 2;
}
for (int j = 0; j < timesToInvokeFactory; ++j) {
fp = FPFactory::MakeIdx(i, &testData);
if (!fp->instantiate(resourceProvider)) {
continue;
}
if (!fp->hasConstantOutputForConstantInput() && !fp->preservesOpaqueInput() &&
!fp->compatibleWithCoverageAsAlpha()) {
continue;
}
// Since we transfer away ownership of the original FP, we make a clone.
auto clone = fp->clone();
test_draw_op(rtc.get(), std::move(fp), inputTexture);
memset(readData.get(), 0x0, sizeof(GrColor) * kRenderSize * kRenderSize);
rtc->readPixels(SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType,
kPremul_SkAlphaType),
readData.get(), 0, 0, 0);
bool passing = true;
if (0) { // Useful to see what FPs are being tested.
SkString children;
for (int c = 0; c < clone->numChildProcessors(); ++c) {
if (!c) {
children.append("(");
}
children.append(clone->name());
children.append(c == clone->numChildProcessors() - 1 ? ")" : ", ");
}
SkDebugf("%s %s\n", clone->name(), children.c_str());
}
for (int y = 0; y < kRenderSize && passing; ++y) {
for (int x = 0; x < kRenderSize && passing; ++x) {
GrColor input = input_texel_color(x, y);
GrColor output = readData.get()[y * kRenderSize + x];
if (clone->compatibleWithCoverageAsAlpha()) {
// A modulating processor is allowed to modulate either the input color or
// just the input alpha.
bool legalColorModulation =
GrColorUnpackA(output) <= GrColorUnpackA(input) &&
GrColorUnpackR(output) <= GrColorUnpackR(input) &&
GrColorUnpackG(output) <= GrColorUnpackG(input) &&
GrColorUnpackB(output) <= GrColorUnpackB(input);
bool legalAlphaModulation =
GrColorUnpackA(output) <= GrColorUnpackA(input) &&
GrColorUnpackR(output) <= GrColorUnpackA(input) &&
GrColorUnpackG(output) <= GrColorUnpackA(input) &&
GrColorUnpackB(output) <= GrColorUnpackA(input);
if (!legalColorModulation && !legalAlphaModulation) {
ERRORF(reporter,
"\"Modulating\" processor %s made color/alpha value larger. "
"Input: 0x%08x, Output: 0x%08x, pixel (%d, %d).",
clone->name(), input, output, x, y);
passing = false;
}
}
GrColor4f input4f = input_texel_color4f(x, y);
GrColor4f output4f = GrColor4f::FromGrColor(output);
GrColor4f expected4f;
if (clone->hasConstantOutputForConstantInput(input4f, &expected4f)) {
float rDiff = fabsf(output4f.fRGBA[0] - expected4f.fRGBA[0]);
float gDiff = fabsf(output4f.fRGBA[1] - expected4f.fRGBA[1]);
float bDiff = fabsf(output4f.fRGBA[2] - expected4f.fRGBA[2]);
float aDiff = fabsf(output4f.fRGBA[3] - expected4f.fRGBA[3]);
static constexpr float kTol = 4 / 255.f;
if (rDiff > kTol || gDiff > kTol || bDiff > kTol || aDiff > kTol) {
ERRORF(reporter,
"Processor %s claimed output for const input doesn't match "
"actual output. Error: %f, Tolerance: %f, input: (%f, %f, %f, "
"%f), actual: (%f, %f, %f, %f), expected(%f, %f, %f, %f)",
clone->name(),
SkTMax(rDiff, SkTMax(gDiff, SkTMax(bDiff, aDiff))), kTol,
input4f.fRGBA[0], input4f.fRGBA[1], input4f.fRGBA[2],
input4f.fRGBA[3], output4f.fRGBA[0], output4f.fRGBA[1],
output4f.fRGBA[2], output4f.fRGBA[3], expected4f.fRGBA[0],
expected4f.fRGBA[1], expected4f.fRGBA[2], expected4f.fRGBA[3]);
passing = false;
}
}
if (GrColorIsOpaque(input) && clone->preservesOpaqueInput() &&
!GrColorIsOpaque(output)) {
ERRORF(reporter,
"Processor %s claimed opaqueness is preserved but it is not. Input: "
"0x%08x, Output: 0x%08x.",
clone->name(), input, output);
passing = false;
}
if (!passing) {
ERRORF(reporter, "Seed: 0x%08x, Processor details: %s", seed,
clone->dumpInfo().c_str());
}
}
}
}
}
}
// Tests that fragment processors returned by GrFragmentProcessor::clone() are equivalent to their
// progenitors.
DEF_GPUTEST_FOR_GL_RENDERING_CONTEXTS(ProcessorCloneTest, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
GrProxyProvider* proxyProvider = context->contextPriv().proxyProvider();
auto resourceProvider = context->contextPriv().resourceProvider();
SkRandom random;
// Make the destination context for the test.
static constexpr int kRenderSize = 1024;
sk_sp<GrRenderTargetContext> rtc = context->makeDeferredRenderTargetContext(
SkBackingFit::kExact, kRenderSize, kRenderSize, kRGBA_8888_GrPixelConfig, nullptr);
sk_sp<GrTextureProxy> proxies[2];
if (!init_test_textures(proxyProvider, &random, proxies)) {
ERRORF(reporter, "Could not create test textures");
return;
}
GrProcessorTestData testData(&random, context, rtc.get(), proxies);
auto inputTexture = make_input_texture(proxyProvider, kRenderSize, kRenderSize);
std::unique_ptr<GrColor[]> readData1(new GrColor[kRenderSize * kRenderSize]);
std::unique_ptr<GrColor[]> readData2(new GrColor[kRenderSize * kRenderSize]);
auto readInfo = SkImageInfo::Make(kRenderSize, kRenderSize, kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
// Because processor factories configure themselves in random ways, this is not exhaustive.
for (int i = 0; i < GrFragmentProcessorTestFactory::Count(); ++i) {
static constexpr int kTimesToInvokeFactory = 10;
for (int j = 0; j < kTimesToInvokeFactory; ++j) {
auto fp = GrFragmentProcessorTestFactory::MakeIdx(i, &testData);
auto clone = fp->clone();
if (!clone) {
ERRORF(reporter, "Clone of processor %s failed.", fp->name());
continue;
}
const char* name = fp->name();
if (!fp->instantiate(resourceProvider) || !clone->instantiate(resourceProvider)) {
continue;
}
REPORTER_ASSERT(reporter, !strcmp(fp->name(), clone->name()));
REPORTER_ASSERT(reporter, fp->compatibleWithCoverageAsAlpha() ==
clone->compatibleWithCoverageAsAlpha());
REPORTER_ASSERT(reporter, fp->isEqual(*clone));
REPORTER_ASSERT(reporter, fp->preservesOpaqueInput() == clone->preservesOpaqueInput());
REPORTER_ASSERT(reporter, fp->hasConstantOutputForConstantInput() ==
clone->hasConstantOutputForConstantInput());
REPORTER_ASSERT(reporter, fp->numChildProcessors() == clone->numChildProcessors());
REPORTER_ASSERT(reporter, fp->usesLocalCoords() == clone->usesLocalCoords());
// Draw with original and read back the results.
test_draw_op(rtc.get(), std::move(fp), inputTexture);
memset(readData1.get(), 0x0, sizeof(GrColor) * kRenderSize * kRenderSize);
rtc->readPixels(readInfo, readData1.get(), 0, 0, 0);
// Draw with clone and read back the results.
test_draw_op(rtc.get(), std::move(clone), inputTexture);
memset(readData2.get(), 0x0, sizeof(GrColor) * kRenderSize * kRenderSize);
rtc->readPixels(readInfo, readData2.get(), 0, 0, 0);
// Check that the results are the same.
bool passing = true;
for (int y = 0; y < kRenderSize && passing; ++y) {
for (int x = 0; x < kRenderSize && passing; ++x) {
int idx = y * kRenderSize + x;
if (readData1[idx] != readData2[idx]) {
ERRORF(reporter,
"Processor %s made clone produced different output. "
"Input color: 0x%08x, Original Output Color: 0x%08x, "
"Clone Output Color: 0x%08x..",
name, input_texel_color(x, y), readData1[idx], readData2[idx]);
passing = false;
}
}
}
}
}
}
#endif // GR_TEST_UTILS
#endif // SK_ALLOW_STATIC_GLOBAL_INITIALIZERS
#endif // SK_SUPPORT_GPU