/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkSwizzler_opts_DEFINED
#define SkSwizzler_opts_DEFINED
#include "SkColorData.h"
#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
#include <immintrin.h>
#elif defined(SK_ARM_HAS_NEON)
#include <arm_neon.h>
#endif
namespace SK_OPTS_NS {
static void RGBA_to_rgbA_portable(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t a = src[i] >> 24,
b = src[i] >> 16,
g = src[i] >> 8,
r = src[i] >> 0;
b = (b*a+127)/255;
g = (g*a+127)/255;
r = (r*a+127)/255;
dst[i] = (uint32_t)a << 24
| (uint32_t)b << 16
| (uint32_t)g << 8
| (uint32_t)r << 0;
}
}
static void RGBA_to_bgrA_portable(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t a = src[i] >> 24,
b = src[i] >> 16,
g = src[i] >> 8,
r = src[i] >> 0;
b = (b*a+127)/255;
g = (g*a+127)/255;
r = (r*a+127)/255;
dst[i] = (uint32_t)a << 24
| (uint32_t)r << 16
| (uint32_t)g << 8
| (uint32_t)b << 0;
}
}
static void RGBA_to_BGRA_portable(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t a = src[i] >> 24,
b = src[i] >> 16,
g = src[i] >> 8,
r = src[i] >> 0;
dst[i] = (uint32_t)a << 24
| (uint32_t)r << 16
| (uint32_t)g << 8
| (uint32_t)b << 0;
}
}
static void RGB_to_RGB1_portable(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t r = src[0],
g = src[1],
b = src[2];
src += 3;
dst[i] = (uint32_t)0xFF << 24
| (uint32_t)b << 16
| (uint32_t)g << 8
| (uint32_t)r << 0;
}
}
static void RGB_to_BGR1_portable(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t r = src[0],
g = src[1],
b = src[2];
src += 3;
dst[i] = (uint32_t)0xFF << 24
| (uint32_t)r << 16
| (uint32_t)g << 8
| (uint32_t)b << 0;
}
}
static void gray_to_RGB1_portable(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*)vsrc;
for (int i = 0; i < count; i++) {
dst[i] = (uint32_t)0xFF << 24
| (uint32_t)src[i] << 16
| (uint32_t)src[i] << 8
| (uint32_t)src[i] << 0;
}
}
static void grayA_to_RGBA_portable(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t g = src[0],
a = src[1];
src += 2;
dst[i] = (uint32_t)a << 24
| (uint32_t)g << 16
| (uint32_t)g << 8
| (uint32_t)g << 0;
}
}
static void grayA_to_rgbA_portable(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t g = src[0],
a = src[1];
src += 2;
g = (g*a+127)/255;
dst[i] = (uint32_t)a << 24
| (uint32_t)g << 16
| (uint32_t)g << 8
| (uint32_t)g << 0;
}
}
static void inverted_CMYK_to_RGB1_portable(uint32_t* dst, const void* vsrc, int count) {
const uint32_t* src = (const uint32_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t k = src[i] >> 24,
y = src[i] >> 16,
m = src[i] >> 8,
c = src[i] >> 0;
// See comments in SkSwizzler.cpp for details on the conversion formula.
uint8_t b = (y*k+127)/255,
g = (m*k+127)/255,
r = (c*k+127)/255;
dst[i] = (uint32_t)0xFF << 24
| (uint32_t) b << 16
| (uint32_t) g << 8
| (uint32_t) r << 0;
}
}
static void inverted_CMYK_to_BGR1_portable(uint32_t* dst, const void* vsrc, int count) {
const uint32_t* src = (const uint32_t*)vsrc;
for (int i = 0; i < count; i++) {
uint8_t k = src[i] >> 24,
y = src[i] >> 16,
m = src[i] >> 8,
c = src[i] >> 0;
uint8_t b = (y*k+127)/255,
g = (m*k+127)/255,
r = (c*k+127)/255;
dst[i] = (uint32_t)0xFF << 24
| (uint32_t) r << 16
| (uint32_t) g << 8
| (uint32_t) b << 0;
}
}
#if defined(SK_ARM_HAS_NEON)
// Rounded divide by 255, (x + 127) / 255
static uint8x8_t div255_round(uint16x8_t x) {
// result = (x + 127) / 255
// result = (x + 127) / 256 + error1
//
// error1 = (x + 127) / (255 * 256)
// error1 = (x + 127) / (256 * 256) + error2
//
// error2 = (x + 127) / (255 * 256 * 256)
//
// The maximum value of error2 is too small to matter. Thus:
// result = (x + 127) / 256 + (x + 127) / (256 * 256)
// result = ((x + 127) / 256 + x + 127) / 256
// result = ((x + 127) >> 8 + x + 127) >> 8
//
// Use >>> to represent "rounded right shift" which, conveniently,
// NEON supports in one instruction.
// result = ((x >>> 8) + x) >>> 8
//
// Note that the second right shift is actually performed as an
// "add, round, and narrow back to 8-bits" instruction.
return vraddhn_u16(x, vrshrq_n_u16(x, 8));
}
// Scale a byte by another, (x * y + 127) / 255
static uint8x8_t scale(uint8x8_t x, uint8x8_t y) {
return div255_round(vmull_u8(x, y));
}
template <bool kSwapRB>
static void premul_should_swapRB(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
while (count >= 8) {
// Load 8 pixels.
uint8x8x4_t rgba = vld4_u8((const uint8_t*) src);
uint8x8_t a = rgba.val[3],
b = rgba.val[2],
g = rgba.val[1],
r = rgba.val[0];
// Premultiply.
b = scale(b, a);
g = scale(g, a);
r = scale(r, a);
// Store 8 premultiplied pixels.
if (kSwapRB) {
rgba.val[2] = r;
rgba.val[1] = g;
rgba.val[0] = b;
} else {
rgba.val[2] = b;
rgba.val[1] = g;
rgba.val[0] = r;
}
vst4_u8((uint8_t*) dst, rgba);
src += 8;
dst += 8;
count -= 8;
}
// Call portable code to finish up the tail of [0,8) pixels.
auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable;
proc(dst, src, count);
}
/*not static*/ inline void RGBA_to_rgbA(uint32_t* dst, const void* src, int count) {
premul_should_swapRB<false>(dst, src, count);
}
/*not static*/ inline void RGBA_to_bgrA(uint32_t* dst, const void* src, int count) {
premul_should_swapRB<true>(dst, src, count);
}
/*not static*/ inline void RGBA_to_BGRA(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
while (count >= 16) {
// Load 16 pixels.
uint8x16x4_t rgba = vld4q_u8((const uint8_t*) src);
// Swap r and b.
SkTSwap(rgba.val[0], rgba.val[2]);
// Store 16 pixels.
vst4q_u8((uint8_t*) dst, rgba);
src += 16;
dst += 16;
count -= 16;
}
if (count >= 8) {
// Load 8 pixels.
uint8x8x4_t rgba = vld4_u8((const uint8_t*) src);
// Swap r and b.
SkTSwap(rgba.val[0], rgba.val[2]);
// Store 8 pixels.
vst4_u8((uint8_t*) dst, rgba);
src += 8;
dst += 8;
count -= 8;
}
RGBA_to_BGRA_portable(dst, src, count);
}
template <bool kSwapRB>
static void insert_alpha_should_swaprb(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
while (count >= 16) {
// Load 16 pixels.
uint8x16x3_t rgb = vld3q_u8(src);
// Insert an opaque alpha channel and swap if needed.
uint8x16x4_t rgba;
if (kSwapRB) {
rgba.val[0] = rgb.val[2];
rgba.val[2] = rgb.val[0];
} else {
rgba.val[0] = rgb.val[0];
rgba.val[2] = rgb.val[2];
}
rgba.val[1] = rgb.val[1];
rgba.val[3] = vdupq_n_u8(0xFF);
// Store 16 pixels.
vst4q_u8((uint8_t*) dst, rgba);
src += 16*3;
dst += 16;
count -= 16;
}
if (count >= 8) {
// Load 8 pixels.
uint8x8x3_t rgb = vld3_u8(src);
// Insert an opaque alpha channel and swap if needed.
uint8x8x4_t rgba;
if (kSwapRB) {
rgba.val[0] = rgb.val[2];
rgba.val[2] = rgb.val[0];
} else {
rgba.val[0] = rgb.val[0];
rgba.val[2] = rgb.val[2];
}
rgba.val[1] = rgb.val[1];
rgba.val[3] = vdup_n_u8(0xFF);
// Store 8 pixels.
vst4_u8((uint8_t*) dst, rgba);
src += 8*3;
dst += 8;
count -= 8;
}
// Call portable code to finish up the tail of [0,8) pixels.
auto proc = kSwapRB ? RGB_to_BGR1_portable : RGB_to_RGB1_portable;
proc(dst, src, count);
}
/*not static*/ inline void RGB_to_RGB1(uint32_t dst[], const void* src, int count) {
insert_alpha_should_swaprb<false>(dst, src, count);
}
/*not static*/ inline void RGB_to_BGR1(uint32_t dst[], const void* src, int count) {
insert_alpha_should_swaprb<true>(dst, src, count);
}
/*not static*/ inline void gray_to_RGB1(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
while (count >= 16) {
// Load 16 pixels.
uint8x16_t gray = vld1q_u8(src);
// Set each of the color channels.
uint8x16x4_t rgba;
rgba.val[0] = gray;
rgba.val[1] = gray;
rgba.val[2] = gray;
rgba.val[3] = vdupq_n_u8(0xFF);
// Store 16 pixels.
vst4q_u8((uint8_t*) dst, rgba);
src += 16;
dst += 16;
count -= 16;
}
if (count >= 8) {
// Load 8 pixels.
uint8x8_t gray = vld1_u8(src);
// Set each of the color channels.
uint8x8x4_t rgba;
rgba.val[0] = gray;
rgba.val[1] = gray;
rgba.val[2] = gray;
rgba.val[3] = vdup_n_u8(0xFF);
// Store 8 pixels.
vst4_u8((uint8_t*) dst, rgba);
src += 8;
dst += 8;
count -= 8;
}
gray_to_RGB1_portable(dst, src, count);
}
template <bool kPremul>
static void expand_grayA(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
while (count >= 16) {
// Load 16 pixels.
uint8x16x2_t ga = vld2q_u8(src);
// Premultiply if requested.
if (kPremul) {
ga.val[0] = vcombine_u8(
scale(vget_low_u8(ga.val[0]), vget_low_u8(ga.val[1])),
scale(vget_high_u8(ga.val[0]), vget_high_u8(ga.val[1])));
}
// Set each of the color channels.
uint8x16x4_t rgba;
rgba.val[0] = ga.val[0];
rgba.val[1] = ga.val[0];
rgba.val[2] = ga.val[0];
rgba.val[3] = ga.val[1];
// Store 16 pixels.
vst4q_u8((uint8_t*) dst, rgba);
src += 16*2;
dst += 16;
count -= 16;
}
if (count >= 8) {
// Load 8 pixels.
uint8x8x2_t ga = vld2_u8(src);
// Premultiply if requested.
if (kPremul) {
ga.val[0] = scale(ga.val[0], ga.val[1]);
}
// Set each of the color channels.
uint8x8x4_t rgba;
rgba.val[0] = ga.val[0];
rgba.val[1] = ga.val[0];
rgba.val[2] = ga.val[0];
rgba.val[3] = ga.val[1];
// Store 8 pixels.
vst4_u8((uint8_t*) dst, rgba);
src += 8*2;
dst += 8;
count -= 8;
}
auto proc = kPremul ? grayA_to_rgbA_portable : grayA_to_RGBA_portable;
proc(dst, src, count);
}
/*not static*/ inline void grayA_to_RGBA(uint32_t dst[], const void* src, int count) {
expand_grayA<false>(dst, src, count);
}
/*not static*/ inline void grayA_to_rgbA(uint32_t dst[], const void* src, int count) {
expand_grayA<true>(dst, src, count);
}
enum Format { kRGB1, kBGR1 };
template <Format format>
static void inverted_cmyk_to(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
while (count >= 8) {
// Load 8 cmyk pixels.
uint8x8x4_t pixels = vld4_u8((const uint8_t*) src);
uint8x8_t k = pixels.val[3],
y = pixels.val[2],
m = pixels.val[1],
c = pixels.val[0];
// Scale to r, g, b.
uint8x8_t b = scale(y, k);
uint8x8_t g = scale(m, k);
uint8x8_t r = scale(c, k);
// Store 8 rgba pixels.
if (kBGR1 == format) {
pixels.val[3] = vdup_n_u8(0xFF);
pixels.val[2] = r;
pixels.val[1] = g;
pixels.val[0] = b;
} else {
pixels.val[3] = vdup_n_u8(0xFF);
pixels.val[2] = b;
pixels.val[1] = g;
pixels.val[0] = r;
}
vst4_u8((uint8_t*) dst, pixels);
src += 8;
dst += 8;
count -= 8;
}
auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable;
proc(dst, src, count);
}
/*not static*/ inline void inverted_CMYK_to_RGB1(uint32_t dst[], const void* src, int count) {
inverted_cmyk_to<kRGB1>(dst, src, count);
}
/*not static*/ inline void inverted_CMYK_to_BGR1(uint32_t dst[], const void* src, int count) {
inverted_cmyk_to<kBGR1>(dst, src, count);
}
#elif SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
// Scale a byte by another.
// Inputs are stored in 16-bit lanes, but are not larger than 8-bits.
static __m128i scale(__m128i x, __m128i y) {
const __m128i _128 = _mm_set1_epi16(128);
const __m128i _257 = _mm_set1_epi16(257);
// (x+127)/255 == ((x+128)*257)>>16 for 0 <= x <= 255*255.
return _mm_mulhi_epu16(_mm_add_epi16(_mm_mullo_epi16(x, y), _128), _257);
}
template <bool kSwapRB>
static void premul_should_swapRB(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
auto premul8 = [](__m128i* lo, __m128i* hi) {
const __m128i zeros = _mm_setzero_si128();
__m128i planar;
if (kSwapRB) {
planar = _mm_setr_epi8(2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15);
} else {
planar = _mm_setr_epi8(0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15);
}
// Swizzle the pixels to 8-bit planar.
*lo = _mm_shuffle_epi8(*lo, planar); // rrrrgggg bbbbaaaa
*hi = _mm_shuffle_epi8(*hi, planar); // RRRRGGGG BBBBAAAA
__m128i rg = _mm_unpacklo_epi32(*lo, *hi), // rrrrRRRR ggggGGGG
ba = _mm_unpackhi_epi32(*lo, *hi); // bbbbBBBB aaaaAAAA
// Unpack to 16-bit planar.
__m128i r = _mm_unpacklo_epi8(rg, zeros), // r_r_r_r_ R_R_R_R_
g = _mm_unpackhi_epi8(rg, zeros), // g_g_g_g_ G_G_G_G_
b = _mm_unpacklo_epi8(ba, zeros), // b_b_b_b_ B_B_B_B_
a = _mm_unpackhi_epi8(ba, zeros); // a_a_a_a_ A_A_A_A_
// Premultiply!
r = scale(r, a);
g = scale(g, a);
b = scale(b, a);
// Repack into interlaced pixels.
rg = _mm_or_si128(r, _mm_slli_epi16(g, 8)); // rgrgrgrg RGRGRGRG
ba = _mm_or_si128(b, _mm_slli_epi16(a, 8)); // babababa BABABABA
*lo = _mm_unpacklo_epi16(rg, ba); // rgbargba rgbargba
*hi = _mm_unpackhi_epi16(rg, ba); // RGBARGBA RGBARGBA
};
while (count >= 8) {
__m128i lo = _mm_loadu_si128((const __m128i*) (src + 0)),
hi = _mm_loadu_si128((const __m128i*) (src + 4));
premul8(&lo, &hi);
_mm_storeu_si128((__m128i*) (dst + 0), lo);
_mm_storeu_si128((__m128i*) (dst + 4), hi);
src += 8;
dst += 8;
count -= 8;
}
if (count >= 4) {
__m128i lo = _mm_loadu_si128((const __m128i*) src),
hi = _mm_setzero_si128();
premul8(&lo, &hi);
_mm_storeu_si128((__m128i*) dst, lo);
src += 4;
dst += 4;
count -= 4;
}
// Call portable code to finish up the tail of [0,4) pixels.
auto proc = kSwapRB ? RGBA_to_bgrA_portable : RGBA_to_rgbA_portable;
proc(dst, src, count);
}
/*not static*/ inline void RGBA_to_rgbA(uint32_t* dst, const void* src, int count) {
premul_should_swapRB<false>(dst, src, count);
}
/*not static*/ inline void RGBA_to_bgrA(uint32_t* dst, const void* src, int count) {
premul_should_swapRB<true>(dst, src, count);
}
/*not static*/ inline void RGBA_to_BGRA(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
const __m128i swapRB = _mm_setr_epi8(2,1,0,3, 6,5,4,7, 10,9,8,11, 14,13,12,15);
while (count >= 4) {
__m128i rgba = _mm_loadu_si128((const __m128i*) src);
__m128i bgra = _mm_shuffle_epi8(rgba, swapRB);
_mm_storeu_si128((__m128i*) dst, bgra);
src += 4;
dst += 4;
count -= 4;
}
RGBA_to_BGRA_portable(dst, src, count);
}
template <bool kSwapRB>
static void insert_alpha_should_swaprb(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
const __m128i alphaMask = _mm_set1_epi32(0xFF000000);
__m128i expand;
const uint8_t X = 0xFF; // Used a placeholder. The value of X is irrelevant.
if (kSwapRB) {
expand = _mm_setr_epi8(2,1,0,X, 5,4,3,X, 8,7,6,X, 11,10,9,X);
} else {
expand = _mm_setr_epi8(0,1,2,X, 3,4,5,X, 6,7,8,X, 9,10,11,X);
}
while (count >= 6) {
// Load a vector. While this actually contains 5 pixels plus an
// extra component, we will discard all but the first four pixels on
// this iteration.
__m128i rgb = _mm_loadu_si128((const __m128i*) src);
// Expand the first four pixels to RGBX and then mask to RGB(FF).
__m128i rgba = _mm_or_si128(_mm_shuffle_epi8(rgb, expand), alphaMask);
// Store 4 pixels.
_mm_storeu_si128((__m128i*) dst, rgba);
src += 4*3;
dst += 4;
count -= 4;
}
// Call portable code to finish up the tail of [0,4) pixels.
auto proc = kSwapRB ? RGB_to_BGR1_portable : RGB_to_RGB1_portable;
proc(dst, src, count);
}
/*not static*/ inline void RGB_to_RGB1(uint32_t dst[], const void* src, int count) {
insert_alpha_should_swaprb<false>(dst, src, count);
}
/*not static*/ inline void RGB_to_BGR1(uint32_t dst[], const void* src, int count) {
insert_alpha_should_swaprb<true>(dst, src, count);
}
/*not static*/ inline void gray_to_RGB1(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
const __m128i alphas = _mm_set1_epi8((uint8_t) 0xFF);
while (count >= 16) {
__m128i grays = _mm_loadu_si128((const __m128i*) src);
__m128i gg_lo = _mm_unpacklo_epi8(grays, grays);
__m128i gg_hi = _mm_unpackhi_epi8(grays, grays);
__m128i ga_lo = _mm_unpacklo_epi8(grays, alphas);
__m128i ga_hi = _mm_unpackhi_epi8(grays, alphas);
__m128i ggga0 = _mm_unpacklo_epi16(gg_lo, ga_lo);
__m128i ggga1 = _mm_unpackhi_epi16(gg_lo, ga_lo);
__m128i ggga2 = _mm_unpacklo_epi16(gg_hi, ga_hi);
__m128i ggga3 = _mm_unpackhi_epi16(gg_hi, ga_hi);
_mm_storeu_si128((__m128i*) (dst + 0), ggga0);
_mm_storeu_si128((__m128i*) (dst + 4), ggga1);
_mm_storeu_si128((__m128i*) (dst + 8), ggga2);
_mm_storeu_si128((__m128i*) (dst + 12), ggga3);
src += 16;
dst += 16;
count -= 16;
}
gray_to_RGB1_portable(dst, src, count);
}
/*not static*/ inline void grayA_to_RGBA(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
while (count >= 8) {
__m128i ga = _mm_loadu_si128((const __m128i*) src);
__m128i gg = _mm_or_si128(_mm_and_si128(ga, _mm_set1_epi16(0x00FF)),
_mm_slli_epi16(ga, 8));
__m128i ggga_lo = _mm_unpacklo_epi16(gg, ga);
__m128i ggga_hi = _mm_unpackhi_epi16(gg, ga);
_mm_storeu_si128((__m128i*) (dst + 0), ggga_lo);
_mm_storeu_si128((__m128i*) (dst + 4), ggga_hi);
src += 8*2;
dst += 8;
count -= 8;
}
grayA_to_RGBA_portable(dst, src, count);
}
/*not static*/ inline void grayA_to_rgbA(uint32_t dst[], const void* vsrc, int count) {
const uint8_t* src = (const uint8_t*) vsrc;
while (count >= 8) {
__m128i grayA = _mm_loadu_si128((const __m128i*) src);
__m128i g0 = _mm_and_si128(grayA, _mm_set1_epi16(0x00FF));
__m128i a0 = _mm_srli_epi16(grayA, 8);
// Premultiply
g0 = scale(g0, a0);
__m128i gg = _mm_or_si128(g0, _mm_slli_epi16(g0, 8));
__m128i ga = _mm_or_si128(g0, _mm_slli_epi16(a0, 8));
__m128i ggga_lo = _mm_unpacklo_epi16(gg, ga);
__m128i ggga_hi = _mm_unpackhi_epi16(gg, ga);
_mm_storeu_si128((__m128i*) (dst + 0), ggga_lo);
_mm_storeu_si128((__m128i*) (dst + 4), ggga_hi);
src += 8*2;
dst += 8;
count -= 8;
}
grayA_to_rgbA_portable(dst, src, count);
}
enum Format { kRGB1, kBGR1 };
template <Format format>
static void inverted_cmyk_to(uint32_t* dst, const void* vsrc, int count) {
auto src = (const uint32_t*)vsrc;
auto convert8 = [](__m128i* lo, __m128i* hi) {
const __m128i zeros = _mm_setzero_si128();
__m128i planar;
if (kBGR1 == format) {
planar = _mm_setr_epi8(2,6,10,14, 1,5,9,13, 0,4,8,12, 3,7,11,15);
} else {
planar = _mm_setr_epi8(0,4,8,12, 1,5,9,13, 2,6,10,14, 3,7,11,15);
}
// Swizzle the pixels to 8-bit planar.
*lo = _mm_shuffle_epi8(*lo, planar); // ccccmmmm yyyykkkk
*hi = _mm_shuffle_epi8(*hi, planar); // CCCCMMMM YYYYKKKK
__m128i cm = _mm_unpacklo_epi32(*lo, *hi), // ccccCCCC mmmmMMMM
yk = _mm_unpackhi_epi32(*lo, *hi); // yyyyYYYY kkkkKKKK
// Unpack to 16-bit planar.
__m128i c = _mm_unpacklo_epi8(cm, zeros), // c_c_c_c_ C_C_C_C_
m = _mm_unpackhi_epi8(cm, zeros), // m_m_m_m_ M_M_M_M_
y = _mm_unpacklo_epi8(yk, zeros), // y_y_y_y_ Y_Y_Y_Y_
k = _mm_unpackhi_epi8(yk, zeros); // k_k_k_k_ K_K_K_K_
// Scale to r, g, b.
__m128i r = scale(c, k),
g = scale(m, k),
b = scale(y, k);
// Repack into interlaced pixels.
__m128i rg = _mm_or_si128(r, _mm_slli_epi16(g, 8)), // rgrgrgrg RGRGRGRG
ba = _mm_or_si128(b, _mm_set1_epi16((uint16_t) 0xFF00)); // b1b1b1b1 B1B1B1B1
*lo = _mm_unpacklo_epi16(rg, ba); // rgbargba rgbargba
*hi = _mm_unpackhi_epi16(rg, ba); // RGB1RGB1 RGB1RGB1
};
while (count >= 8) {
__m128i lo = _mm_loadu_si128((const __m128i*) (src + 0)),
hi = _mm_loadu_si128((const __m128i*) (src + 4));
convert8(&lo, &hi);
_mm_storeu_si128((__m128i*) (dst + 0), lo);
_mm_storeu_si128((__m128i*) (dst + 4), hi);
src += 8;
dst += 8;
count -= 8;
}
if (count >= 4) {
__m128i lo = _mm_loadu_si128((const __m128i*) src),
hi = _mm_setzero_si128();
convert8(&lo, &hi);
_mm_storeu_si128((__m128i*) dst, lo);
src += 4;
dst += 4;
count -= 4;
}
auto proc = (kBGR1 == format) ? inverted_CMYK_to_BGR1_portable : inverted_CMYK_to_RGB1_portable;
proc(dst, src, count);
}
/*not static*/ inline void inverted_CMYK_to_RGB1(uint32_t dst[], const void* src, int count) {
inverted_cmyk_to<kRGB1>(dst, src, count);
}
/*not static*/ inline void inverted_CMYK_to_BGR1(uint32_t dst[], const void* src, int count) {
inverted_cmyk_to<kBGR1>(dst, src, count);
}
#else
/*not static*/ inline void RGBA_to_rgbA(uint32_t* dst, const void* src, int count) {
RGBA_to_rgbA_portable(dst, src, count);
}
/*not static*/ inline void RGBA_to_bgrA(uint32_t* dst, const void* src, int count) {
RGBA_to_bgrA_portable(dst, src, count);
}
/*not static*/ inline void RGBA_to_BGRA(uint32_t* dst, const void* src, int count) {
RGBA_to_BGRA_portable(dst, src, count);
}
/*not static*/ inline void RGB_to_RGB1(uint32_t dst[], const void* src, int count) {
RGB_to_RGB1_portable(dst, src, count);
}
/*not static*/ inline void RGB_to_BGR1(uint32_t dst[], const void* src, int count) {
RGB_to_BGR1_portable(dst, src, count);
}
/*not static*/ inline void gray_to_RGB1(uint32_t dst[], const void* src, int count) {
gray_to_RGB1_portable(dst, src, count);
}
/*not static*/ inline void grayA_to_RGBA(uint32_t dst[], const void* src, int count) {
grayA_to_RGBA_portable(dst, src, count);
}
/*not static*/ inline void grayA_to_rgbA(uint32_t dst[], const void* src, int count) {
grayA_to_rgbA_portable(dst, src, count);
}
/*not static*/ inline void inverted_CMYK_to_RGB1(uint32_t dst[], const void* src, int count) {
inverted_CMYK_to_RGB1_portable(dst, src, count);
}
/*not static*/ inline void inverted_CMYK_to_BGR1(uint32_t dst[], const void* src, int count) {
inverted_CMYK_to_BGR1_portable(dst, src, count);
}
#endif
}
#endif // SkSwizzler_opts_DEFINED