/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkSharedMutex.h"
#include "SkAtomics.h"
#include "SkTypes.h"
#include "SkSemaphore.h"
#if !defined(__has_feature)
#define __has_feature(x) 0
#endif
#if __has_feature(thread_sanitizer)
/* Report that a lock has been created at address "lock". */
#define ANNOTATE_RWLOCK_CREATE(lock) \
AnnotateRWLockCreate(__FILE__, __LINE__, lock)
/* Report that the lock at address "lock" is about to be destroyed. */
#define ANNOTATE_RWLOCK_DESTROY(lock) \
AnnotateRWLockDestroy(__FILE__, __LINE__, lock)
/* Report that the lock at address "lock" has been acquired.
is_w=1 for writer lock, is_w=0 for reader lock. */
#define ANNOTATE_RWLOCK_ACQUIRED(lock, is_w) \
AnnotateRWLockAcquired(__FILE__, __LINE__, lock, is_w)
/* Report that the lock at address "lock" is about to be released. */
#define ANNOTATE_RWLOCK_RELEASED(lock, is_w) \
AnnotateRWLockReleased(__FILE__, __LINE__, lock, is_w)
#if defined(DYNAMIC_ANNOTATIONS_WANT_ATTRIBUTE_WEAK)
#if defined(__GNUC__)
#define DYNAMIC_ANNOTATIONS_ATTRIBUTE_WEAK __attribute__((weak))
#else
/* TODO(glider): for Windows support we may want to change this macro in order
to prepend __declspec(selectany) to the annotations' declarations. */
#error weak annotations are not supported for your compiler
#endif
#else
#define DYNAMIC_ANNOTATIONS_ATTRIBUTE_WEAK
#endif
extern "C" {
void AnnotateRWLockCreate(
const char *file, int line,
const volatile void *lock) DYNAMIC_ANNOTATIONS_ATTRIBUTE_WEAK;
void AnnotateRWLockDestroy(
const char *file, int line,
const volatile void *lock) DYNAMIC_ANNOTATIONS_ATTRIBUTE_WEAK;
void AnnotateRWLockAcquired(
const char *file, int line,
const volatile void *lock, long is_w) DYNAMIC_ANNOTATIONS_ATTRIBUTE_WEAK;
void AnnotateRWLockReleased(
const char *file, int line,
const volatile void *lock, long is_w) DYNAMIC_ANNOTATIONS_ATTRIBUTE_WEAK;
}
#else
#define ANNOTATE_RWLOCK_CREATE(lock)
#define ANNOTATE_RWLOCK_DESTROY(lock)
#define ANNOTATE_RWLOCK_ACQUIRED(lock, is_w)
#define ANNOTATE_RWLOCK_RELEASED(lock, is_w)
#endif
#ifdef SK_DEBUG
#include "SkThreadID.h"
#include "SkTDArray.h"
class SkSharedMutex::ThreadIDSet {
public:
// Returns true if threadID is in the set.
bool find(SkThreadID threadID) const {
for (auto& t : fThreadIDs) {
if (t == threadID) return true;
}
return false;
}
// Returns true if did not already exist.
bool tryAdd(SkThreadID threadID) {
for (auto& t : fThreadIDs) {
if (t == threadID) return false;
}
fThreadIDs.append(1, &threadID);
return true;
}
// Returns true if already exists in Set.
bool tryRemove(SkThreadID threadID) {
for (int i = 0; i < fThreadIDs.count(); ++i) {
if (fThreadIDs[i] == threadID) {
fThreadIDs.remove(i);
return true;
}
}
return false;
}
void swap(ThreadIDSet& other) {
fThreadIDs.swap(other.fThreadIDs);
}
int count() const {
return fThreadIDs.count();
}
private:
SkTDArray<SkThreadID> fThreadIDs;
};
SkSharedMutex::SkSharedMutex()
: fCurrentShared(new ThreadIDSet)
, fWaitingExclusive(new ThreadIDSet)
, fWaitingShared(new ThreadIDSet){
ANNOTATE_RWLOCK_CREATE(this);
}
SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
void SkSharedMutex::acquire() {
SkThreadID threadID(SkGetThreadID());
int currentSharedCount;
int waitingExclusiveCount;
{
SkAutoMutexAcquire l(&fMu);
if (!fWaitingExclusive->tryAdd(threadID)) {
SkDEBUGFAILF("Thread %lx already has an exclusive lock\n", threadID);
}
currentSharedCount = fCurrentShared->count();
waitingExclusiveCount = fWaitingExclusive->count();
}
if (currentSharedCount > 0 || waitingExclusiveCount > 1) {
fExclusiveQueue.wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 1);
}
// Implementation Detail:
// The shared threads need two seperate queues to keep the threads that were added after the
// exclusive lock separate from the threads added before.
void SkSharedMutex::release() {
ANNOTATE_RWLOCK_RELEASED(this, 1);
SkThreadID threadID(SkGetThreadID());
int sharedWaitingCount;
int exclusiveWaitingCount;
int sharedQueueSelect;
{
SkAutoMutexAcquire l(&fMu);
SkASSERT(0 == fCurrentShared->count());
if (!fWaitingExclusive->tryRemove(threadID)) {
SkDEBUGFAILF("Thread %lx did not have the lock held.\n", threadID);
}
exclusiveWaitingCount = fWaitingExclusive->count();
sharedWaitingCount = fWaitingShared->count();
fWaitingShared.swap(fCurrentShared);
sharedQueueSelect = fSharedQueueSelect;
if (sharedWaitingCount > 0) {
fSharedQueueSelect = 1 - fSharedQueueSelect;
}
}
if (sharedWaitingCount > 0) {
fSharedQueue[sharedQueueSelect].signal(sharedWaitingCount);
} else if (exclusiveWaitingCount > 0) {
fExclusiveQueue.signal();
}
}
void SkSharedMutex::assertHeld() const {
SkThreadID threadID(SkGetThreadID());
SkAutoMutexAcquire l(&fMu);
SkASSERT(0 == fCurrentShared->count());
SkASSERT(fWaitingExclusive->find(threadID));
}
void SkSharedMutex::acquireShared() {
SkThreadID threadID(SkGetThreadID());
int exclusiveWaitingCount;
int sharedQueueSelect;
{
SkAutoMutexAcquire l(&fMu);
exclusiveWaitingCount = fWaitingExclusive->count();
if (exclusiveWaitingCount > 0) {
if (!fWaitingShared->tryAdd(threadID)) {
SkDEBUGFAILF("Thread %lx was already waiting!\n", threadID);
}
} else {
if (!fCurrentShared->tryAdd(threadID)) {
SkDEBUGFAILF("Thread %lx already holds a shared lock!\n", threadID);
}
}
sharedQueueSelect = fSharedQueueSelect;
}
if (exclusiveWaitingCount > 0) {
fSharedQueue[sharedQueueSelect].wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 0);
}
void SkSharedMutex::releaseShared() {
ANNOTATE_RWLOCK_RELEASED(this, 0);
SkThreadID threadID(SkGetThreadID());
int currentSharedCount;
int waitingExclusiveCount;
{
SkAutoMutexAcquire l(&fMu);
if (!fCurrentShared->tryRemove(threadID)) {
SkDEBUGFAILF("Thread %lx does not hold a shared lock.\n", threadID);
}
currentSharedCount = fCurrentShared->count();
waitingExclusiveCount = fWaitingExclusive->count();
}
if (0 == currentSharedCount && waitingExclusiveCount > 0) {
fExclusiveQueue.signal();
}
}
void SkSharedMutex::assertHeldShared() const {
SkThreadID threadID(SkGetThreadID());
SkAutoMutexAcquire l(&fMu);
SkASSERT(fCurrentShared->find(threadID));
}
#else
// The fQueueCounts fields holds many counts in an int32_t in order to make managing them atomic.
// These three counts must be the same size, so each gets 10 bits. The 10 bits represent
// the log of the count which is 1024.
//
// The three counts held in fQueueCounts are:
// * Shared - the number of shared lock holders currently running.
// * WaitingExclusive - the number of threads waiting for an exclusive lock.
// * WaitingShared - the number of threads waiting to run while waiting for an exclusive thread
// to finish.
static const int kLogThreadCount = 10;
enum {
kSharedOffset = (0 * kLogThreadCount),
kWaitingExlusiveOffset = (1 * kLogThreadCount),
kWaitingSharedOffset = (2 * kLogThreadCount),
kSharedMask = ((1 << kLogThreadCount) - 1) << kSharedOffset,
kWaitingExclusiveMask = ((1 << kLogThreadCount) - 1) << kWaitingExlusiveOffset,
kWaitingSharedMask = ((1 << kLogThreadCount) - 1) << kWaitingSharedOffset,
};
SkSharedMutex::SkSharedMutex() : fQueueCounts(0) { ANNOTATE_RWLOCK_CREATE(this); }
SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
void SkSharedMutex::acquire() {
// Increment the count of exclusive queue waiters.
int32_t oldQueueCounts = fQueueCounts.fetch_add(1 << kWaitingExlusiveOffset,
sk_memory_order_acquire);
// If there are no other exclusive waiters and no shared threads are running then run
// else wait.
if ((oldQueueCounts & kWaitingExclusiveMask) > 0 || (oldQueueCounts & kSharedMask) > 0) {
fExclusiveQueue.wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 1);
}
void SkSharedMutex::release() {
ANNOTATE_RWLOCK_RELEASED(this, 1);
int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
int32_t waitingShared;
int32_t newQueueCounts;
do {
newQueueCounts = oldQueueCounts;
// Decrement exclusive waiters.
newQueueCounts -= 1 << kWaitingExlusiveOffset;
// The number of threads waiting to acquire a shared lock.
waitingShared = (oldQueueCounts & kWaitingSharedMask) >> kWaitingSharedOffset;
// If there are any move the counts of all the shared waiters to actual shared. They are
// going to run next.
if (waitingShared > 0) {
// Set waiting shared to zero.
newQueueCounts &= ~kWaitingSharedMask;
// Because this is the exclusive release, then there are zero readers. So, the bits
// for shared locks should be zero. Since those bits are zero, we can just |= in the
// waitingShared count instead of clearing with an &= and then |= the count.
newQueueCounts |= waitingShared << kSharedOffset;
}
} while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
sk_memory_order_release, sk_memory_order_relaxed));
if (waitingShared > 0) {
// Run all the shared.
fSharedQueue.signal(waitingShared);
} else if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
// Run a single exclusive waiter.
fExclusiveQueue.signal();
}
}
void SkSharedMutex::acquireShared() {
int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
int32_t newQueueCounts;
do {
newQueueCounts = oldQueueCounts;
// If there are waiting exclusives then this shared lock waits else it runs.
if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
newQueueCounts += 1 << kWaitingSharedOffset;
} else {
newQueueCounts += 1 << kSharedOffset;
}
} while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
sk_memory_order_acquire, sk_memory_order_relaxed));
// If there are waiting exclusives, then this shared waits until after it runs.
if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
fSharedQueue.wait();
}
ANNOTATE_RWLOCK_ACQUIRED(this, 0);
}
void SkSharedMutex::releaseShared() {
ANNOTATE_RWLOCK_RELEASED(this, 0);
// Decrement the shared count.
int32_t oldQueueCounts = fQueueCounts.fetch_sub(1 << kSharedOffset,
sk_memory_order_release);
// If shared count is going to zero (because the old count == 1) and there are exclusive
// waiters, then run a single exclusive waiter.
if (((oldQueueCounts & kSharedMask) >> kSharedOffset) == 1
&& (oldQueueCounts & kWaitingExclusiveMask) > 0) {
fExclusiveQueue.signal();
}
}
#endif