/*
* Copyright 2008 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// The copyright below was added in 2009, but I see no record of moto contributions...?
/* NEON optimized code (C) COPYRIGHT 2009 Motorola
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkShader.h"
#include "SkUtils.h"
#include "SkUtilsArm.h"
#include "SkBitmapProcState_utils.h"
/* returns 0...(n-1) given any x (positive or negative).
As an example, if n (which is always positive) is 5...
x: -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
returns: 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3
*/
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count);
void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count);
#include "SkBitmapProcState_matrix_template.h"
///////////////////////////////////////////////////////////////////////////////
// Compile neon code paths if needed
#if defined(SK_ARM_HAS_NEON)
// These are defined in src/opts/SkBitmapProcState_matrixProcs_neon.cpp
extern const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs_neon[];
extern const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs_neon[];
#endif // defined(SK_ARM_HAS_NEON)
// Compile non-neon code path if needed
#if !defined(SK_ARM_HAS_NEON)
#define MAKENAME(suffix) ClampX_ClampY ## suffix
#define TILEX_PROCF(fx, max) SkClampMax((fx) >> 16, max)
#define TILEY_PROCF(fy, max) SkClampMax((fy) >> 16, max)
#define EXTRACT_LOW_BITS(v, max) (((v) >> 12) & 0xF)
#define CHECK_FOR_DECAL
#include "SkBitmapProcState_matrix.h"
struct ClampTileProcs {
static unsigned X(const SkBitmapProcState&, SkFixed fx, int max) {
return SkClampMax(fx >> 16, max);
}
static unsigned Y(const SkBitmapProcState&, SkFixed fy, int max) {
return SkClampMax(fy >> 16, max);
}
};
// Referenced in opts_check_x86.cpp
void ClampX_ClampY_nofilter_scale(const SkBitmapProcState& s, uint32_t xy[],
int count, int x, int y) {
return NoFilterProc_Scale<ClampTileProcs, true>(s, xy, count, x, y);
}
static SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
// only clamp lives in the right coord space to check for decal
ClampX_ClampY_nofilter_scale,
ClampX_ClampY_filter_scale,
};
#define MAKENAME(suffix) RepeatX_RepeatY ## suffix
#define TILEX_PROCF(fx, max) SK_USHIFT16((unsigned)((fx) & 0xFFFF) * ((max) + 1))
#define TILEY_PROCF(fy, max) SK_USHIFT16((unsigned)((fy) & 0xFFFF) * ((max) + 1))
#define EXTRACT_LOW_BITS(v, max) (((unsigned)((v) & 0xFFFF) * ((max) + 1) >> 12) & 0xF)
#include "SkBitmapProcState_matrix.h"
struct RepeatTileProcs {
static unsigned X(const SkBitmapProcState&, SkFixed fx, int max) {
SkASSERT(max < 65535);
return SK_USHIFT16((unsigned)((fx) & 0xFFFF) * ((max) + 1));
}
static unsigned Y(const SkBitmapProcState&, SkFixed fy, int max) {
SkASSERT(max < 65535);
return SK_USHIFT16((unsigned)((fy) & 0xFFFF) * ((max) + 1));
}
};
static SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
NoFilterProc_Scale<RepeatTileProcs, false>,
RepeatX_RepeatY_filter_scale,
};
#endif
#define MAKENAME(suffix) GeneralXY ## suffix
#define PREAMBLE(state) SkBitmapProcState::FixedTileProc tileProcX = (state).fTileProcX; (void) tileProcX; \
SkBitmapProcState::FixedTileProc tileProcY = (state).fTileProcY; (void) tileProcY;
#define PREAMBLE_PARAM_X , SkBitmapProcState::FixedTileProc tileProcX
#define PREAMBLE_PARAM_Y , SkBitmapProcState::FixedTileProc tileProcY
#define PREAMBLE_ARG_X , tileProcX
#define PREAMBLE_ARG_Y , tileProcY
#define TILEX_PROCF(fx, max) SK_USHIFT16(tileProcX(fx) * ((max) + 1))
#define TILEY_PROCF(fy, max) SK_USHIFT16(tileProcY(fy) * ((max) + 1))
#define EXTRACT_LOW_BITS(v, max) (((v * (max + 1)) >> 12) & 0xF)
#include "SkBitmapProcState_matrix.h"
struct GeneralTileProcs {
static unsigned X(const SkBitmapProcState& s, SkFixed fx, int max) {
return SK_USHIFT16(s.fTileProcX(fx) * ((max) + 1));
}
static unsigned Y(const SkBitmapProcState& s, SkFixed fy, int max) {
return SK_USHIFT16(s.fTileProcY(fy) * ((max) + 1));
}
};
static SkBitmapProcState::MatrixProc GeneralXY_Procs[] = {
NoFilterProc_Scale<GeneralTileProcs, false>,
GeneralXY_filter_scale,
};
///////////////////////////////////////////////////////////////////////////////
static inline U16CPU fixed_clamp(SkFixed x) {
if (x < 0) {
x = 0;
}
if (x >> 16) {
x = 0xFFFF;
}
return x;
}
static inline U16CPU fixed_repeat(SkFixed x) {
return x & 0xFFFF;
}
static inline U16CPU fixed_mirror(SkFixed x) {
SkFixed s = SkLeftShift(x, 15) >> 31;
// s is FFFFFFFF if we're on an odd interval, or 0 if an even interval
return (x ^ s) & 0xFFFF;
}
static SkBitmapProcState::FixedTileProc choose_tile_proc(unsigned m) {
if (SkShader::kClamp_TileMode == m) {
return fixed_clamp;
}
if (SkShader::kRepeat_TileMode == m) {
return fixed_repeat;
}
SkASSERT(SkShader::kMirror_TileMode == m);
return fixed_mirror;
}
static inline U16CPU int_clamp(int x, int n) {
if (x >= n) {
x = n - 1;
}
if (x < 0) {
x = 0;
}
return x;
}
static inline U16CPU int_repeat(int x, int n) {
return sk_int_mod(x, n);
}
static inline U16CPU int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
#if 0
static void test_int_tileprocs() {
for (int i = -8; i <= 8; i++) {
SkDebugf(" int_mirror(%2d, 3) = %d\n", i, int_mirror(i, 3));
}
}
#endif
static SkBitmapProcState::IntTileProc choose_int_tile_proc(unsigned tm) {
if (SkShader::kClamp_TileMode == tm)
return int_clamp;
if (SkShader::kRepeat_TileMode == tm)
return int_repeat;
SkASSERT(SkShader::kMirror_TileMode == tm);
return int_mirror;
}
//////////////////////////////////////////////////////////////////////////////
void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
int i;
for (i = (count >> 2); i > 0; --i) {
*dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += dx+dx;
*dst++ = pack_two_shorts(fx >> 16, (fx + dx) >> 16);
fx += dx+dx;
}
count &= 3;
uint16_t* xx = (uint16_t*)dst;
for (i = count; i > 0; --i) {
*xx++ = SkToU16(fx >> 16); fx += dx;
}
}
void decal_filter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
if (count & 1) {
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
while ((count -= 2) >= 0) {
SkASSERT((fx >> (16 + 14)) == 0);
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
*dst++ = (fx >> 12 << 14) | ((fx >> 16) + 1);
fx += dx;
}
}
///////////////////////////////////////////////////////////////////////////////
// stores the same as SCALE, but is cheaper to compute. Also since there is no
// scale, we don't need/have a FILTER version
static void fill_sequential(uint16_t xptr[], int start, int count) {
#if 1
if (reinterpret_cast<intptr_t>(xptr) & 0x2) {
*xptr++ = start++;
count -= 1;
}
if (count > 3) {
uint32_t* xxptr = reinterpret_cast<uint32_t*>(xptr);
uint32_t pattern0 = PACK_TWO_SHORTS(start + 0, start + 1);
uint32_t pattern1 = PACK_TWO_SHORTS(start + 2, start + 3);
start += count & ~3;
int qcount = count >> 2;
do {
*xxptr++ = pattern0;
pattern0 += 0x40004;
*xxptr++ = pattern1;
pattern1 += 0x40004;
} while (--qcount != 0);
xptr = reinterpret_cast<uint16_t*>(xxptr);
count &= 3;
}
while (--count >= 0) {
*xptr++ = start++;
}
#else
for (int i = 0; i < count; i++) {
*xptr++ = start++;
}
#endif
}
static int nofilter_trans_preamble(const SkBitmapProcState& s, uint32_t** xy,
int x, int y) {
const SkBitmapProcStateAutoMapper mapper(s, x, y);
**xy = s.fIntTileProcY(mapper.intY(), s.fPixmap.height());
*xy += 1; // bump the ptr
// return our starting X position
return mapper.intX();
}
static void clampx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int n;
// fill before 0 as needed
if (xpos < 0) {
n = -xpos;
if (n > count) {
n = count;
}
memset(xptr, 0, n * sizeof(uint16_t));
count -= n;
if (0 == count) {
return;
}
xptr += n;
xpos = 0;
}
// fill in 0..width-1 if needed
if (xpos < width) {
n = width - xpos;
if (n > count) {
n = count;
}
fill_sequential(xptr, xpos, n);
count -= n;
if (0 == count) {
return;
}
xptr += n;
}
// fill the remaining with the max value
sk_memset16(xptr, width - 1, count);
}
static void repeatx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
int start = sk_int_mod(xpos, width);
int n = width - start;
if (n > count) {
n = count;
}
fill_sequential(xptr, start, n);
xptr += n;
count -= n;
while (count >= width) {
fill_sequential(xptr, 0, width);
xptr += width;
count -= width;
}
if (count > 0) {
fill_sequential(xptr, 0, count);
}
}
static void fill_backwards(uint16_t xptr[], int pos, int count) {
for (int i = 0; i < count; i++) {
SkASSERT(pos >= 0);
xptr[i] = pos--;
}
}
static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
uint32_t xy[], int count, int x, int y) {
SkASSERT((s.fInvType & ~SkMatrix::kTranslate_Mask) == 0);
int xpos = nofilter_trans_preamble(s, &xy, x, y);
const int width = s.fPixmap.width();
if (1 == width) {
// all of the following X values must be 0
memset(xy, 0, count * sizeof(uint16_t));
return;
}
uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
// need to know our start, and our initial phase (forward or backward)
bool forward;
int n;
int start = sk_int_mod(xpos, 2 * width);
if (start >= width) {
start = width + ~(start - width);
forward = false;
n = start + 1; // [start .. 0]
} else {
forward = true;
n = width - start; // [start .. width)
}
if (n > count) {
n = count;
}
if (forward) {
fill_sequential(xptr, start, n);
} else {
fill_backwards(xptr, start, n);
}
forward = !forward;
xptr += n;
count -= n;
while (count >= width) {
if (forward) {
fill_sequential(xptr, 0, width);
} else {
fill_backwards(xptr, width - 1, width);
}
forward = !forward;
xptr += width;
count -= width;
}
if (count > 0) {
if (forward) {
fill_sequential(xptr, 0, count);
} else {
fill_backwards(xptr, width - 1, count);
}
}
}
///////////////////////////////////////////////////////////////////////////////
SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool trivial_matrix) {
SkASSERT((fInvType & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)) == 0);
// test_int_tileprocs();
// check for our special case when there is no scale/affine/perspective
if (trivial_matrix && kNone_SkFilterQuality == fFilterQuality) {
fIntTileProcY = choose_int_tile_proc(fTileModeY);
switch (fTileModeX) {
case SkShader::kClamp_TileMode:
return clampx_nofilter_trans;
case SkShader::kRepeat_TileMode:
return repeatx_nofilter_trans;
case SkShader::kMirror_TileMode:
return mirrorx_nofilter_trans;
case SkShader::kDecal_TileMode:
SkASSERT(false); // should never get here, handled by stages
return clampx_nofilter_trans;
}
}
int index = 0;
if (fFilterQuality != kNone_SkFilterQuality) {
index = 1;
}
if (SkShader::kClamp_TileMode == fTileModeX && SkShader::kClamp_TileMode == fTileModeY) {
// clamp gets special version of filterOne
fFilterOneX = SK_Fixed1;
fFilterOneY = SK_Fixed1;
return SK_ARM_NEON_WRAP(ClampX_ClampY_Procs)[index];
}
// all remaining procs use this form for filterOne
fFilterOneX = SK_Fixed1 / fPixmap.width();
fFilterOneY = SK_Fixed1 / fPixmap.height();
if (SkShader::kRepeat_TileMode == fTileModeX && SkShader::kRepeat_TileMode == fTileModeY) {
return SK_ARM_NEON_WRAP(RepeatX_RepeatY_Procs)[index];
}
fTileProcX = choose_tile_proc(fTileModeX);
fTileProcY = choose_tile_proc(fTileModeY);
return GeneralXY_Procs[index];
}