/*
* Mesa 3-D graphics library
*
* Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keithw@vmware.com>
*/
#include <stdio.h>
#include "main/glheader.h"
#include "main/bufferobj.h"
#include "main/condrender.h"
#include "main/context.h"
#include "main/imports.h"
#include "main/mtypes.h"
#include "main/macros.h"
#include "main/enums.h"
#include "util/half_float.h"
#include "t_context.h"
#include "tnl.h"
static GLubyte *get_space(struct gl_context *ctx, GLuint bytes)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
GLubyte *space = malloc(bytes);
tnl->block[tnl->nr_blocks++] = space;
return space;
}
static void free_space(struct gl_context *ctx)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
GLuint i;
for (i = 0; i < tnl->nr_blocks; i++)
free(tnl->block[i]);
tnl->nr_blocks = 0;
}
/* Convert the incoming array to GLfloats. Understands the
* array->Normalized flag and selects the correct conversion method.
*/
#define CONVERT( TYPE, MACRO ) do { \
GLuint i, j; \
if (input->Normalized) { \
for (i = 0; i < count; i++) { \
const TYPE *in = (TYPE *)ptr; \
for (j = 0; j < sz; j++) { \
*fptr++ = MACRO(*in); \
in++; \
} \
ptr += input->StrideB; \
} \
} else { \
for (i = 0; i < count; i++) { \
const TYPE *in = (TYPE *)ptr; \
for (j = 0; j < sz; j++) { \
*fptr++ = (GLfloat)(*in); \
in++; \
} \
ptr += input->StrideB; \
} \
} \
} while (0)
/**
* Convert array of BGRA/GLubyte[4] values to RGBA/float[4]
* \param ptr input/ubyte array
* \param fptr output/float array
*/
static void
convert_bgra_to_float(const struct gl_vertex_array *input,
const GLubyte *ptr, GLfloat *fptr,
GLuint count )
{
GLuint i;
assert(input->Normalized);
assert(input->Size == 4);
for (i = 0; i < count; i++) {
const GLubyte *in = (GLubyte *) ptr; /* in is in BGRA order */
*fptr++ = UBYTE_TO_FLOAT(in[2]); /* red */
*fptr++ = UBYTE_TO_FLOAT(in[1]); /* green */
*fptr++ = UBYTE_TO_FLOAT(in[0]); /* blue */
*fptr++ = UBYTE_TO_FLOAT(in[3]); /* alpha */
ptr += input->StrideB;
}
}
static void
convert_half_to_float(const struct gl_vertex_array *input,
const GLubyte *ptr, GLfloat *fptr,
GLuint count, GLuint sz)
{
GLuint i, j;
for (i = 0; i < count; i++) {
GLhalfARB *in = (GLhalfARB *)ptr;
for (j = 0; j < sz; j++) {
*fptr++ = _mesa_half_to_float(in[j]);
}
ptr += input->StrideB;
}
}
/**
* \brief Convert fixed-point to floating-point.
*
* In OpenGL, a fixed-point number is a "signed 2's complement 16.16 scaled
* integer" (Table 2.2 of the OpenGL ES 2.0 spec).
*
* If the buffer has the \c normalized flag set, the formula
* \code normalize(x) := (2*x + 1) / (2^16 - 1) \endcode
* is used to map the fixed-point numbers into the range [-1, 1].
*/
static void
convert_fixed_to_float(const struct gl_vertex_array *input,
const GLubyte *ptr, GLfloat *fptr,
GLuint count)
{
GLuint i;
GLint j;
const GLint size = input->Size;
if (input->Normalized) {
for (i = 0; i < count; ++i) {
const GLfixed *in = (GLfixed *) ptr;
for (j = 0; j < size; ++j) {
*fptr++ = (GLfloat) (2 * in[j] + 1) / (GLfloat) ((1 << 16) - 1);
}
ptr += input->StrideB;
}
} else {
for (i = 0; i < count; ++i) {
const GLfixed *in = (GLfixed *) ptr;
for (j = 0; j < size; ++j) {
*fptr++ = in[j] / (GLfloat) (1 << 16);
}
ptr += input->StrideB;
}
}
}
/* Adjust pointer to point at first requested element, convert to
* floating point, populate VB->AttribPtr[].
*/
static void _tnl_import_array( struct gl_context *ctx,
GLuint attrib,
GLuint count,
const struct gl_vertex_array *input,
const GLubyte *ptr )
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
GLuint stride = input->StrideB;
if (input->Type != GL_FLOAT) {
const GLuint sz = input->Size;
GLubyte *buf = get_space(ctx, count * sz * sizeof(GLfloat));
GLfloat *fptr = (GLfloat *)buf;
switch (input->Type) {
case GL_BYTE:
CONVERT(GLbyte, BYTE_TO_FLOAT);
break;
case GL_UNSIGNED_BYTE:
if (input->Format == GL_BGRA) {
/* See GL_EXT_vertex_array_bgra */
convert_bgra_to_float(input, ptr, fptr, count);
}
else {
CONVERT(GLubyte, UBYTE_TO_FLOAT);
}
break;
case GL_SHORT:
CONVERT(GLshort, SHORT_TO_FLOAT);
break;
case GL_UNSIGNED_SHORT:
CONVERT(GLushort, USHORT_TO_FLOAT);
break;
case GL_INT:
CONVERT(GLint, INT_TO_FLOAT);
break;
case GL_UNSIGNED_INT:
CONVERT(GLuint, UINT_TO_FLOAT);
break;
case GL_DOUBLE:
CONVERT(GLdouble, (GLfloat));
break;
case GL_HALF_FLOAT:
convert_half_to_float(input, ptr, fptr, count, sz);
break;
case GL_FIXED:
convert_fixed_to_float(input, ptr, fptr, count);
break;
default:
assert(0);
break;
}
ptr = buf;
stride = sz * sizeof(GLfloat);
}
VB->AttribPtr[attrib] = &tnl->tmp_inputs[attrib];
VB->AttribPtr[attrib]->data = (GLfloat (*)[4])ptr;
VB->AttribPtr[attrib]->start = (GLfloat *)ptr;
VB->AttribPtr[attrib]->count = count;
VB->AttribPtr[attrib]->stride = stride;
VB->AttribPtr[attrib]->size = input->Size;
/* This should die, but so should the whole GLvector4f concept:
*/
VB->AttribPtr[attrib]->flags = (((1<<input->Size)-1) |
VEC_NOT_WRITEABLE |
(stride == 4*sizeof(GLfloat) ? 0 : VEC_BAD_STRIDE));
VB->AttribPtr[attrib]->storage = NULL;
}
#define CLIPVERTS ((6 + MAX_CLIP_PLANES) * 2)
static GLboolean *_tnl_import_edgeflag( struct gl_context *ctx,
const GLvector4f *input,
GLuint count)
{
const GLubyte *ptr = (const GLubyte *)input->data;
const GLuint stride = input->stride;
GLboolean *space = (GLboolean *)get_space(ctx, count + CLIPVERTS);
GLboolean *bptr = space;
GLuint i;
for (i = 0; i < count; i++) {
*bptr++ = ((GLfloat *)ptr)[0] == 1.0F;
ptr += stride;
}
return space;
}
static void bind_inputs( struct gl_context *ctx,
const struct gl_vertex_array *inputs[],
GLint count,
struct gl_buffer_object **bo,
GLuint *nr_bo )
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
GLuint i;
/* Map all the VBOs
*/
for (i = 0; i < VERT_ATTRIB_MAX; i++) {
const void *ptr;
if (inputs[i]->BufferObj->Name) {
if (!inputs[i]->BufferObj->Mappings[MAP_INTERNAL].Pointer) {
bo[*nr_bo] = inputs[i]->BufferObj;
(*nr_bo)++;
ctx->Driver.MapBufferRange(ctx, 0, inputs[i]->BufferObj->Size,
GL_MAP_READ_BIT,
inputs[i]->BufferObj,
MAP_INTERNAL);
assert(inputs[i]->BufferObj->Mappings[MAP_INTERNAL].Pointer);
}
ptr = ADD_POINTERS(inputs[i]->BufferObj->Mappings[MAP_INTERNAL].Pointer,
inputs[i]->Ptr);
}
else
ptr = inputs[i]->Ptr;
/* Just make sure the array is floating point, otherwise convert to
* temporary storage.
*
* XXX: remove the GLvector4f type at some stage and just use
* client arrays.
*/
_tnl_import_array(ctx, i, count, inputs[i], ptr);
}
/* We process only the vertices between min & max index:
*/
VB->Count = count;
/* These should perhaps be part of _TNL_ATTRIB_* */
VB->BackfaceColorPtr = NULL;
VB->BackfaceIndexPtr = NULL;
VB->BackfaceSecondaryColorPtr = NULL;
/* Clipping and drawing code still requires this to be a packed
* array of ubytes which can be written into. TODO: Fix and
* remove.
*/
if (ctx->Polygon.FrontMode != GL_FILL ||
ctx->Polygon.BackMode != GL_FILL)
{
VB->EdgeFlag = _tnl_import_edgeflag( ctx,
VB->AttribPtr[_TNL_ATTRIB_EDGEFLAG],
VB->Count );
}
else {
/* the data previously pointed to by EdgeFlag may have been freed */
VB->EdgeFlag = NULL;
}
}
/* Translate indices to GLuints and store in VB->Elts.
*/
static void bind_indices( struct gl_context *ctx,
const struct _mesa_index_buffer *ib,
struct gl_buffer_object **bo,
GLuint *nr_bo)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
GLuint i;
const void *ptr;
if (!ib) {
VB->Elts = NULL;
return;
}
if (_mesa_is_bufferobj(ib->obj) &&
!_mesa_bufferobj_mapped(ib->obj, MAP_INTERNAL)) {
/* if the buffer object isn't mapped yet, map it now */
bo[*nr_bo] = ib->obj;
(*nr_bo)++;
ptr = ctx->Driver.MapBufferRange(ctx, (GLsizeiptr) ib->ptr,
ib->count * vbo_sizeof_ib_type(ib->type),
GL_MAP_READ_BIT, ib->obj,
MAP_INTERNAL);
assert(ib->obj->Mappings[MAP_INTERNAL].Pointer);
} else {
/* user-space elements, or buffer already mapped */
ptr = ADD_POINTERS(ib->obj->Mappings[MAP_INTERNAL].Pointer, ib->ptr);
}
if (ib->type == GL_UNSIGNED_INT && VB->Primitive[0].basevertex == 0) {
VB->Elts = (GLuint *) ptr;
}
else {
GLuint *elts = (GLuint *)get_space(ctx, ib->count * sizeof(GLuint));
VB->Elts = elts;
if (ib->type == GL_UNSIGNED_INT) {
const GLuint *in = (GLuint *)ptr;
for (i = 0; i < ib->count; i++)
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
}
else if (ib->type == GL_UNSIGNED_SHORT) {
const GLushort *in = (GLushort *)ptr;
for (i = 0; i < ib->count; i++)
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
}
else {
const GLubyte *in = (GLubyte *)ptr;
for (i = 0; i < ib->count; i++)
*elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
}
}
}
static void bind_prims( struct gl_context *ctx,
const struct _mesa_prim *prim,
GLuint nr_prims )
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
struct vertex_buffer *VB = &tnl->vb;
VB->Primitive = prim;
VB->PrimitiveCount = nr_prims;
}
static void unmap_vbos( struct gl_context *ctx,
struct gl_buffer_object **bo,
GLuint nr_bo )
{
GLuint i;
for (i = 0; i < nr_bo; i++) {
ctx->Driver.UnmapBuffer(ctx, bo[i], MAP_INTERNAL);
}
}
/* This is the main entrypoint into the slimmed-down software tnl
* module. In a regular swtnl driver, this can be plugged straight
* into the vbo->Driver.DrawPrims() callback.
*/
void _tnl_draw_prims(struct gl_context *ctx,
const struct _mesa_prim *prim,
GLuint nr_prims,
const struct _mesa_index_buffer *ib,
GLboolean index_bounds_valid,
GLuint min_index,
GLuint max_index,
struct gl_transform_feedback_object *tfb_vertcount,
unsigned stream,
struct gl_buffer_object *indirect)
{
TNLcontext *tnl = TNL_CONTEXT(ctx);
const struct gl_vertex_array **arrays = ctx->Array._DrawArrays;
const GLuint TEST_SPLIT = 0;
const GLint max = TEST_SPLIT ? 8 : tnl->vb.Size - MAX_CLIPPED_VERTICES;
GLint max_basevertex = prim->basevertex;
GLuint i;
if (!index_bounds_valid)
vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims);
/* Mesa core state should have been validated already */
assert(ctx->NewState == 0x0);
if (!_mesa_check_conditional_render(ctx))
return; /* don't draw */
for (i = 1; i < nr_prims; i++)
max_basevertex = MAX2(max_basevertex, prim[i].basevertex);
if (0)
{
printf("%s %d..%d\n", __func__, min_index, max_index);
for (i = 0; i < nr_prims; i++)
printf("prim %d: %s start %d count %d\n", i,
_mesa_enum_to_string(prim[i].mode),
prim[i].start,
prim[i].count);
}
if (min_index) {
/* We always translate away calls with min_index != 0.
*/
vbo_rebase_prims( ctx, arrays, prim, nr_prims, ib,
min_index, max_index,
_tnl_draw_prims );
return;
}
else if ((GLint)max_index + max_basevertex > max) {
/* The software TNL pipeline has a fixed amount of storage for
* vertices and it is necessary to split incoming drawing commands
* if they exceed that limit.
*/
struct split_limits limits;
limits.max_verts = max;
limits.max_vb_size = ~0;
limits.max_indices = ~0;
/* This will split the buffers one way or another and
* recursively call back into this function.
*/
vbo_split_prims( ctx, arrays, prim, nr_prims, ib,
0, max_index + prim->basevertex,
_tnl_draw_prims,
&limits );
}
else {
/* May need to map a vertex buffer object for every attribute plus
* one for the index buffer.
*/
struct gl_buffer_object *bo[VERT_ATTRIB_MAX + 1];
GLuint nr_bo = 0;
GLuint inst;
for (i = 0; i < nr_prims;) {
GLuint this_nr_prims;
/* Our SW TNL pipeline doesn't handle basevertex yet, so bind_indices
* will rebase the elements to the basevertex, and we'll only
* emit strings of prims with the same basevertex in one draw call.
*/
for (this_nr_prims = 1; i + this_nr_prims < nr_prims;
this_nr_prims++) {
if (prim[i].basevertex != prim[i + this_nr_prims].basevertex)
break;
}
assert(prim[i].num_instances > 0);
/* Binding inputs may imply mapping some vertex buffer objects.
* They will need to be unmapped below.
*/
for (inst = 0; inst < prim[i].num_instances; inst++) {
bind_prims(ctx, &prim[i], this_nr_prims);
bind_inputs(ctx, arrays, max_index + prim[i].basevertex + 1,
bo, &nr_bo);
bind_indices(ctx, ib, bo, &nr_bo);
tnl->CurInstance = inst;
TNL_CONTEXT(ctx)->Driver.RunPipeline(ctx);
unmap_vbos(ctx, bo, nr_bo);
free_space(ctx);
}
i += this_nr_prims;
}
}
}