/*
* Copyright (C) 2010 Brian Paul All Rights Reserved.
* Copyright (C) 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Author: Kristian Høgsberg <krh@bitplanet.net>
*/
#include "glheader.h"
#include "context.h"
#include "blend.h"
#include "debug_output.h"
#include "enable.h"
#include "enums.h"
#include "errors.h"
#include "extensions.h"
#include "get.h"
#include "macros.h"
#include "mtypes.h"
#include "state.h"
#include "texcompress.h"
#include "texstate.h"
#include "framebuffer.h"
#include "samplerobj.h"
#include "stencil.h"
/* This is a table driven implemetation of the glGet*v() functions.
* The basic idea is that most getters just look up an int somewhere
* in struct gl_context and then convert it to a bool or float according to
* which of glGetIntegerv() glGetBooleanv() etc is being called.
* Instead of generating code to do this, we can just record the enum
* value and the offset into struct gl_context in an array of structs. Then
* in glGet*(), we lookup the struct for the enum in question, and use
* the offset to get the int we need.
*
* Sometimes we need to look up a float, a boolean, a bit in a
* bitfield, a matrix or other types instead, so we need to track the
* type of the value in struct gl_context. And sometimes the value isn't in
* struct gl_context but in the drawbuffer, the array object, current texture
* unit, or maybe it's a computed value. So we need to also track
* where or how to find the value. Finally, we sometimes need to
* check that one of a number of extensions are enabled, the GL
* version or flush or call _mesa_update_state(). This is done by
* attaching optional extra information to the value description
* struct, it's sort of like an array of opcodes that describe extra
* checks or actions.
*
* Putting all this together we end up with struct value_desc below,
* and with a couple of macros to help, the table of struct value_desc
* is about as concise as the specification in the old python script.
*/
#define FLOAT_TO_BOOLEAN(X) ( (X) ? GL_TRUE : GL_FALSE )
#define FLOAT_TO_FIXED(F) ( ((F) * 65536.0f > INT_MAX) ? INT_MAX : \
((F) * 65536.0f < INT_MIN) ? INT_MIN : \
(GLint) ((F) * 65536.0f) )
#define INT_TO_BOOLEAN(I) ( (I) ? GL_TRUE : GL_FALSE )
#define INT_TO_FIXED(I) ( ((I) > SHRT_MAX) ? INT_MAX : \
((I) < SHRT_MIN) ? INT_MIN : \
(GLint) ((I) * 65536) )
#define INT64_TO_BOOLEAN(I) ( (I) ? GL_TRUE : GL_FALSE )
#define INT64_TO_INT(I) ( (GLint)((I > INT_MAX) ? INT_MAX : ((I < INT_MIN) ? INT_MIN : (I))) )
#define BOOLEAN_TO_INT(B) ( (GLint) (B) )
#define BOOLEAN_TO_INT64(B) ( (GLint64) (B) )
#define BOOLEAN_TO_FLOAT(B) ( (B) ? 1.0F : 0.0F )
#define BOOLEAN_TO_FIXED(B) ( (GLint) ((B) ? 1 : 0) << 16 )
#define ENUM_TO_INT64(E) ( (GLint64) (E) )
#define ENUM_TO_FIXED(E) (E)
enum value_type {
TYPE_INVALID,
TYPE_INT,
TYPE_INT_2,
TYPE_INT_3,
TYPE_INT_4,
TYPE_INT_N,
TYPE_UINT,
TYPE_UINT_2,
TYPE_UINT_3,
TYPE_UINT_4,
TYPE_INT64,
TYPE_ENUM,
TYPE_ENUM_2,
TYPE_BOOLEAN,
TYPE_BIT_0,
TYPE_BIT_1,
TYPE_BIT_2,
TYPE_BIT_3,
TYPE_BIT_4,
TYPE_BIT_5,
TYPE_BIT_6,
TYPE_BIT_7,
TYPE_FLOAT,
TYPE_FLOAT_2,
TYPE_FLOAT_3,
TYPE_FLOAT_4,
TYPE_FLOAT_8,
TYPE_FLOATN,
TYPE_FLOATN_2,
TYPE_FLOATN_3,
TYPE_FLOATN_4,
TYPE_DOUBLEN,
TYPE_DOUBLEN_2,
TYPE_MATRIX,
TYPE_MATRIX_T,
TYPE_CONST
};
enum value_location {
LOC_BUFFER,
LOC_CONTEXT,
LOC_ARRAY,
LOC_TEXUNIT,
LOC_CUSTOM
};
enum value_extra {
EXTRA_END = 0x8000,
EXTRA_VERSION_30,
EXTRA_VERSION_31,
EXTRA_VERSION_32,
EXTRA_VERSION_40,
EXTRA_API_GL,
EXTRA_API_GL_CORE,
EXTRA_API_ES2,
EXTRA_API_ES3,
EXTRA_API_ES31,
EXTRA_API_ES32,
EXTRA_NEW_BUFFERS,
EXTRA_NEW_FRAG_CLAMP,
EXTRA_VALID_DRAW_BUFFER,
EXTRA_VALID_TEXTURE_UNIT,
EXTRA_VALID_CLIP_DISTANCE,
EXTRA_FLUSH_CURRENT,
EXTRA_GLSL_130,
EXTRA_EXT_UBO_GS,
EXTRA_EXT_ATOMICS_GS,
EXTRA_EXT_SHADER_IMAGE_GS,
EXTRA_EXT_ATOMICS_TESS,
EXTRA_EXT_SHADER_IMAGE_TESS,
EXTRA_EXT_SSBO_GS,
EXTRA_EXT_FB_NO_ATTACH_GS,
EXTRA_EXT_ES_GS,
};
#define NO_EXTRA NULL
#define NO_OFFSET 0
struct value_desc {
GLenum pname;
GLubyte location; /**< enum value_location */
GLubyte type; /**< enum value_type */
int offset;
const int *extra;
};
union value {
GLfloat value_float;
GLfloat value_float_4[4];
GLdouble value_double_2[2];
GLmatrix *value_matrix;
GLint value_int;
GLint value_int_4[4];
GLint64 value_int64;
GLenum value_enum;
/* Sigh, see GL_COMPRESSED_TEXTURE_FORMATS_ARB handling */
struct {
GLint n, ints[100];
} value_int_n;
GLboolean value_bool;
};
#define BUFFER_FIELD(field, type) \
LOC_BUFFER, type, offsetof(struct gl_framebuffer, field)
#define CONTEXT_FIELD(field, type) \
LOC_CONTEXT, type, offsetof(struct gl_context, field)
#define ARRAY_FIELD(field, type) \
LOC_ARRAY, type, offsetof(struct gl_vertex_array_object, field)
#undef CONST /* already defined through windows.h */
#define CONST(value) \
LOC_CONTEXT, TYPE_CONST, value
#define BUFFER_INT(field) BUFFER_FIELD(field, TYPE_INT)
#define BUFFER_ENUM(field) BUFFER_FIELD(field, TYPE_ENUM)
#define BUFFER_BOOL(field) BUFFER_FIELD(field, TYPE_BOOLEAN)
#define CONTEXT_INT(field) CONTEXT_FIELD(field, TYPE_INT)
#define CONTEXT_INT2(field) CONTEXT_FIELD(field, TYPE_INT_2)
#define CONTEXT_INT64(field) CONTEXT_FIELD(field, TYPE_INT64)
#define CONTEXT_UINT(field) CONTEXT_FIELD(field, TYPE_UINT)
#define CONTEXT_ENUM(field) CONTEXT_FIELD(field, TYPE_ENUM)
#define CONTEXT_ENUM2(field) CONTEXT_FIELD(field, TYPE_ENUM_2)
#define CONTEXT_BOOL(field) CONTEXT_FIELD(field, TYPE_BOOLEAN)
#define CONTEXT_BIT0(field) CONTEXT_FIELD(field, TYPE_BIT_0)
#define CONTEXT_BIT1(field) CONTEXT_FIELD(field, TYPE_BIT_1)
#define CONTEXT_BIT2(field) CONTEXT_FIELD(field, TYPE_BIT_2)
#define CONTEXT_BIT3(field) CONTEXT_FIELD(field, TYPE_BIT_3)
#define CONTEXT_BIT4(field) CONTEXT_FIELD(field, TYPE_BIT_4)
#define CONTEXT_BIT5(field) CONTEXT_FIELD(field, TYPE_BIT_5)
#define CONTEXT_BIT6(field) CONTEXT_FIELD(field, TYPE_BIT_6)
#define CONTEXT_BIT7(field) CONTEXT_FIELD(field, TYPE_BIT_7)
#define CONTEXT_FLOAT(field) CONTEXT_FIELD(field, TYPE_FLOAT)
#define CONTEXT_FLOAT2(field) CONTEXT_FIELD(field, TYPE_FLOAT_2)
#define CONTEXT_FLOAT3(field) CONTEXT_FIELD(field, TYPE_FLOAT_3)
#define CONTEXT_FLOAT4(field) CONTEXT_FIELD(field, TYPE_FLOAT_4)
#define CONTEXT_FLOAT8(field) CONTEXT_FIELD(field, TYPE_FLOAT_8)
#define CONTEXT_MATRIX(field) CONTEXT_FIELD(field, TYPE_MATRIX)
#define CONTEXT_MATRIX_T(field) CONTEXT_FIELD(field, TYPE_MATRIX_T)
#define ARRAY_INT(field) ARRAY_FIELD(field, TYPE_INT)
#define ARRAY_ENUM(field) ARRAY_FIELD(field, TYPE_ENUM)
#define ARRAY_BOOL(field) ARRAY_FIELD(field, TYPE_BOOLEAN)
#define EXT(f) \
offsetof(struct gl_extensions, f)
#define EXTRA_EXT(e) \
static const int extra_##e[] = { \
EXT(e), EXTRA_END \
}
#define EXTRA_EXT2(e1, e2) \
static const int extra_##e1##_##e2[] = { \
EXT(e1), EXT(e2), EXTRA_END \
}
/* The 'extra' mechanism is a way to specify extra checks (such as
* extensions or specific gl versions) or actions (flush current, new
* buffers) that we need to do before looking up an enum. We need to
* declare them all up front so we can refer to them in the value_desc
* structs below.
*
* Each EXTRA_ will be executed. For EXTRA_* enums of extensions and API
* versions, listing multiple ones in an array means an error will be thrown
* only if none of them are available. If you need to check for "AND"
* behavior, you would need to make a custom EXTRA_ enum.
*/
static const int extra_new_buffers[] = {
EXTRA_NEW_BUFFERS,
EXTRA_END
};
static const int extra_new_frag_clamp[] = {
EXTRA_NEW_FRAG_CLAMP,
EXTRA_END
};
static const int extra_valid_draw_buffer[] = {
EXTRA_VALID_DRAW_BUFFER,
EXTRA_END
};
static const int extra_valid_texture_unit[] = {
EXTRA_VALID_TEXTURE_UNIT,
EXTRA_END
};
static const int extra_valid_clip_distance[] = {
EXTRA_VALID_CLIP_DISTANCE,
EXTRA_END
};
static const int extra_flush_current_valid_texture_unit[] = {
EXTRA_FLUSH_CURRENT,
EXTRA_VALID_TEXTURE_UNIT,
EXTRA_END
};
static const int extra_flush_current[] = {
EXTRA_FLUSH_CURRENT,
EXTRA_END
};
static const int extra_EXT_texture_integer_and_new_buffers[] = {
EXT(EXT_texture_integer),
EXTRA_NEW_BUFFERS,
EXTRA_END
};
static const int extra_GLSL_130_es3[] = {
EXTRA_GLSL_130,
EXTRA_API_ES3,
EXTRA_END
};
static const int extra_texture_buffer_object[] = {
EXTRA_API_GL_CORE,
EXTRA_VERSION_31,
EXT(ARB_texture_buffer_object),
EXTRA_END
};
static const int extra_ARB_transform_feedback2_api_es3[] = {
EXT(ARB_transform_feedback2),
EXTRA_API_ES3,
EXTRA_END
};
static const int extra_ARB_uniform_buffer_object_and_geometry_shader[] = {
EXTRA_EXT_UBO_GS,
EXTRA_END
};
static const int extra_ARB_ES2_compatibility_api_es2[] = {
EXT(ARB_ES2_compatibility),
EXTRA_API_ES2,
EXTRA_END
};
static const int extra_ARB_ES3_compatibility_api_es3[] = {
EXT(ARB_ES3_compatibility),
EXTRA_API_ES3,
EXTRA_END
};
static const int extra_EXT_framebuffer_sRGB_and_new_buffers[] = {
EXT(EXT_framebuffer_sRGB),
EXTRA_NEW_BUFFERS,
EXTRA_END
};
static const int extra_EXT_packed_float[] = {
EXT(EXT_packed_float),
EXTRA_NEW_BUFFERS,
EXTRA_END
};
static const int extra_EXT_texture_array_es3[] = {
EXT(EXT_texture_array),
EXTRA_API_ES3,
EXTRA_END
};
static const int extra_ARB_shader_atomic_counters_and_geometry_shader[] = {
EXTRA_EXT_ATOMICS_GS,
EXTRA_END
};
static const int extra_ARB_shader_image_load_store_and_geometry_shader[] = {
EXTRA_EXT_SHADER_IMAGE_GS,
EXTRA_END
};
static const int extra_ARB_shader_atomic_counters_and_tessellation[] = {
EXTRA_EXT_ATOMICS_TESS,
EXTRA_END
};
static const int extra_ARB_shader_image_load_store_and_tessellation[] = {
EXTRA_EXT_SHADER_IMAGE_TESS,
EXTRA_END
};
/* HACK: remove when ARB_compute_shader is actually supported */
static const int extra_ARB_compute_shader_es31[] = {
EXT(ARB_compute_shader),
EXTRA_API_ES31,
EXTRA_END
};
static const int extra_ARB_shader_storage_buffer_object_es31[] = {
EXT(ARB_shader_storage_buffer_object),
EXTRA_API_ES31,
EXTRA_END
};
static const int extra_ARB_shader_storage_buffer_object_and_geometry_shader[] = {
EXTRA_EXT_SSBO_GS,
EXTRA_END
};
static const int extra_ARB_shader_image_load_store_shader_storage_buffer_object_es31[] = {
EXT(ARB_shader_image_load_store),
EXT(ARB_shader_storage_buffer_object),
EXTRA_API_ES31,
EXTRA_END
};
static const int extra_ARB_framebuffer_no_attachments_and_geometry_shader[] = {
EXTRA_EXT_FB_NO_ATTACH_GS,
EXTRA_END
};
static const int extra_ARB_viewport_array_or_oes_geometry_shader[] = {
EXT(ARB_viewport_array),
EXTRA_EXT_ES_GS,
EXTRA_END
};
static const int extra_ARB_viewport_array_or_oes_viewport_array[] = {
EXT(ARB_viewport_array),
EXT(OES_viewport_array),
EXTRA_END
};
static const int extra_ARB_gpu_shader5_or_oes_geometry_shader[] = {
EXT(ARB_gpu_shader5),
EXTRA_EXT_ES_GS,
EXTRA_END
};
static const int extra_ARB_gpu_shader5_or_OES_sample_variables[] = {
EXT(ARB_gpu_shader5),
EXT(OES_sample_variables),
EXTRA_END
};
static const int extra_ES32[] = {
EXT(ARB_ES3_2_compatibility),
EXTRA_API_ES32,
EXTRA_END
};
static const int extra_KHR_robustness_or_GL[] = {
EXT(KHR_robustness),
EXTRA_API_GL,
EXTRA_API_GL_CORE,
EXTRA_END
};
static const int extra_INTEL_conservative_rasterization[] = {
EXT(INTEL_conservative_rasterization),
EXTRA_END
};
EXTRA_EXT(ARB_texture_cube_map);
EXTRA_EXT(EXT_texture_array);
EXTRA_EXT(NV_fog_distance);
EXTRA_EXT(EXT_texture_filter_anisotropic);
EXTRA_EXT(NV_point_sprite);
EXTRA_EXT(NV_texture_rectangle);
EXTRA_EXT(EXT_stencil_two_side);
EXTRA_EXT(EXT_depth_bounds_test);
EXTRA_EXT(ARB_depth_clamp);
EXTRA_EXT(ATI_fragment_shader);
EXTRA_EXT(EXT_provoking_vertex);
EXTRA_EXT(ARB_fragment_shader);
EXTRA_EXT(ARB_fragment_program);
EXTRA_EXT2(ARB_framebuffer_object, EXT_framebuffer_multisample);
EXTRA_EXT(ARB_seamless_cube_map);
EXTRA_EXT(ARB_sync);
EXTRA_EXT(ARB_vertex_shader);
EXTRA_EXT(EXT_transform_feedback);
EXTRA_EXT(ARB_transform_feedback3);
EXTRA_EXT(EXT_pixel_buffer_object);
EXTRA_EXT(ARB_vertex_program);
EXTRA_EXT2(NV_point_sprite, ARB_point_sprite);
EXTRA_EXT2(ARB_vertex_program, ARB_fragment_program);
EXTRA_EXT(ARB_color_buffer_float);
EXTRA_EXT(EXT_framebuffer_sRGB);
EXTRA_EXT(OES_EGL_image_external);
EXTRA_EXT(ARB_blend_func_extended);
EXTRA_EXT(ARB_uniform_buffer_object);
EXTRA_EXT(ARB_timer_query);
EXTRA_EXT2(ARB_texture_cube_map_array, OES_texture_cube_map_array);
EXTRA_EXT(ARB_texture_buffer_range);
EXTRA_EXT(ARB_texture_multisample);
EXTRA_EXT(ARB_texture_gather);
EXTRA_EXT(ARB_shader_atomic_counters);
EXTRA_EXT(ARB_draw_indirect);
EXTRA_EXT(ARB_shader_image_load_store);
EXTRA_EXT(ARB_query_buffer_object);
EXTRA_EXT2(ARB_transform_feedback3, ARB_gpu_shader5);
EXTRA_EXT(INTEL_performance_query);
EXTRA_EXT(ARB_explicit_uniform_location);
EXTRA_EXT(ARB_clip_control);
EXTRA_EXT(EXT_polygon_offset_clamp);
EXTRA_EXT(ARB_framebuffer_no_attachments);
EXTRA_EXT(ARB_tessellation_shader);
EXTRA_EXT(ARB_shader_subroutine);
EXTRA_EXT(ARB_shader_storage_buffer_object);
EXTRA_EXT(ARB_indirect_parameters);
EXTRA_EXT(ATI_meminfo);
EXTRA_EXT(NVX_gpu_memory_info);
EXTRA_EXT(ARB_cull_distance);
EXTRA_EXT(EXT_window_rectangles);
EXTRA_EXT(KHR_blend_equation_advanced_coherent);
EXTRA_EXT(OES_primitive_bounding_box);
EXTRA_EXT(ARB_compute_variable_group_size);
EXTRA_EXT(KHR_robustness);
static const int
extra_ARB_color_buffer_float_or_glcore[] = {
EXT(ARB_color_buffer_float),
EXTRA_API_GL_CORE,
EXTRA_END
};
static const int
extra_NV_primitive_restart[] = {
EXT(NV_primitive_restart),
EXTRA_END
};
static const int extra_version_30[] = { EXTRA_VERSION_30, EXTRA_END };
static const int extra_version_31[] = { EXTRA_VERSION_31, EXTRA_END };
static const int extra_version_32[] = { EXTRA_VERSION_32, EXTRA_END };
static const int extra_gl30_es3[] = {
EXTRA_VERSION_30,
EXTRA_API_ES3,
EXTRA_END,
};
static const int extra_gl32_es3[] = {
EXTRA_VERSION_32,
EXTRA_API_ES3,
EXTRA_END,
};
static const int extra_version_32_OES_geometry_shader[] = {
EXTRA_VERSION_32,
EXTRA_EXT_ES_GS,
EXTRA_END
};
static const int extra_gl40_ARB_sample_shading[] = {
EXTRA_VERSION_40,
EXT(ARB_sample_shading),
EXTRA_END
};
static const int
extra_ARB_vertex_program_api_es2[] = {
EXT(ARB_vertex_program),
EXTRA_API_ES2,
EXTRA_END
};
/* The ReadBuffer get token is valid under either full GL or under
* GLES2 if the NV_read_buffer extension is available. */
static const int
extra_NV_read_buffer_api_gl[] = {
EXTRA_API_ES2,
EXTRA_API_GL,
EXTRA_END
};
static const int extra_core_ARB_color_buffer_float_and_new_buffers[] = {
EXTRA_API_GL_CORE,
EXT(ARB_color_buffer_float),
EXTRA_NEW_BUFFERS,
EXTRA_END
};
static const int extra_EXT_shader_framebuffer_fetch[] = {
EXTRA_API_ES2,
EXTRA_API_ES3,
EXT(MESA_shader_framebuffer_fetch),
EXTRA_END
};
/* This is the big table describing all the enums we accept in
* glGet*v(). The table is partitioned into six parts: enums
* understood by all GL APIs (OpenGL, GLES and GLES2), enums shared
* between OpenGL and GLES, enums exclusive to GLES, etc for the
* remaining combinations. To look up the enums valid in a given API
* we will use a hash table specific to that API. These tables are in
* turn generated at build time and included through get_hash.h.
*/
#include "get_hash.h"
/* All we need now is a way to look up the value struct from the enum.
* The code generated by gcc for the old generated big switch
* statement is a big, balanced, open coded if/else tree, essentially
* an unrolled binary search. It would be natural to sort the new
* enum table and use bsearch(), but we will use a read-only hash
* table instead. bsearch() has a nice guaranteed worst case
* performance, but we're also guaranteed to hit that worst case
* (log2(n) iterations) for about half the enums. Instead, using an
* open addressing hash table, we can find the enum on the first try
* for 80% of the enums, 1 collision for 10% and never more than 5
* collisions for any enum (typical numbers). And the code is very
* simple, even though it feels a little magic. */
/**
* Handle irregular enums
*
* Some values don't conform to the "well-known type at context
* pointer + offset" pattern, so we have this function to catch all
* the corner cases. Typically, it's a computed value or a one-off
* pointer to a custom struct or something.
*
* In this case we can't return a pointer to the value, so we'll have
* to use the temporary variable 'v' declared back in the calling
* glGet*v() function to store the result.
*
* \param ctx the current context
* \param d the struct value_desc that describes the enum
* \param v pointer to the tmp declared in the calling glGet*v() function
*/
static void
find_custom_value(struct gl_context *ctx, const struct value_desc *d, union value *v)
{
struct gl_buffer_object **buffer_obj;
struct gl_array_attributes *array;
GLuint unit, *p;
switch (d->pname) {
case GL_MAJOR_VERSION:
v->value_int = ctx->Version / 10;
break;
case GL_MINOR_VERSION:
v->value_int = ctx->Version % 10;
break;
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
case GL_TEXTURE_3D:
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_RECTANGLE_NV:
case GL_TEXTURE_EXTERNAL_OES:
v->value_bool = _mesa_IsEnabled(d->pname);
break;
case GL_LINE_STIPPLE_PATTERN:
/* This is the only GLushort, special case it here by promoting
* to an int rather than introducing a new type. */
v->value_int = ctx->Line.StipplePattern;
break;
case GL_CURRENT_RASTER_TEXTURE_COORDS:
unit = ctx->Texture.CurrentUnit;
v->value_float_4[0] = ctx->Current.RasterTexCoords[unit][0];
v->value_float_4[1] = ctx->Current.RasterTexCoords[unit][1];
v->value_float_4[2] = ctx->Current.RasterTexCoords[unit][2];
v->value_float_4[3] = ctx->Current.RasterTexCoords[unit][3];
break;
case GL_CURRENT_TEXTURE_COORDS:
unit = ctx->Texture.CurrentUnit;
v->value_float_4[0] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][0];
v->value_float_4[1] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][1];
v->value_float_4[2] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][2];
v->value_float_4[3] = ctx->Current.Attrib[VERT_ATTRIB_TEX0 + unit][3];
break;
case GL_COLOR_WRITEMASK:
v->value_int_4[0] = ctx->Color.ColorMask[0][RCOMP] ? 1 : 0;
v->value_int_4[1] = ctx->Color.ColorMask[0][GCOMP] ? 1 : 0;
v->value_int_4[2] = ctx->Color.ColorMask[0][BCOMP] ? 1 : 0;
v->value_int_4[3] = ctx->Color.ColorMask[0][ACOMP] ? 1 : 0;
break;
case GL_EDGE_FLAG:
v->value_bool = ctx->Current.Attrib[VERT_ATTRIB_EDGEFLAG][0] == 1.0F;
break;
case GL_READ_BUFFER:
v->value_enum = ctx->ReadBuffer->ColorReadBuffer;
break;
case GL_MAP2_GRID_DOMAIN:
v->value_float_4[0] = ctx->Eval.MapGrid2u1;
v->value_float_4[1] = ctx->Eval.MapGrid2u2;
v->value_float_4[2] = ctx->Eval.MapGrid2v1;
v->value_float_4[3] = ctx->Eval.MapGrid2v2;
break;
case GL_TEXTURE_STACK_DEPTH:
unit = ctx->Texture.CurrentUnit;
v->value_int = ctx->TextureMatrixStack[unit].Depth + 1;
break;
case GL_TEXTURE_MATRIX:
unit = ctx->Texture.CurrentUnit;
v->value_matrix = ctx->TextureMatrixStack[unit].Top;
break;
case GL_TEXTURE_COORD_ARRAY:
case GL_TEXTURE_COORD_ARRAY_SIZE:
case GL_TEXTURE_COORD_ARRAY_TYPE:
case GL_TEXTURE_COORD_ARRAY_STRIDE:
array = &ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_TEX(ctx->Array.ActiveTexture)];
v->value_int = *(GLuint *) ((char *) array + d->offset);
break;
case GL_ACTIVE_TEXTURE_ARB:
v->value_int = GL_TEXTURE0_ARB + ctx->Texture.CurrentUnit;
break;
case GL_CLIENT_ACTIVE_TEXTURE_ARB:
v->value_int = GL_TEXTURE0_ARB + ctx->Array.ActiveTexture;
break;
case GL_MODELVIEW_STACK_DEPTH:
case GL_PROJECTION_STACK_DEPTH:
v->value_int = *(GLint *) ((char *) ctx + d->offset) + 1;
break;
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_3D_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE_ARB:
p = (GLuint *) ((char *) ctx + d->offset);
v->value_int = 1 << (*p - 1);
break;
case GL_SCISSOR_BOX:
v->value_int_4[0] = ctx->Scissor.ScissorArray[0].X;
v->value_int_4[1] = ctx->Scissor.ScissorArray[0].Y;
v->value_int_4[2] = ctx->Scissor.ScissorArray[0].Width;
v->value_int_4[3] = ctx->Scissor.ScissorArray[0].Height;
break;
case GL_SCISSOR_TEST:
v->value_bool = ctx->Scissor.EnableFlags & 1;
break;
case GL_LIST_INDEX:
v->value_int =
ctx->ListState.CurrentList ? ctx->ListState.CurrentList->Name : 0;
break;
case GL_LIST_MODE:
if (!ctx->CompileFlag)
v->value_enum = 0;
else if (ctx->ExecuteFlag)
v->value_enum = GL_COMPILE_AND_EXECUTE;
else
v->value_enum = GL_COMPILE;
break;
case GL_VIEWPORT:
v->value_float_4[0] = ctx->ViewportArray[0].X;
v->value_float_4[1] = ctx->ViewportArray[0].Y;
v->value_float_4[2] = ctx->ViewportArray[0].Width;
v->value_float_4[3] = ctx->ViewportArray[0].Height;
break;
case GL_DEPTH_RANGE:
v->value_double_2[0] = ctx->ViewportArray[0].Near;
v->value_double_2[1] = ctx->ViewportArray[0].Far;
break;
case GL_ACTIVE_STENCIL_FACE_EXT:
v->value_enum = ctx->Stencil.ActiveFace ? GL_BACK : GL_FRONT;
break;
case GL_STENCIL_FAIL:
v->value_enum = ctx->Stencil.FailFunc[ctx->Stencil.ActiveFace];
break;
case GL_STENCIL_FUNC:
v->value_enum = ctx->Stencil.Function[ctx->Stencil.ActiveFace];
break;
case GL_STENCIL_PASS_DEPTH_FAIL:
v->value_enum = ctx->Stencil.ZFailFunc[ctx->Stencil.ActiveFace];
break;
case GL_STENCIL_PASS_DEPTH_PASS:
v->value_enum = ctx->Stencil.ZPassFunc[ctx->Stencil.ActiveFace];
break;
case GL_STENCIL_REF:
v->value_int = _mesa_get_stencil_ref(ctx, ctx->Stencil.ActiveFace);
break;
case GL_STENCIL_BACK_REF:
v->value_int = _mesa_get_stencil_ref(ctx, 1);
break;
case GL_STENCIL_VALUE_MASK:
v->value_int = ctx->Stencil.ValueMask[ctx->Stencil.ActiveFace];
break;
case GL_STENCIL_WRITEMASK:
v->value_int = ctx->Stencil.WriteMask[ctx->Stencil.ActiveFace];
break;
case GL_NUM_EXTENSIONS:
v->value_int = _mesa_get_extension_count(ctx);
break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE_OES:
v->value_int = _mesa_get_color_read_type(ctx);
break;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES:
v->value_int = _mesa_get_color_read_format(ctx);
break;
case GL_CURRENT_MATRIX_STACK_DEPTH_ARB:
v->value_int = ctx->CurrentStack->Depth + 1;
break;
case GL_CURRENT_MATRIX_ARB:
case GL_TRANSPOSE_CURRENT_MATRIX_ARB:
v->value_matrix = ctx->CurrentStack->Top;
break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS_ARB:
v->value_int = _mesa_get_compressed_formats(ctx, NULL);
break;
case GL_COMPRESSED_TEXTURE_FORMATS_ARB:
v->value_int_n.n =
_mesa_get_compressed_formats(ctx, v->value_int_n.ints);
assert(v->value_int_n.n <= (int) ARRAY_SIZE(v->value_int_n.ints));
break;
case GL_MAX_VARYING_FLOATS_ARB:
v->value_int = ctx->Const.MaxVarying * 4;
break;
/* Various object names */
case GL_TEXTURE_BINDING_1D:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_3D:
case GL_TEXTURE_BINDING_1D_ARRAY_EXT:
case GL_TEXTURE_BINDING_2D_ARRAY_EXT:
case GL_TEXTURE_BINDING_CUBE_MAP_ARB:
case GL_TEXTURE_BINDING_RECTANGLE_NV:
case GL_TEXTURE_BINDING_EXTERNAL_OES:
case GL_TEXTURE_BINDING_CUBE_MAP_ARRAY:
case GL_TEXTURE_BINDING_2D_MULTISAMPLE:
case GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY:
unit = ctx->Texture.CurrentUnit;
v->value_int =
ctx->Texture.Unit[unit].CurrentTex[d->offset]->Name;
break;
/* GL_EXT_packed_float */
case GL_RGBA_SIGNED_COMPONENTS_EXT:
{
/* Note: we only check the 0th color attachment. */
const struct gl_renderbuffer *rb =
ctx->DrawBuffer->_ColorDrawBuffers[0];
if (rb && _mesa_is_format_signed(rb->Format)) {
/* Issue 17 of GL_EXT_packed_float: If a component (such as
* alpha) has zero bits, the component should not be considered
* signed and so the bit for the respective component should be
* zeroed.
*/
GLint r_bits =
_mesa_get_format_bits(rb->Format, GL_RED_BITS);
GLint g_bits =
_mesa_get_format_bits(rb->Format, GL_GREEN_BITS);
GLint b_bits =
_mesa_get_format_bits(rb->Format, GL_BLUE_BITS);
GLint a_bits =
_mesa_get_format_bits(rb->Format, GL_ALPHA_BITS);
GLint l_bits =
_mesa_get_format_bits(rb->Format, GL_TEXTURE_LUMINANCE_SIZE);
GLint i_bits =
_mesa_get_format_bits(rb->Format, GL_TEXTURE_INTENSITY_SIZE);
v->value_int_4[0] = r_bits + l_bits + i_bits > 0;
v->value_int_4[1] = g_bits + l_bits + i_bits > 0;
v->value_int_4[2] = b_bits + l_bits + i_bits > 0;
v->value_int_4[3] = a_bits + i_bits > 0;
}
else {
v->value_int_4[0] =
v->value_int_4[1] =
v->value_int_4[2] =
v->value_int_4[3] = 0;
}
}
break;
/* GL_ARB_vertex_buffer_object */
case GL_VERTEX_ARRAY_BUFFER_BINDING_ARB:
case GL_NORMAL_ARRAY_BUFFER_BINDING_ARB:
case GL_COLOR_ARRAY_BUFFER_BINDING_ARB:
case GL_INDEX_ARRAY_BUFFER_BINDING_ARB:
case GL_EDGE_FLAG_ARRAY_BUFFER_BINDING_ARB:
case GL_SECONDARY_COLOR_ARRAY_BUFFER_BINDING_ARB:
case GL_FOG_COORDINATE_ARRAY_BUFFER_BINDING_ARB:
buffer_obj = (struct gl_buffer_object **)
((char *) ctx->Array.VAO + d->offset);
v->value_int = (*buffer_obj)->Name;
break;
case GL_ARRAY_BUFFER_BINDING_ARB:
v->value_int = ctx->Array.ArrayBufferObj->Name;
break;
case GL_TEXTURE_COORD_ARRAY_BUFFER_BINDING_ARB:
v->value_int =
ctx->Array.VAO->BufferBinding[VERT_ATTRIB_TEX(ctx->Array.ActiveTexture)].BufferObj->Name;
break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB:
v->value_int = ctx->Array.VAO->IndexBufferObj->Name;
break;
/* ARB_vertex_array_bgra */
case GL_COLOR_ARRAY_SIZE:
array = &ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_COLOR0];
v->value_int = array->Format == GL_BGRA ? GL_BGRA : array->Size;
break;
case GL_SECONDARY_COLOR_ARRAY_SIZE:
array = &ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_COLOR1];
v->value_int = array->Format == GL_BGRA ? GL_BGRA : array->Size;
break;
/* ARB_copy_buffer */
case GL_COPY_READ_BUFFER:
v->value_int = ctx->CopyReadBuffer->Name;
break;
case GL_COPY_WRITE_BUFFER:
v->value_int = ctx->CopyWriteBuffer->Name;
break;
case GL_PIXEL_PACK_BUFFER_BINDING_EXT:
v->value_int = ctx->Pack.BufferObj->Name;
break;
case GL_PIXEL_UNPACK_BUFFER_BINDING_EXT:
v->value_int = ctx->Unpack.BufferObj->Name;
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
v->value_int = ctx->TransformFeedback.CurrentBuffer->Name;
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_PAUSED:
v->value_int = ctx->TransformFeedback.CurrentObject->Paused;
break;
case GL_TRANSFORM_FEEDBACK_BUFFER_ACTIVE:
v->value_int = ctx->TransformFeedback.CurrentObject->Active;
break;
case GL_TRANSFORM_FEEDBACK_BINDING:
v->value_int = ctx->TransformFeedback.CurrentObject->Name;
break;
case GL_CURRENT_PROGRAM:
/* The Changelog of the ARB_separate_shader_objects spec says:
*
* 24 25 Jul 2011 pbrown Remove the language erroneously deleting
* CURRENT_PROGRAM. In the EXT extension, this
* token was aliased to ACTIVE_PROGRAM_EXT, and
* was used to indicate the last program set by
* either ActiveProgramEXT or UseProgram. In
* the ARB extension, the SSO active programs
* are now program pipeline object state and
* CURRENT_PROGRAM should still be used to query
* the last program set by UseProgram (bug 7822).
*/
v->value_int =
ctx->Shader.ActiveProgram ? ctx->Shader.ActiveProgram->Name : 0;
break;
case GL_READ_FRAMEBUFFER_BINDING_EXT:
v->value_int = ctx->ReadBuffer->Name;
break;
case GL_RENDERBUFFER_BINDING_EXT:
v->value_int =
ctx->CurrentRenderbuffer ? ctx->CurrentRenderbuffer->Name : 0;
break;
case GL_POINT_SIZE_ARRAY_BUFFER_BINDING_OES:
v->value_int = ctx->Array.VAO->BufferBinding[VERT_ATTRIB_POINT_SIZE].BufferObj->Name;
break;
case GL_FOG_COLOR:
if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
COPY_4FV(v->value_float_4, ctx->Fog.Color);
else
COPY_4FV(v->value_float_4, ctx->Fog.ColorUnclamped);
break;
case GL_COLOR_CLEAR_VALUE:
if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer)) {
v->value_float_4[0] = CLAMP(ctx->Color.ClearColor.f[0], 0.0F, 1.0F);
v->value_float_4[1] = CLAMP(ctx->Color.ClearColor.f[1], 0.0F, 1.0F);
v->value_float_4[2] = CLAMP(ctx->Color.ClearColor.f[2], 0.0F, 1.0F);
v->value_float_4[3] = CLAMP(ctx->Color.ClearColor.f[3], 0.0F, 1.0F);
} else
COPY_4FV(v->value_float_4, ctx->Color.ClearColor.f);
break;
case GL_BLEND_COLOR_EXT:
if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
COPY_4FV(v->value_float_4, ctx->Color.BlendColor);
else
COPY_4FV(v->value_float_4, ctx->Color.BlendColorUnclamped);
break;
case GL_ALPHA_TEST_REF:
if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
v->value_float = ctx->Color.AlphaRef;
else
v->value_float = ctx->Color.AlphaRefUnclamped;
break;
case GL_MAX_VERTEX_UNIFORM_VECTORS:
v->value_int = ctx->Const.Program[MESA_SHADER_VERTEX].MaxUniformComponents / 4;
break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
v->value_int = ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxUniformComponents / 4;
break;
/* GL_ARB_texture_buffer_object */
case GL_TEXTURE_BUFFER_ARB:
v->value_int = ctx->Texture.BufferObject->Name;
break;
case GL_TEXTURE_BINDING_BUFFER_ARB:
unit = ctx->Texture.CurrentUnit;
v->value_int =
ctx->Texture.Unit[unit].CurrentTex[TEXTURE_BUFFER_INDEX]->Name;
break;
case GL_TEXTURE_BUFFER_DATA_STORE_BINDING_ARB:
{
struct gl_buffer_object *buf =
ctx->Texture.Unit[ctx->Texture.CurrentUnit]
.CurrentTex[TEXTURE_BUFFER_INDEX]->BufferObject;
v->value_int = buf ? buf->Name : 0;
}
break;
case GL_TEXTURE_BUFFER_FORMAT_ARB:
v->value_int = ctx->Texture.Unit[ctx->Texture.CurrentUnit]
.CurrentTex[TEXTURE_BUFFER_INDEX]->BufferObjectFormat;
break;
/* GL_ARB_sampler_objects */
case GL_SAMPLER_BINDING:
{
struct gl_sampler_object *samp =
ctx->Texture.Unit[ctx->Texture.CurrentUnit].Sampler;
v->value_int = samp ? samp->Name : 0;
}
break;
/* GL_ARB_uniform_buffer_object */
case GL_UNIFORM_BUFFER_BINDING:
v->value_int = ctx->UniformBuffer->Name;
break;
/* GL_ARB_shader_storage_buffer_object */
case GL_SHADER_STORAGE_BUFFER_BINDING:
v->value_int = ctx->ShaderStorageBuffer->Name;
break;
/* GL_ARB_query_buffer_object */
case GL_QUERY_BUFFER_BINDING:
v->value_int = ctx->QueryBuffer->Name;
break;
/* GL_ARB_timer_query */
case GL_TIMESTAMP:
if (ctx->Driver.GetTimestamp) {
v->value_int64 = ctx->Driver.GetTimestamp(ctx);
}
else {
_mesa_problem(ctx, "driver doesn't implement GetTimestamp");
}
break;
/* GL_KHR_DEBUG */
case GL_DEBUG_OUTPUT:
case GL_DEBUG_OUTPUT_SYNCHRONOUS:
case GL_DEBUG_LOGGED_MESSAGES:
case GL_DEBUG_NEXT_LOGGED_MESSAGE_LENGTH:
case GL_DEBUG_GROUP_STACK_DEPTH:
v->value_int = _mesa_get_debug_state_int(ctx, d->pname);
break;
/* GL_ARB_shader_atomic_counters */
case GL_ATOMIC_COUNTER_BUFFER_BINDING:
if (ctx->AtomicBuffer) {
v->value_int = ctx->AtomicBuffer->Name;
} else {
v->value_int = 0;
}
break;
/* GL_ARB_draw_indirect */
case GL_DRAW_INDIRECT_BUFFER_BINDING:
v->value_int = ctx->DrawIndirectBuffer->Name;
break;
/* GL_ARB_indirect_parameters */
case GL_PARAMETER_BUFFER_BINDING_ARB:
v->value_int = ctx->ParameterBuffer->Name;
break;
/* GL_ARB_separate_shader_objects */
case GL_PROGRAM_PIPELINE_BINDING:
if (ctx->Pipeline.Current) {
v->value_int = ctx->Pipeline.Current->Name;
} else {
v->value_int = 0;
}
break;
/* GL_ARB_compute_shader */
case GL_DISPATCH_INDIRECT_BUFFER_BINDING:
v->value_int = ctx->DispatchIndirectBuffer->Name;
break;
/* GL_ARB_multisample */
case GL_SAMPLES:
v->value_int = _mesa_geometric_samples(ctx->DrawBuffer);
break;
case GL_SAMPLE_BUFFERS:
v->value_int = _mesa_geometric_samples(ctx->DrawBuffer) > 0;
break;
/* GL_EXT_textrue_integer */
case GL_RGBA_INTEGER_MODE_EXT:
v->value_int = (ctx->DrawBuffer->_IntegerBuffers != 0);
break;
/* GL_ATI_meminfo & GL_NVX_gpu_memory_info */
case GL_VBO_FREE_MEMORY_ATI:
case GL_TEXTURE_FREE_MEMORY_ATI:
case GL_RENDERBUFFER_FREE_MEMORY_ATI:
case GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX:
case GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX:
case GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX:
case GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX:
case GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX:
{
struct gl_memory_info info;
ctx->Driver.QueryMemoryInfo(ctx, &info);
if (d->pname == GL_GPU_MEMORY_INFO_DEDICATED_VIDMEM_NVX)
v->value_int = info.total_device_memory;
else if (d->pname == GL_GPU_MEMORY_INFO_TOTAL_AVAILABLE_MEMORY_NVX)
v->value_int = info.total_device_memory +
info.total_staging_memory;
else if (d->pname == GL_GPU_MEMORY_INFO_CURRENT_AVAILABLE_VIDMEM_NVX)
v->value_int = info.avail_device_memory;
else if (d->pname == GL_GPU_MEMORY_INFO_EVICTION_COUNT_NVX)
v->value_int = info.nr_device_memory_evictions;
else if (d->pname == GL_GPU_MEMORY_INFO_EVICTED_MEMORY_NVX)
v->value_int = info.device_memory_evicted;
else {
/* ATI free memory enums.
*
* Since the GPU memory is (usually) page-table based, every two
* consecutive elements are equal. From the GL_ATI_meminfo
* specification:
*
* "param[0] - total memory free in the pool
* param[1] - largest available free block in the pool
* param[2] - total auxiliary memory free
* param[3] - largest auxiliary free block"
*
* All three (VBO, TEXTURE, RENDERBUFFER) queries return
* the same numbers here.
*/
v->value_int_4[0] = info.avail_device_memory;
v->value_int_4[1] = info.avail_device_memory;
v->value_int_4[2] = info.avail_staging_memory;
v->value_int_4[3] = info.avail_staging_memory;
}
}
break;
}
}
/**
* Check extra constraints on a struct value_desc descriptor
*
* If a struct value_desc has a non-NULL extra pointer, it means that
* there are a number of extra constraints to check or actions to
* perform. The extras is just an integer array where each integer
* encode different constraints or actions.
*
* \param ctx current context
* \param func name of calling glGet*v() function for error reporting
* \param d the struct value_desc that has the extra constraints
*
* \return GL_FALSE if all of the constraints were not satisfied,
* otherwise GL_TRUE.
*/
static GLboolean
check_extra(struct gl_context *ctx, const char *func, const struct value_desc *d)
{
const GLuint version = ctx->Version;
GLboolean api_check = GL_FALSE;
GLboolean api_found = GL_FALSE;
const int *e;
for (e = d->extra; *e != EXTRA_END; e++) {
switch (*e) {
case EXTRA_VERSION_30:
api_check = GL_TRUE;
if (version >= 30)
api_found = GL_TRUE;
break;
case EXTRA_VERSION_31:
api_check = GL_TRUE;
if (version >= 31)
api_found = GL_TRUE;
break;
case EXTRA_VERSION_32:
api_check = GL_TRUE;
if (version >= 32)
api_found = GL_TRUE;
break;
case EXTRA_NEW_FRAG_CLAMP:
if (ctx->NewState & (_NEW_BUFFERS | _NEW_FRAG_CLAMP))
_mesa_update_state(ctx);
break;
case EXTRA_API_ES2:
api_check = GL_TRUE;
if (ctx->API == API_OPENGLES2)
api_found = GL_TRUE;
break;
case EXTRA_API_ES3:
api_check = GL_TRUE;
if (_mesa_is_gles3(ctx))
api_found = GL_TRUE;
break;
case EXTRA_API_ES31:
api_check = GL_TRUE;
if (_mesa_is_gles31(ctx))
api_found = GL_TRUE;
break;
case EXTRA_API_ES32:
api_check = GL_TRUE;
if (_mesa_is_gles32(ctx))
api_found = GL_TRUE;
break;
case EXTRA_API_GL:
api_check = GL_TRUE;
if (_mesa_is_desktop_gl(ctx))
api_found = GL_TRUE;
break;
case EXTRA_API_GL_CORE:
api_check = GL_TRUE;
if (ctx->API == API_OPENGL_CORE)
api_found = GL_TRUE;
break;
case EXTRA_NEW_BUFFERS:
if (ctx->NewState & _NEW_BUFFERS)
_mesa_update_state(ctx);
break;
case EXTRA_FLUSH_CURRENT:
FLUSH_CURRENT(ctx, 0);
break;
case EXTRA_VALID_DRAW_BUFFER:
if (d->pname - GL_DRAW_BUFFER0_ARB >= ctx->Const.MaxDrawBuffers) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(draw buffer %u)",
func, d->pname - GL_DRAW_BUFFER0_ARB);
return GL_FALSE;
}
break;
case EXTRA_VALID_TEXTURE_UNIT:
if (ctx->Texture.CurrentUnit >= ctx->Const.MaxTextureCoordUnits) {
_mesa_error(ctx, GL_INVALID_OPERATION, "%s(texture %u)",
func, ctx->Texture.CurrentUnit);
return GL_FALSE;
}
break;
case EXTRA_VALID_CLIP_DISTANCE:
if (d->pname - GL_CLIP_DISTANCE0 >= ctx->Const.MaxClipPlanes) {
_mesa_error(ctx, GL_INVALID_ENUM, "%s(clip distance %u)",
func, d->pname - GL_CLIP_DISTANCE0);
return GL_FALSE;
}
break;
case EXTRA_GLSL_130:
api_check = GL_TRUE;
if (ctx->Const.GLSLVersion >= 130)
api_found = GL_TRUE;
break;
case EXTRA_EXT_UBO_GS:
api_check = GL_TRUE;
if (ctx->Extensions.ARB_uniform_buffer_object &&
_mesa_has_geometry_shaders(ctx))
api_found = GL_TRUE;
break;
case EXTRA_EXT_ATOMICS_GS:
api_check = GL_TRUE;
if (ctx->Extensions.ARB_shader_atomic_counters &&
_mesa_has_geometry_shaders(ctx))
api_found = GL_TRUE;
break;
case EXTRA_EXT_SHADER_IMAGE_GS:
api_check = GL_TRUE;
if (ctx->Extensions.ARB_shader_image_load_store &&
_mesa_has_geometry_shaders(ctx))
api_found = GL_TRUE;
break;
case EXTRA_EXT_ATOMICS_TESS:
api_check = GL_TRUE;
api_found = ctx->Extensions.ARB_shader_atomic_counters &&
_mesa_has_tessellation(ctx);
break;
case EXTRA_EXT_SHADER_IMAGE_TESS:
api_check = GL_TRUE;
api_found = ctx->Extensions.ARB_shader_image_load_store &&
_mesa_has_tessellation(ctx);
break;
case EXTRA_EXT_SSBO_GS:
api_check = GL_TRUE;
if (ctx->Extensions.ARB_shader_storage_buffer_object &&
_mesa_has_geometry_shaders(ctx))
api_found = GL_TRUE;
break;
case EXTRA_EXT_FB_NO_ATTACH_GS:
api_check = GL_TRUE;
if (ctx->Extensions.ARB_framebuffer_no_attachments &&
(_mesa_is_desktop_gl(ctx) ||
_mesa_has_OES_geometry_shader(ctx)))
api_found = GL_TRUE;
break;
case EXTRA_EXT_ES_GS:
api_check = GL_TRUE;
if (_mesa_has_OES_geometry_shader(ctx))
api_found = GL_TRUE;
break;
case EXTRA_END:
break;
default: /* *e is a offset into the extension struct */
api_check = GL_TRUE;
if (*(GLboolean *) ((char *) &ctx->Extensions + *e))
api_found = GL_TRUE;
break;
}
}
if (api_check && !api_found) {
_mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=%s)", func,
_mesa_enum_to_string(d->pname));
return GL_FALSE;
}
return GL_TRUE;
}
static const struct value_desc error_value =
{ 0, 0, TYPE_INVALID, NO_OFFSET, NO_EXTRA };
/**
* Find the struct value_desc corresponding to the enum 'pname'.
*
* We hash the enum value to get an index into the 'table' array,
* which holds the index in the 'values' array of struct value_desc.
* Once we've found the entry, we do the extra checks, if any, then
* look up the value and return a pointer to it.
*
* If the value has to be computed (for example, it's the result of a
* function call or we need to add 1 to it), we use the tmp 'v' to
* store the result.
*
* \param func name of glGet*v() func for error reporting
* \param pname the enum value we're looking up
* \param p is were we return the pointer to the value
* \param v a tmp union value variable in the calling glGet*v() function
*
* \return the struct value_desc corresponding to the enum or a struct
* value_desc of TYPE_INVALID if not found. This lets the calling
* glGet*v() function jump right into a switch statement and
* handle errors there instead of having to check for NULL.
*/
static const struct value_desc *
find_value(const char *func, GLenum pname, void **p, union value *v)
{
GET_CURRENT_CONTEXT(ctx);
struct gl_texture_unit *unit;
int mask, hash;
const struct value_desc *d;
int api;
api = ctx->API;
/* We index into the table_set[] list of per-API hash tables using the API's
* value in the gl_api enum. Since GLES 3 doesn't have an API_OPENGL* enum
* value since it's compatible with GLES2 its entry in table_set[] is at the
* end.
*/
STATIC_ASSERT(ARRAY_SIZE(table_set) == API_OPENGL_LAST + 4);
if (ctx->API == API_OPENGLES2) {
if (ctx->Version >= 32)
api = API_OPENGL_LAST + 3;
else if (ctx->Version >= 31)
api = API_OPENGL_LAST + 2;
else if (ctx->Version >= 30)
api = API_OPENGL_LAST + 1;
}
mask = ARRAY_SIZE(table(api)) - 1;
hash = (pname * prime_factor);
while (1) {
int idx = table(api)[hash & mask];
/* If the enum isn't valid, the hash walk ends with index 0,
* pointing to the first entry of values[] which doesn't hold
* any valid enum. */
if (unlikely(idx == 0)) {
_mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=%s)", func,
_mesa_enum_to_string(pname));
return &error_value;
}
d = &values[idx];
if (likely(d->pname == pname))
break;
hash += prime_step;
}
if (unlikely(d->extra && !check_extra(ctx, func, d)))
return &error_value;
switch (d->location) {
case LOC_BUFFER:
*p = ((char *) ctx->DrawBuffer + d->offset);
return d;
case LOC_CONTEXT:
*p = ((char *) ctx + d->offset);
return d;
case LOC_ARRAY:
*p = ((char *) ctx->Array.VAO + d->offset);
return d;
case LOC_TEXUNIT:
unit = &ctx->Texture.Unit[ctx->Texture.CurrentUnit];
*p = ((char *) unit + d->offset);
return d;
case LOC_CUSTOM:
find_custom_value(ctx, d, v);
*p = v;
return d;
default:
assert(0);
break;
}
/* silence warning */
return &error_value;
}
static const int transpose[] = {
0, 4, 8, 12,
1, 5, 9, 13,
2, 6, 10, 14,
3, 7, 11, 15
};
void GLAPIENTRY
_mesa_GetBooleanv(GLenum pname, GLboolean *params)
{
const struct value_desc *d;
union value v;
GLmatrix *m;
int shift, i;
void *p;
d = find_value("glGetBooleanv", pname, &p, &v);
switch (d->type) {
case TYPE_INVALID:
break;
case TYPE_CONST:
params[0] = INT_TO_BOOLEAN(d->offset);
break;
case TYPE_FLOAT_8:
params[7] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[7]);
params[6] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[6]);
params[5] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[5]);
params[4] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[4]);
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[3]);
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[2]);
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[1]);
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = FLOAT_TO_BOOLEAN(((GLfloat *) p)[0]);
break;
case TYPE_DOUBLEN_2:
params[1] = FLOAT_TO_BOOLEAN(((GLdouble *) p)[1]);
case TYPE_DOUBLEN:
params[0] = FLOAT_TO_BOOLEAN(((GLdouble *) p)[0]);
break;
case TYPE_INT_4:
case TYPE_UINT_4:
params[3] = INT_TO_BOOLEAN(((GLint *) p)[3]);
case TYPE_INT_3:
case TYPE_UINT_3:
params[2] = INT_TO_BOOLEAN(((GLint *) p)[2]);
case TYPE_INT_2:
case TYPE_UINT_2:
case TYPE_ENUM_2:
params[1] = INT_TO_BOOLEAN(((GLint *) p)[1]);
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
params[0] = INT_TO_BOOLEAN(((GLint *) p)[0]);
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = INT_TO_BOOLEAN(v.value_int_n.ints[i]);
break;
case TYPE_INT64:
params[0] = INT64_TO_BOOLEAN(((GLint64 *) p)[0]);
break;
case TYPE_BOOLEAN:
params[0] = ((GLboolean*) p)[0];
break;
case TYPE_MATRIX:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_BOOLEAN(m->m[i]);
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_BOOLEAN(m->m[transpose[i]]);
break;
case TYPE_BIT_0:
case TYPE_BIT_1:
case TYPE_BIT_2:
case TYPE_BIT_3:
case TYPE_BIT_4:
case TYPE_BIT_5:
case TYPE_BIT_6:
case TYPE_BIT_7:
shift = d->type - TYPE_BIT_0;
params[0] = (*(GLbitfield *) p >> shift) & 1;
break;
}
}
void GLAPIENTRY
_mesa_GetFloatv(GLenum pname, GLfloat *params)
{
const struct value_desc *d;
union value v;
GLmatrix *m;
int shift, i;
void *p;
d = find_value("glGetFloatv", pname, &p, &v);
switch (d->type) {
case TYPE_INVALID:
break;
case TYPE_CONST:
params[0] = (GLfloat) d->offset;
break;
case TYPE_FLOAT_8:
params[7] = ((GLfloat *) p)[7];
params[6] = ((GLfloat *) p)[6];
params[5] = ((GLfloat *) p)[5];
params[4] = ((GLfloat *) p)[4];
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = ((GLfloat *) p)[3];
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = ((GLfloat *) p)[2];
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = ((GLfloat *) p)[1];
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = ((GLfloat *) p)[0];
break;
case TYPE_DOUBLEN_2:
params[1] = (GLfloat) (((GLdouble *) p)[1]);
case TYPE_DOUBLEN:
params[0] = (GLfloat) (((GLdouble *) p)[0]);
break;
case TYPE_INT_4:
params[3] = (GLfloat) (((GLint *) p)[3]);
case TYPE_INT_3:
params[2] = (GLfloat) (((GLint *) p)[2]);
case TYPE_INT_2:
case TYPE_ENUM_2:
params[1] = (GLfloat) (((GLint *) p)[1]);
case TYPE_INT:
case TYPE_ENUM:
params[0] = (GLfloat) (((GLint *) p)[0]);
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = (GLfloat) v.value_int_n.ints[i];
break;
case TYPE_UINT_4:
params[3] = (GLfloat) (((GLuint *) p)[3]);
case TYPE_UINT_3:
params[2] = (GLfloat) (((GLuint *) p)[2]);
case TYPE_UINT_2:
params[1] = (GLfloat) (((GLuint *) p)[1]);
case TYPE_UINT:
params[0] = (GLfloat) (((GLuint *) p)[0]);
break;
case TYPE_INT64:
params[0] = (GLfloat) (((GLint64 *) p)[0]);
break;
case TYPE_BOOLEAN:
params[0] = BOOLEAN_TO_FLOAT(*(GLboolean*) p);
break;
case TYPE_MATRIX:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = m->m[i];
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = m->m[transpose[i]];
break;
case TYPE_BIT_0:
case TYPE_BIT_1:
case TYPE_BIT_2:
case TYPE_BIT_3:
case TYPE_BIT_4:
case TYPE_BIT_5:
case TYPE_BIT_6:
case TYPE_BIT_7:
shift = d->type - TYPE_BIT_0;
params[0] = BOOLEAN_TO_FLOAT((*(GLbitfield *) p >> shift) & 1);
break;
}
}
void GLAPIENTRY
_mesa_GetIntegerv(GLenum pname, GLint *params)
{
const struct value_desc *d;
union value v;
GLmatrix *m;
int shift, i;
void *p;
d = find_value("glGetIntegerv", pname, &p, &v);
switch (d->type) {
case TYPE_INVALID:
break;
case TYPE_CONST:
params[0] = d->offset;
break;
case TYPE_FLOAT_8:
params[7] = IROUND(((GLfloat *) p)[7]);
params[6] = IROUND(((GLfloat *) p)[6]);
params[5] = IROUND(((GLfloat *) p)[5]);
params[4] = IROUND(((GLfloat *) p)[4]);
case TYPE_FLOAT_4:
params[3] = IROUND(((GLfloat *) p)[3]);
case TYPE_FLOAT_3:
params[2] = IROUND(((GLfloat *) p)[2]);
case TYPE_FLOAT_2:
params[1] = IROUND(((GLfloat *) p)[1]);
case TYPE_FLOAT:
params[0] = IROUND(((GLfloat *) p)[0]);
break;
case TYPE_FLOATN_4:
params[3] = FLOAT_TO_INT(((GLfloat *) p)[3]);
case TYPE_FLOATN_3:
params[2] = FLOAT_TO_INT(((GLfloat *) p)[2]);
case TYPE_FLOATN_2:
params[1] = FLOAT_TO_INT(((GLfloat *) p)[1]);
case TYPE_FLOATN:
params[0] = FLOAT_TO_INT(((GLfloat *) p)[0]);
break;
case TYPE_DOUBLEN_2:
params[1] = FLOAT_TO_INT(((GLdouble *) p)[1]);
case TYPE_DOUBLEN:
params[0] = FLOAT_TO_INT(((GLdouble *) p)[0]);
break;
case TYPE_INT_4:
case TYPE_UINT_4:
params[3] = ((GLint *) p)[3];
case TYPE_INT_3:
case TYPE_UINT_3:
params[2] = ((GLint *) p)[2];
case TYPE_INT_2:
case TYPE_UINT_2:
case TYPE_ENUM_2:
params[1] = ((GLint *) p)[1];
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
params[0] = ((GLint *) p)[0];
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = v.value_int_n.ints[i];
break;
case TYPE_INT64:
params[0] = INT64_TO_INT(((GLint64 *) p)[0]);
break;
case TYPE_BOOLEAN:
params[0] = BOOLEAN_TO_INT(*(GLboolean*) p);
break;
case TYPE_MATRIX:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_INT(m->m[i]);
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_INT(m->m[transpose[i]]);
break;
case TYPE_BIT_0:
case TYPE_BIT_1:
case TYPE_BIT_2:
case TYPE_BIT_3:
case TYPE_BIT_4:
case TYPE_BIT_5:
case TYPE_BIT_6:
case TYPE_BIT_7:
shift = d->type - TYPE_BIT_0;
params[0] = (*(GLbitfield *) p >> shift) & 1;
break;
}
}
void GLAPIENTRY
_mesa_GetInteger64v(GLenum pname, GLint64 *params)
{
const struct value_desc *d;
union value v;
GLmatrix *m;
int shift, i;
void *p;
d = find_value("glGetInteger64v", pname, &p, &v);
switch (d->type) {
case TYPE_INVALID:
break;
case TYPE_CONST:
params[0] = d->offset;
break;
case TYPE_FLOAT_8:
params[7] = IROUND64(((GLfloat *) p)[7]);
params[6] = IROUND64(((GLfloat *) p)[6]);
params[5] = IROUND64(((GLfloat *) p)[5]);
params[4] = IROUND64(((GLfloat *) p)[4]);
case TYPE_FLOAT_4:
params[3] = IROUND64(((GLfloat *) p)[3]);
case TYPE_FLOAT_3:
params[2] = IROUND64(((GLfloat *) p)[2]);
case TYPE_FLOAT_2:
params[1] = IROUND64(((GLfloat *) p)[1]);
case TYPE_FLOAT:
params[0] = IROUND64(((GLfloat *) p)[0]);
break;
case TYPE_FLOATN_4:
params[3] = FLOAT_TO_INT(((GLfloat *) p)[3]);
case TYPE_FLOATN_3:
params[2] = FLOAT_TO_INT(((GLfloat *) p)[2]);
case TYPE_FLOATN_2:
params[1] = FLOAT_TO_INT(((GLfloat *) p)[1]);
case TYPE_FLOATN:
params[0] = FLOAT_TO_INT(((GLfloat *) p)[0]);
break;
case TYPE_DOUBLEN_2:
params[1] = FLOAT_TO_INT(((GLdouble *) p)[1]);
case TYPE_DOUBLEN:
params[0] = FLOAT_TO_INT(((GLdouble *) p)[0]);
break;
case TYPE_INT_4:
params[3] = ((GLint *) p)[3];
case TYPE_INT_3:
params[2] = ((GLint *) p)[2];
case TYPE_INT_2:
case TYPE_ENUM_2:
params[1] = ((GLint *) p)[1];
case TYPE_INT:
case TYPE_ENUM:
params[0] = ((GLint *) p)[0];
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = INT_TO_BOOLEAN(v.value_int_n.ints[i]);
break;
case TYPE_UINT_4:
params[3] = ((GLuint *) p)[3];
case TYPE_UINT_3:
params[2] = ((GLuint *) p)[2];
case TYPE_UINT_2:
params[1] = ((GLuint *) p)[1];
case TYPE_UINT:
params[0] = ((GLuint *) p)[0];
break;
case TYPE_INT64:
params[0] = ((GLint64 *) p)[0];
break;
case TYPE_BOOLEAN:
params[0] = ((GLboolean*) p)[0];
break;
case TYPE_MATRIX:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_INT64(m->m[i]);
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_INT64(m->m[transpose[i]]);
break;
case TYPE_BIT_0:
case TYPE_BIT_1:
case TYPE_BIT_2:
case TYPE_BIT_3:
case TYPE_BIT_4:
case TYPE_BIT_5:
case TYPE_BIT_6:
case TYPE_BIT_7:
shift = d->type - TYPE_BIT_0;
params[0] = (*(GLbitfield *) p >> shift) & 1;
break;
}
}
void GLAPIENTRY
_mesa_GetDoublev(GLenum pname, GLdouble *params)
{
const struct value_desc *d;
union value v;
GLmatrix *m;
int shift, i;
void *p;
d = find_value("glGetDoublev", pname, &p, &v);
switch (d->type) {
case TYPE_INVALID:
break;
case TYPE_CONST:
params[0] = d->offset;
break;
case TYPE_FLOAT_8:
params[7] = ((GLfloat *) p)[7];
params[6] = ((GLfloat *) p)[6];
params[5] = ((GLfloat *) p)[5];
params[4] = ((GLfloat *) p)[4];
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = ((GLfloat *) p)[3];
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = ((GLfloat *) p)[2];
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = ((GLfloat *) p)[1];
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = ((GLfloat *) p)[0];
break;
case TYPE_DOUBLEN_2:
params[1] = ((GLdouble *) p)[1];
case TYPE_DOUBLEN:
params[0] = ((GLdouble *) p)[0];
break;
case TYPE_INT_4:
params[3] = ((GLint *) p)[3];
case TYPE_INT_3:
params[2] = ((GLint *) p)[2];
case TYPE_INT_2:
case TYPE_ENUM_2:
params[1] = ((GLint *) p)[1];
case TYPE_INT:
case TYPE_ENUM:
params[0] = ((GLint *) p)[0];
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = v.value_int_n.ints[i];
break;
case TYPE_UINT_4:
params[3] = ((GLuint *) p)[3];
case TYPE_UINT_3:
params[2] = ((GLuint *) p)[2];
case TYPE_UINT_2:
params[1] = ((GLuint *) p)[1];
case TYPE_UINT:
params[0] = ((GLuint *) p)[0];
break;
case TYPE_INT64:
params[0] = (GLdouble) (((GLint64 *) p)[0]);
break;
case TYPE_BOOLEAN:
params[0] = *(GLboolean*) p;
break;
case TYPE_MATRIX:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = m->m[i];
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = m->m[transpose[i]];
break;
case TYPE_BIT_0:
case TYPE_BIT_1:
case TYPE_BIT_2:
case TYPE_BIT_3:
case TYPE_BIT_4:
case TYPE_BIT_5:
case TYPE_BIT_6:
case TYPE_BIT_7:
shift = d->type - TYPE_BIT_0;
params[0] = (*(GLbitfield *) p >> shift) & 1;
break;
}
}
/**
* Convert a GL texture binding enum such as GL_TEXTURE_BINDING_2D
* into the corresponding Mesa texture target index.
* \return TEXTURE_x_INDEX or -1 if binding is invalid
*/
static int
tex_binding_to_index(const struct gl_context *ctx, GLenum binding)
{
switch (binding) {
case GL_TEXTURE_BINDING_1D:
return _mesa_is_desktop_gl(ctx) ? TEXTURE_1D_INDEX : -1;
case GL_TEXTURE_BINDING_2D:
return TEXTURE_2D_INDEX;
case GL_TEXTURE_BINDING_3D:
return ctx->API != API_OPENGLES ? TEXTURE_3D_INDEX : -1;
case GL_TEXTURE_BINDING_CUBE_MAP:
return ctx->Extensions.ARB_texture_cube_map
? TEXTURE_CUBE_INDEX : -1;
case GL_TEXTURE_BINDING_RECTANGLE:
return _mesa_is_desktop_gl(ctx) && ctx->Extensions.NV_texture_rectangle
? TEXTURE_RECT_INDEX : -1;
case GL_TEXTURE_BINDING_1D_ARRAY:
return _mesa_is_desktop_gl(ctx) && ctx->Extensions.EXT_texture_array
? TEXTURE_1D_ARRAY_INDEX : -1;
case GL_TEXTURE_BINDING_2D_ARRAY:
return (_mesa_is_desktop_gl(ctx) && ctx->Extensions.EXT_texture_array)
|| _mesa_is_gles3(ctx)
? TEXTURE_2D_ARRAY_INDEX : -1;
case GL_TEXTURE_BINDING_BUFFER:
return (_mesa_has_ARB_texture_buffer_object(ctx) ||
_mesa_has_OES_texture_buffer(ctx)) ?
TEXTURE_BUFFER_INDEX : -1;
case GL_TEXTURE_BINDING_CUBE_MAP_ARRAY:
return _mesa_has_texture_cube_map_array(ctx)
? TEXTURE_CUBE_ARRAY_INDEX : -1;
case GL_TEXTURE_BINDING_2D_MULTISAMPLE:
return _mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_texture_multisample
? TEXTURE_2D_MULTISAMPLE_INDEX : -1;
case GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY:
return _mesa_is_desktop_gl(ctx) && ctx->Extensions.ARB_texture_multisample
? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : -1;
default:
return -1;
}
}
static enum value_type
find_value_indexed(const char *func, GLenum pname, GLuint index, union value *v)
{
GET_CURRENT_CONTEXT(ctx);
switch (pname) {
case GL_BLEND:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.EXT_draw_buffers2)
goto invalid_enum;
v->value_int = (ctx->Color.BlendEnabled >> index) & 1;
return TYPE_INT;
case GL_BLEND_SRC:
/* fall-through */
case GL_BLEND_SRC_RGB:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.ARB_draw_buffers_blend)
goto invalid_enum;
v->value_int = ctx->Color.Blend[index].SrcRGB;
return TYPE_INT;
case GL_BLEND_SRC_ALPHA:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.ARB_draw_buffers_blend)
goto invalid_enum;
v->value_int = ctx->Color.Blend[index].SrcA;
return TYPE_INT;
case GL_BLEND_DST:
/* fall-through */
case GL_BLEND_DST_RGB:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.ARB_draw_buffers_blend)
goto invalid_enum;
v->value_int = ctx->Color.Blend[index].DstRGB;
return TYPE_INT;
case GL_BLEND_DST_ALPHA:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.ARB_draw_buffers_blend)
goto invalid_enum;
v->value_int = ctx->Color.Blend[index].DstA;
return TYPE_INT;
case GL_BLEND_EQUATION_RGB:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.ARB_draw_buffers_blend)
goto invalid_enum;
v->value_int = ctx->Color.Blend[index].EquationRGB;
return TYPE_INT;
case GL_BLEND_EQUATION_ALPHA:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.ARB_draw_buffers_blend)
goto invalid_enum;
v->value_int = ctx->Color.Blend[index].EquationA;
return TYPE_INT;
case GL_COLOR_WRITEMASK:
if (index >= ctx->Const.MaxDrawBuffers)
goto invalid_value;
if (!ctx->Extensions.EXT_draw_buffers2)
goto invalid_enum;
v->value_int_4[0] = ctx->Color.ColorMask[index][RCOMP] ? 1 : 0;
v->value_int_4[1] = ctx->Color.ColorMask[index][GCOMP] ? 1 : 0;
v->value_int_4[2] = ctx->Color.ColorMask[index][BCOMP] ? 1 : 0;
v->value_int_4[3] = ctx->Color.ColorMask[index][ACOMP] ? 1 : 0;
return TYPE_INT_4;
case GL_SCISSOR_BOX:
if (index >= ctx->Const.MaxViewports)
goto invalid_value;
v->value_int_4[0] = ctx->Scissor.ScissorArray[index].X;
v->value_int_4[1] = ctx->Scissor.ScissorArray[index].Y;
v->value_int_4[2] = ctx->Scissor.ScissorArray[index].Width;
v->value_int_4[3] = ctx->Scissor.ScissorArray[index].Height;
return TYPE_INT_4;
case GL_WINDOW_RECTANGLE_EXT:
if (!ctx->Extensions.EXT_window_rectangles)
goto invalid_enum;
if (index >= ctx->Const.MaxWindowRectangles)
goto invalid_value;
v->value_int_4[0] = ctx->Scissor.WindowRects[index].X;
v->value_int_4[1] = ctx->Scissor.WindowRects[index].Y;
v->value_int_4[2] = ctx->Scissor.WindowRects[index].Width;
v->value_int_4[3] = ctx->Scissor.WindowRects[index].Height;
return TYPE_INT_4;
case GL_VIEWPORT:
if (index >= ctx->Const.MaxViewports)
goto invalid_value;
v->value_float_4[0] = ctx->ViewportArray[index].X;
v->value_float_4[1] = ctx->ViewportArray[index].Y;
v->value_float_4[2] = ctx->ViewportArray[index].Width;
v->value_float_4[3] = ctx->ViewportArray[index].Height;
return TYPE_FLOAT_4;
case GL_DEPTH_RANGE:
if (index >= ctx->Const.MaxViewports)
goto invalid_value;
v->value_double_2[0] = ctx->ViewportArray[index].Near;
v->value_double_2[1] = ctx->ViewportArray[index].Far;
return TYPE_DOUBLEN_2;
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
if (index >= ctx->Const.MaxTransformFeedbackBuffers)
goto invalid_value;
if (!ctx->Extensions.EXT_transform_feedback)
goto invalid_enum;
v->value_int64 = ctx->TransformFeedback.CurrentObject->Offset[index];
return TYPE_INT64;
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
if (index >= ctx->Const.MaxTransformFeedbackBuffers)
goto invalid_value;
if (!ctx->Extensions.EXT_transform_feedback)
goto invalid_enum;
v->value_int64
= ctx->TransformFeedback.CurrentObject->RequestedSize[index];
return TYPE_INT64;
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
if (index >= ctx->Const.MaxTransformFeedbackBuffers)
goto invalid_value;
if (!ctx->Extensions.EXT_transform_feedback)
goto invalid_enum;
v->value_int = ctx->TransformFeedback.CurrentObject->BufferNames[index];
return TYPE_INT;
case GL_UNIFORM_BUFFER_BINDING:
if (index >= ctx->Const.MaxUniformBufferBindings)
goto invalid_value;
if (!ctx->Extensions.ARB_uniform_buffer_object)
goto invalid_enum;
v->value_int = ctx->UniformBufferBindings[index].BufferObject->Name;
return TYPE_INT;
case GL_UNIFORM_BUFFER_START:
if (index >= ctx->Const.MaxUniformBufferBindings)
goto invalid_value;
if (!ctx->Extensions.ARB_uniform_buffer_object)
goto invalid_enum;
v->value_int = ctx->UniformBufferBindings[index].Offset < 0 ? 0 :
ctx->UniformBufferBindings[index].Offset;
return TYPE_INT;
case GL_UNIFORM_BUFFER_SIZE:
if (index >= ctx->Const.MaxUniformBufferBindings)
goto invalid_value;
if (!ctx->Extensions.ARB_uniform_buffer_object)
goto invalid_enum;
v->value_int = ctx->UniformBufferBindings[index].Size < 0 ? 0 :
ctx->UniformBufferBindings[index].Size;
return TYPE_INT;
/* ARB_shader_storage_buffer_object */
case GL_SHADER_STORAGE_BUFFER_BINDING:
if (!ctx->Extensions.ARB_shader_storage_buffer_object)
goto invalid_enum;
if (index >= ctx->Const.MaxShaderStorageBufferBindings)
goto invalid_value;
v->value_int = ctx->ShaderStorageBufferBindings[index].BufferObject->Name;
return TYPE_INT;
case GL_SHADER_STORAGE_BUFFER_START:
if (!ctx->Extensions.ARB_shader_storage_buffer_object)
goto invalid_enum;
if (index >= ctx->Const.MaxShaderStorageBufferBindings)
goto invalid_value;
v->value_int = ctx->ShaderStorageBufferBindings[index].Offset < 0 ? 0 :
ctx->ShaderStorageBufferBindings[index].Offset;
return TYPE_INT;
case GL_SHADER_STORAGE_BUFFER_SIZE:
if (!ctx->Extensions.ARB_shader_storage_buffer_object)
goto invalid_enum;
if (index >= ctx->Const.MaxShaderStorageBufferBindings)
goto invalid_value;
v->value_int = ctx->ShaderStorageBufferBindings[index].Size < 0 ? 0 :
ctx->ShaderStorageBufferBindings[index].Size;
return TYPE_INT;
/* ARB_texture_multisample / GL3.2 */
case GL_SAMPLE_MASK_VALUE:
if (index != 0)
goto invalid_value;
if (!ctx->Extensions.ARB_texture_multisample)
goto invalid_enum;
v->value_int = ctx->Multisample.SampleMaskValue;
return TYPE_INT;
case GL_ATOMIC_COUNTER_BUFFER_BINDING:
if (!ctx->Extensions.ARB_shader_atomic_counters)
goto invalid_enum;
if (index >= ctx->Const.MaxAtomicBufferBindings)
goto invalid_value;
v->value_int = ctx->AtomicBufferBindings[index].BufferObject->Name;
return TYPE_INT;
case GL_ATOMIC_COUNTER_BUFFER_START:
if (!ctx->Extensions.ARB_shader_atomic_counters)
goto invalid_enum;
if (index >= ctx->Const.MaxAtomicBufferBindings)
goto invalid_value;
v->value_int64 = ctx->AtomicBufferBindings[index].Offset;
return TYPE_INT64;
case GL_ATOMIC_COUNTER_BUFFER_SIZE:
if (!ctx->Extensions.ARB_shader_atomic_counters)
goto invalid_enum;
if (index >= ctx->Const.MaxAtomicBufferBindings)
goto invalid_value;
v->value_int64 = ctx->AtomicBufferBindings[index].Size;
return TYPE_INT64;
case GL_VERTEX_BINDING_DIVISOR:
if ((!_mesa_is_desktop_gl(ctx) || !ctx->Extensions.ARB_instanced_arrays) &&
!_mesa_is_gles31(ctx))
goto invalid_enum;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)
goto invalid_value;
v->value_int = ctx->Array.VAO->BufferBinding[VERT_ATTRIB_GENERIC(index)].InstanceDivisor;
return TYPE_INT;
case GL_VERTEX_BINDING_OFFSET:
if (!_mesa_is_desktop_gl(ctx) && !_mesa_is_gles31(ctx))
goto invalid_enum;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)
goto invalid_value;
v->value_int = ctx->Array.VAO->BufferBinding[VERT_ATTRIB_GENERIC(index)].Offset;
return TYPE_INT;
case GL_VERTEX_BINDING_STRIDE:
if (!_mesa_is_desktop_gl(ctx) && !_mesa_is_gles31(ctx))
goto invalid_enum;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)
goto invalid_value;
v->value_int = ctx->Array.VAO->BufferBinding[VERT_ATTRIB_GENERIC(index)].Stride;
return TYPE_INT;
case GL_VERTEX_BINDING_BUFFER:
if (ctx->API == API_OPENGLES2 && ctx->Version < 31)
goto invalid_enum;
if (index >= ctx->Const.Program[MESA_SHADER_VERTEX].MaxAttribs)
goto invalid_value;
v->value_int = ctx->Array.VAO->BufferBinding[VERT_ATTRIB_GENERIC(index)].BufferObj->Name;
return TYPE_INT;
/* ARB_shader_image_load_store */
case GL_IMAGE_BINDING_NAME: {
struct gl_texture_object *t;
if (!ctx->Extensions.ARB_shader_image_load_store)
goto invalid_enum;
if (index >= ctx->Const.MaxImageUnits)
goto invalid_value;
t = ctx->ImageUnits[index].TexObj;
v->value_int = (t ? t->Name : 0);
return TYPE_INT;
}
case GL_IMAGE_BINDING_LEVEL:
if (!ctx->Extensions.ARB_shader_image_load_store)
goto invalid_enum;
if (index >= ctx->Const.MaxImageUnits)
goto invalid_value;
v->value_int = ctx->ImageUnits[index].Level;
return TYPE_INT;
case GL_IMAGE_BINDING_LAYERED:
if (!ctx->Extensions.ARB_shader_image_load_store)
goto invalid_enum;
if (index >= ctx->Const.MaxImageUnits)
goto invalid_value;
v->value_int = ctx->ImageUnits[index].Layered;
return TYPE_INT;
case GL_IMAGE_BINDING_LAYER:
if (!ctx->Extensions.ARB_shader_image_load_store)
goto invalid_enum;
if (index >= ctx->Const.MaxImageUnits)
goto invalid_value;
v->value_int = ctx->ImageUnits[index].Layer;
return TYPE_INT;
case GL_IMAGE_BINDING_ACCESS:
if (!ctx->Extensions.ARB_shader_image_load_store)
goto invalid_enum;
if (index >= ctx->Const.MaxImageUnits)
goto invalid_value;
v->value_int = ctx->ImageUnits[index].Access;
return TYPE_INT;
case GL_IMAGE_BINDING_FORMAT:
if (!ctx->Extensions.ARB_shader_image_load_store)
goto invalid_enum;
if (index >= ctx->Const.MaxImageUnits)
goto invalid_value;
v->value_int = ctx->ImageUnits[index].Format;
return TYPE_INT;
/* ARB_direct_state_access */
case GL_TEXTURE_BINDING_1D:
case GL_TEXTURE_BINDING_1D_ARRAY:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_2D_ARRAY:
case GL_TEXTURE_BINDING_2D_MULTISAMPLE:
case GL_TEXTURE_BINDING_2D_MULTISAMPLE_ARRAY:
case GL_TEXTURE_BINDING_3D:
case GL_TEXTURE_BINDING_BUFFER:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_TEXTURE_BINDING_CUBE_MAP_ARRAY:
case GL_TEXTURE_BINDING_RECTANGLE: {
int target;
if (ctx->API != API_OPENGL_CORE)
goto invalid_enum;
target = tex_binding_to_index(ctx, pname);
if (target < 0)
goto invalid_enum;
if (index >= _mesa_max_tex_unit(ctx))
goto invalid_value;
v->value_int = ctx->Texture.Unit[index].CurrentTex[target]->Name;
return TYPE_INT;
}
case GL_SAMPLER_BINDING: {
struct gl_sampler_object *samp;
if (ctx->API != API_OPENGL_CORE)
goto invalid_enum;
if (index >= _mesa_max_tex_unit(ctx))
goto invalid_value;
samp = ctx->Texture.Unit[index].Sampler;
v->value_int = samp ? samp->Name : 0;
return TYPE_INT;
}
case GL_MAX_COMPUTE_WORK_GROUP_COUNT:
if (!_mesa_has_compute_shaders(ctx))
goto invalid_enum;
if (index >= 3)
goto invalid_value;
v->value_int = ctx->Const.MaxComputeWorkGroupCount[index];
return TYPE_INT;
case GL_MAX_COMPUTE_WORK_GROUP_SIZE:
if (!_mesa_has_compute_shaders(ctx))
goto invalid_enum;
if (index >= 3)
goto invalid_value;
v->value_int = ctx->Const.MaxComputeWorkGroupSize[index];
return TYPE_INT;
/* ARB_compute_variable_group_size */
case GL_MAX_COMPUTE_VARIABLE_GROUP_SIZE_ARB:
if (!ctx->Extensions.ARB_compute_variable_group_size)
goto invalid_enum;
if (index >= 3)
goto invalid_value;
v->value_int = ctx->Const.MaxComputeVariableGroupSize[index];
return TYPE_INT;
}
invalid_enum:
_mesa_error(ctx, GL_INVALID_ENUM, "%s(pname=%s)", func,
_mesa_enum_to_string(pname));
return TYPE_INVALID;
invalid_value:
_mesa_error(ctx, GL_INVALID_VALUE, "%s(pname=%s)", func,
_mesa_enum_to_string(pname));
return TYPE_INVALID;
}
void GLAPIENTRY
_mesa_GetBooleani_v( GLenum pname, GLuint index, GLboolean *params )
{
union value v;
enum value_type type =
find_value_indexed("glGetBooleani_v", pname, index, &v);
switch (type) {
case TYPE_INT:
case TYPE_UINT:
params[0] = INT_TO_BOOLEAN(v.value_int);
break;
case TYPE_INT_4:
case TYPE_UINT_4:
params[0] = INT_TO_BOOLEAN(v.value_int_4[0]);
params[1] = INT_TO_BOOLEAN(v.value_int_4[1]);
params[2] = INT_TO_BOOLEAN(v.value_int_4[2]);
params[3] = INT_TO_BOOLEAN(v.value_int_4[3]);
break;
case TYPE_INT64:
params[0] = INT64_TO_BOOLEAN(v.value_int64);
break;
default:
; /* nothing - GL error was recorded */
}
}
void GLAPIENTRY
_mesa_GetIntegeri_v( GLenum pname, GLuint index, GLint *params )
{
union value v;
enum value_type type =
find_value_indexed("glGetIntegeri_v", pname, index, &v);
switch (type) {
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = IROUND(v.value_float_4[3]);
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = IROUND(v.value_float_4[2]);
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = IROUND(v.value_float_4[1]);
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = IROUND(v.value_float_4[0]);
break;
case TYPE_DOUBLEN_2:
params[1] = IROUND(v.value_double_2[1]);
case TYPE_DOUBLEN:
params[0] = IROUND(v.value_double_2[0]);
break;
case TYPE_INT:
case TYPE_UINT:
params[0] = v.value_int;
break;
case TYPE_INT_4:
case TYPE_UINT_4:
params[0] = v.value_int_4[0];
params[1] = v.value_int_4[1];
params[2] = v.value_int_4[2];
params[3] = v.value_int_4[3];
break;
case TYPE_INT64:
params[0] = INT64_TO_INT(v.value_int64);
break;
default:
; /* nothing - GL error was recorded */
}
}
void GLAPIENTRY
_mesa_GetInteger64i_v( GLenum pname, GLuint index, GLint64 *params )
{
union value v;
enum value_type type =
find_value_indexed("glGetInteger64i_v", pname, index, &v);
switch (type) {
case TYPE_INT:
params[0] = v.value_int;
break;
case TYPE_INT_4:
params[0] = v.value_int_4[0];
params[1] = v.value_int_4[1];
params[2] = v.value_int_4[2];
params[3] = v.value_int_4[3];
break;
case TYPE_UINT:
params[0] = (GLuint) v.value_int;
break;
case TYPE_UINT_4:
params[0] = (GLuint) v.value_int_4[0];
params[1] = (GLuint) v.value_int_4[1];
params[2] = (GLuint) v.value_int_4[2];
params[3] = (GLuint) v.value_int_4[3];
break;
case TYPE_INT64:
params[0] = v.value_int64;
break;
default:
; /* nothing - GL error was recorded */
}
}
void GLAPIENTRY
_mesa_GetFloati_v(GLenum pname, GLuint index, GLfloat *params)
{
int i;
GLmatrix *m;
union value v;
enum value_type type =
find_value_indexed("glGetFloati_v", pname, index, &v);
switch (type) {
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = v.value_float_4[3];
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = v.value_float_4[2];
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = v.value_float_4[1];
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = v.value_float_4[0];
break;
case TYPE_DOUBLEN_2:
params[1] = (GLfloat) v.value_double_2[1];
case TYPE_DOUBLEN:
params[0] = (GLfloat) v.value_double_2[0];
break;
case TYPE_INT_4:
params[3] = (GLfloat) v.value_int_4[3];
case TYPE_INT_3:
params[2] = (GLfloat) v.value_int_4[2];
case TYPE_INT_2:
case TYPE_ENUM_2:
params[1] = (GLfloat) v.value_int_4[1];
case TYPE_INT:
case TYPE_ENUM:
params[0] = (GLfloat) v.value_int_4[0];
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = (GLfloat) v.value_int_n.ints[i];
break;
case TYPE_UINT_4:
params[3] = (GLfloat) ((GLuint) v.value_int_4[3]);
case TYPE_UINT_3:
params[2] = (GLfloat) ((GLuint) v.value_int_4[2]);
case TYPE_UINT_2:
params[1] = (GLfloat) ((GLuint) v.value_int_4[1]);
case TYPE_UINT:
params[0] = (GLfloat) ((GLuint) v.value_int_4[0]);
break;
case TYPE_INT64:
params[0] = (GLfloat) v.value_int64;
break;
case TYPE_BOOLEAN:
params[0] = BOOLEAN_TO_FLOAT(v.value_bool);
break;
case TYPE_MATRIX:
m = *(GLmatrix **) &v;
for (i = 0; i < 16; i++)
params[i] = m->m[i];
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) &v;
for (i = 0; i < 16; i++)
params[i] = m->m[transpose[i]];
break;
default:
;
}
}
void GLAPIENTRY
_mesa_GetDoublei_v(GLenum pname, GLuint index, GLdouble *params)
{
int i;
GLmatrix *m;
union value v;
enum value_type type =
find_value_indexed("glGetDoublei_v", pname, index, &v);
switch (type) {
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = (GLdouble) v.value_float_4[3];
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = (GLdouble) v.value_float_4[2];
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = (GLdouble) v.value_float_4[1];
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = (GLdouble) v.value_float_4[0];
break;
case TYPE_DOUBLEN_2:
params[1] = v.value_double_2[1];
case TYPE_DOUBLEN:
params[0] = v.value_double_2[0];
break;
case TYPE_INT_4:
params[3] = (GLdouble) v.value_int_4[3];
case TYPE_INT_3:
params[2] = (GLdouble) v.value_int_4[2];
case TYPE_INT_2:
case TYPE_ENUM_2:
params[1] = (GLdouble) v.value_int_4[1];
case TYPE_INT:
case TYPE_ENUM:
params[0] = (GLdouble) v.value_int_4[0];
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = (GLdouble) v.value_int_n.ints[i];
break;
case TYPE_UINT_4:
params[3] = (GLdouble) ((GLuint) v.value_int_4[3]);
case TYPE_UINT_3:
params[2] = (GLdouble) ((GLuint) v.value_int_4[2]);
case TYPE_UINT_2:
params[1] = (GLdouble) ((GLuint) v.value_int_4[1]);
case TYPE_UINT:
params[0] = (GLdouble) ((GLuint) v.value_int_4[0]);
break;
case TYPE_INT64:
params[0] = (GLdouble) v.value_int64;
break;
case TYPE_BOOLEAN:
params[0] = (GLdouble) BOOLEAN_TO_FLOAT(v.value_bool);
break;
case TYPE_MATRIX:
m = *(GLmatrix **) &v;
for (i = 0; i < 16; i++)
params[i] = (GLdouble) m->m[i];
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) &v;
for (i = 0; i < 16; i++)
params[i] = (GLdouble) m->m[transpose[i]];
break;
default:
;
}
}
void GLAPIENTRY
_mesa_GetFixedv(GLenum pname, GLfixed *params)
{
const struct value_desc *d;
union value v;
GLmatrix *m;
int shift, i;
void *p;
d = find_value("glGetDoublev", pname, &p, &v);
switch (d->type) {
case TYPE_INVALID:
break;
case TYPE_CONST:
params[0] = INT_TO_FIXED(d->offset);
break;
case TYPE_FLOAT_4:
case TYPE_FLOATN_4:
params[3] = FLOAT_TO_FIXED(((GLfloat *) p)[3]);
case TYPE_FLOAT_3:
case TYPE_FLOATN_3:
params[2] = FLOAT_TO_FIXED(((GLfloat *) p)[2]);
case TYPE_FLOAT_2:
case TYPE_FLOATN_2:
params[1] = FLOAT_TO_FIXED(((GLfloat *) p)[1]);
case TYPE_FLOAT:
case TYPE_FLOATN:
params[0] = FLOAT_TO_FIXED(((GLfloat *) p)[0]);
break;
case TYPE_DOUBLEN_2:
params[1] = FLOAT_TO_FIXED(((GLdouble *) p)[1]);
case TYPE_DOUBLEN:
params[0] = FLOAT_TO_FIXED(((GLdouble *) p)[0]);
break;
case TYPE_INT_4:
case TYPE_UINT_4:
params[3] = INT_TO_FIXED(((GLint *) p)[3]);
case TYPE_INT_3:
case TYPE_UINT_3:
params[2] = INT_TO_FIXED(((GLint *) p)[2]);
case TYPE_INT_2:
case TYPE_UINT_2:
case TYPE_ENUM_2:
params[1] = INT_TO_FIXED(((GLint *) p)[1]);
case TYPE_INT:
case TYPE_UINT:
case TYPE_ENUM:
params[0] = INT_TO_FIXED(((GLint *) p)[0]);
break;
case TYPE_INT_N:
for (i = 0; i < v.value_int_n.n; i++)
params[i] = INT_TO_FIXED(v.value_int_n.ints[i]);
break;
case TYPE_INT64:
params[0] = ((GLint64 *) p)[0];
break;
case TYPE_BOOLEAN:
params[0] = BOOLEAN_TO_FIXED(((GLboolean*) p)[0]);
break;
case TYPE_MATRIX:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_FIXED(m->m[i]);
break;
case TYPE_MATRIX_T:
m = *(GLmatrix **) p;
for (i = 0; i < 16; i++)
params[i] = FLOAT_TO_FIXED(m->m[transpose[i]]);
break;
case TYPE_BIT_0:
case TYPE_BIT_1:
case TYPE_BIT_2:
case TYPE_BIT_3:
case TYPE_BIT_4:
case TYPE_BIT_5:
case TYPE_BIT_6:
case TYPE_BIT_7:
shift = d->type - TYPE_BIT_0;
params[0] = BOOLEAN_TO_FIXED((*(GLbitfield *) p >> shift) & 1);
break;
}
}