/*
* Copyright (C) 2009 Maciej Cencora.
* Copyright (C) 2008 Nicolai Haehnle.
*
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "radeon_mipmap_tree.h"
#include <errno.h>
#include <unistd.h>
#include "main/teximage.h"
#include "main/texobj.h"
#include "main/enums.h"
#include "radeon_texture.h"
#include "radeon_tile.h"
static unsigned get_aligned_compressed_row_stride(
mesa_format format,
unsigned width,
unsigned minStride)
{
const unsigned blockBytes = _mesa_get_format_bytes(format);
unsigned blockWidth, blockHeight;
unsigned stride;
_mesa_get_format_block_size(format, &blockWidth, &blockHeight);
/* Count number of blocks required to store the given width.
* And then multiple it with bytes required to store a block.
*/
stride = (width + blockWidth - 1) / blockWidth * blockBytes;
/* Round the given minimum stride to the next full blocksize.
* (minStride + blockBytes - 1) / blockBytes * blockBytes
*/
if ( stride < minStride )
stride = (minStride + blockBytes - 1) / blockBytes * blockBytes;
radeon_print(RADEON_TEXTURE, RADEON_TRACE,
"%s width %u, minStride %u, block(bytes %u, width %u):"
"stride %u\n",
__func__, width, minStride,
blockBytes, blockWidth,
stride);
return stride;
}
unsigned get_texture_image_size(
mesa_format format,
unsigned rowStride,
unsigned height,
unsigned depth,
unsigned tiling)
{
if (_mesa_is_format_compressed(format)) {
unsigned blockWidth, blockHeight;
_mesa_get_format_block_size(format, &blockWidth, &blockHeight);
return rowStride * ((height + blockHeight - 1) / blockHeight) * depth;
} else if (tiling) {
/* Need to align height to tile height */
unsigned tileWidth, tileHeight;
get_tile_size(format, &tileWidth, &tileHeight);
tileHeight--;
height = (height + tileHeight) & ~tileHeight;
}
return rowStride * height * depth;
}
unsigned get_texture_image_row_stride(radeonContextPtr rmesa, mesa_format format, unsigned width, unsigned tiling, GLuint target)
{
if (_mesa_is_format_compressed(format)) {
return get_aligned_compressed_row_stride(format, width, rmesa->texture_compressed_row_align);
} else {
unsigned row_align;
if (!_mesa_is_pow_two(width) || target == GL_TEXTURE_RECTANGLE) {
row_align = rmesa->texture_rect_row_align - 1;
} else if (tiling) {
unsigned tileWidth, tileHeight;
get_tile_size(format, &tileWidth, &tileHeight);
row_align = tileWidth * _mesa_get_format_bytes(format) - 1;
} else {
row_align = rmesa->texture_row_align - 1;
}
return (_mesa_format_row_stride(format, width) + row_align) & ~row_align;
}
}
/**
* Compute sizes and fill in offset and blit information for the given
* image (determined by \p face and \p level).
*
* \param curOffset points to the offset at which the image is to be stored
* and is updated by this function according to the size of the image.
*/
static void compute_tex_image_offset(radeonContextPtr rmesa, radeon_mipmap_tree *mt,
GLuint face, GLuint level, GLuint* curOffset)
{
radeon_mipmap_level *lvl = &mt->levels[level];
GLuint height;
height = _mesa_next_pow_two_32(lvl->height);
lvl->rowstride = get_texture_image_row_stride(rmesa, mt->mesaFormat, lvl->width, mt->tilebits, mt->target);
lvl->size = get_texture_image_size(mt->mesaFormat, lvl->rowstride, height, lvl->depth, mt->tilebits);
assert(lvl->size > 0);
lvl->faces[face].offset = *curOffset;
*curOffset += lvl->size;
radeon_print(RADEON_TEXTURE, RADEON_TRACE,
"%s(%p) level %d, face %d: rs:%d %dx%d at %d\n",
__func__, rmesa,
level, face,
lvl->rowstride, lvl->width, height, lvl->faces[face].offset);
}
static void calculate_miptree_layout(radeonContextPtr rmesa, radeon_mipmap_tree *mt)
{
GLuint curOffset, i, face, level;
assert(mt->numLevels <= rmesa->glCtx.Const.MaxTextureLevels);
curOffset = 0;
for(face = 0; face < mt->faces; face++) {
for(i = 0, level = mt->baseLevel; i < mt->numLevels; i++, level++) {
mt->levels[level].valid = 1;
mt->levels[level].width = minify(mt->width0, i);
mt->levels[level].height = minify(mt->height0, i);
mt->levels[level].depth = minify(mt->depth0, i);
compute_tex_image_offset(rmesa, mt, face, level, &curOffset);
}
}
/* Note the required size in memory */
mt->totalsize = (curOffset + RADEON_OFFSET_MASK) & ~RADEON_OFFSET_MASK;
radeon_print(RADEON_TEXTURE, RADEON_TRACE,
"%s(%p, %p) total size %d\n",
__func__, rmesa, mt, mt->totalsize);
}
/**
* Create a new mipmap tree, calculate its layout and allocate memory.
*/
radeon_mipmap_tree* radeon_miptree_create(radeonContextPtr rmesa,
GLenum target, mesa_format mesaFormat, GLuint baseLevel, GLuint numLevels,
GLuint width0, GLuint height0, GLuint depth0, GLuint tilebits)
{
radeon_mipmap_tree *mt = CALLOC_STRUCT(_radeon_mipmap_tree);
radeon_print(RADEON_TEXTURE, RADEON_NORMAL,
"%s(%p) new tree is %p.\n",
__func__, rmesa, mt);
mt->mesaFormat = mesaFormat;
mt->refcount = 1;
mt->target = target;
mt->faces = _mesa_num_tex_faces(target);
mt->baseLevel = baseLevel;
mt->numLevels = numLevels;
mt->width0 = width0;
mt->height0 = height0;
mt->depth0 = depth0;
mt->tilebits = tilebits;
calculate_miptree_layout(rmesa, mt);
mt->bo = radeon_bo_open(rmesa->radeonScreen->bom,
0, mt->totalsize, 1024,
RADEON_GEM_DOMAIN_VRAM,
0);
return mt;
}
void radeon_miptree_reference(radeon_mipmap_tree *mt, radeon_mipmap_tree **ptr)
{
assert(!*ptr);
mt->refcount++;
assert(mt->refcount > 0);
*ptr = mt;
}
void radeon_miptree_unreference(radeon_mipmap_tree **ptr)
{
radeon_mipmap_tree *mt = *ptr;
if (!mt)
return;
assert(mt->refcount > 0);
mt->refcount--;
if (!mt->refcount) {
radeon_bo_unref(mt->bo);
free(mt);
}
*ptr = 0;
}
/**
* Calculate min and max LOD for the given texture object.
* @param[in] tObj texture object whose LOD values to calculate
* @param[out] pminLod minimal LOD
* @param[out] pmaxLod maximal LOD
*/
static void calculate_min_max_lod(struct gl_sampler_object *samp, struct gl_texture_object *tObj,
unsigned *pminLod, unsigned *pmaxLod)
{
int minLod, maxLod;
/* Yes, this looks overly complicated, but it's all needed.
*/
switch (tObj->Target) {
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
case GL_TEXTURE_3D:
case GL_TEXTURE_CUBE_MAP:
if (samp->MinFilter == GL_NEAREST || samp->MinFilter == GL_LINEAR) {
/* GL_NEAREST and GL_LINEAR only care about GL_TEXTURE_BASE_LEVEL.
*/
minLod = maxLod = tObj->BaseLevel;
} else {
minLod = tObj->BaseLevel + (GLint)(samp->MinLod);
minLod = MAX2(minLod, tObj->BaseLevel);
minLod = MIN2(minLod, tObj->MaxLevel);
maxLod = tObj->BaseLevel + (GLint)(samp->MaxLod + 0.5);
maxLod = MIN2(maxLod, tObj->MaxLevel);
maxLod = MIN2(maxLod, tObj->Image[0][minLod]->MaxNumLevels - 1 + minLod);
maxLod = MAX2(maxLod, minLod); /* need at least one level */
}
break;
case GL_TEXTURE_RECTANGLE_NV:
case GL_TEXTURE_4D_SGIS:
minLod = maxLod = 0;
break;
default:
return;
}
radeon_print(RADEON_TEXTURE, RADEON_TRACE,
"%s(%p) target %s, min %d, max %d.\n",
__func__, tObj,
_mesa_enum_to_string(tObj->Target),
minLod, maxLod);
/* save these values */
*pminLod = minLod;
*pmaxLod = maxLod;
}
/**
* Checks whether the given miptree can hold the given texture image at the
* given face and level.
*/
GLboolean radeon_miptree_matches_image(radeon_mipmap_tree *mt,
struct gl_texture_image *texImage)
{
radeon_mipmap_level *lvl;
GLuint level = texImage->Level;
if (texImage->TexFormat != mt->mesaFormat)
return GL_FALSE;
lvl = &mt->levels[level];
if (!lvl->valid ||
lvl->width != texImage->Width ||
lvl->height != texImage->Height ||
lvl->depth != texImage->Depth)
return GL_FALSE;
return GL_TRUE;
}
/**
* Checks whether the given miptree has the right format to store the given texture object.
*/
static GLboolean radeon_miptree_matches_texture(radeon_mipmap_tree *mt, struct gl_texture_object *texObj)
{
struct gl_texture_image *firstImage;
unsigned numLevels;
radeon_mipmap_level *mtBaseLevel;
if (texObj->BaseLevel < mt->baseLevel)
return GL_FALSE;
mtBaseLevel = &mt->levels[texObj->BaseLevel - mt->baseLevel];
firstImage = texObj->Image[0][texObj->BaseLevel];
numLevels = MIN2(texObj->_MaxLevel - texObj->BaseLevel + 1, firstImage->MaxNumLevels);
if (radeon_is_debug_enabled(RADEON_TEXTURE,RADEON_TRACE)) {
fprintf(stderr, "Checking if miptree %p matches texObj %p\n", mt, texObj);
fprintf(stderr, "target %d vs %d\n", mt->target, texObj->Target);
fprintf(stderr, "format %d vs %d\n", mt->mesaFormat, firstImage->TexFormat);
fprintf(stderr, "numLevels %d vs %d\n", mt->numLevels, numLevels);
fprintf(stderr, "width0 %d vs %d\n", mtBaseLevel->width, firstImage->Width);
fprintf(stderr, "height0 %d vs %d\n", mtBaseLevel->height, firstImage->Height);
fprintf(stderr, "depth0 %d vs %d\n", mtBaseLevel->depth, firstImage->Depth);
if (mt->target == texObj->Target &&
mt->mesaFormat == firstImage->TexFormat &&
mt->numLevels >= numLevels &&
mtBaseLevel->width == firstImage->Width &&
mtBaseLevel->height == firstImage->Height &&
mtBaseLevel->depth == firstImage->Depth) {
fprintf(stderr, "MATCHED\n");
} else {
fprintf(stderr, "NOT MATCHED\n");
}
}
return (mt->target == texObj->Target &&
mt->mesaFormat == firstImage->TexFormat &&
mt->numLevels >= numLevels &&
mtBaseLevel->width == firstImage->Width &&
mtBaseLevel->height == firstImage->Height &&
mtBaseLevel->depth == firstImage->Depth);
}
/**
* Try to allocate a mipmap tree for the given texture object.
* @param[in] rmesa radeon context
* @param[in] t radeon texture object
*/
void radeon_try_alloc_miptree(radeonContextPtr rmesa, radeonTexObj *t)
{
struct gl_texture_object *texObj = &t->base;
struct gl_texture_image *texImg = texObj->Image[0][texObj->BaseLevel];
GLuint numLevels;
assert(!t->mt);
if (!texImg) {
radeon_warning("%s(%p) No image in given texture object(%p).\n",
__func__, rmesa, t);
return;
}
numLevels = MIN2(texObj->MaxLevel - texObj->BaseLevel + 1, texImg->MaxNumLevels);
t->mt = radeon_miptree_create(rmesa, t->base.Target,
texImg->TexFormat, texObj->BaseLevel,
numLevels, texImg->Width, texImg->Height,
texImg->Depth, t->tile_bits);
}
GLuint
radeon_miptree_image_offset(radeon_mipmap_tree *mt,
GLuint face, GLuint level)
{
if (mt->target == GL_TEXTURE_CUBE_MAP_ARB)
return (mt->levels[level].faces[face].offset);
else
return mt->levels[level].faces[0].offset;
}
/**
* Ensure that the given image is stored in the given miptree from now on.
*/
static void migrate_image_to_miptree(radeon_mipmap_tree *mt,
radeon_texture_image *image,
int face, int level)
{
radeon_mipmap_level *dstlvl = &mt->levels[level];
unsigned char *dest;
assert(image->mt != mt);
assert(dstlvl->valid);
assert(dstlvl->width == image->base.Base.Width);
assert(dstlvl->height == image->base.Base.Height);
assert(dstlvl->depth == image->base.Base.Depth);
radeon_print(RADEON_TEXTURE, RADEON_VERBOSE,
"%s miptree %p, image %p, face %d, level %d.\n",
__func__, mt, image, face, level);
radeon_bo_map(mt->bo, GL_TRUE);
dest = mt->bo->ptr + dstlvl->faces[face].offset;
if (image->mt) {
/* Format etc. should match, so we really just need a memcpy().
* In fact, that memcpy() could be done by the hardware in many
* cases, provided that we have a proper memory manager.
*/
assert(mt->mesaFormat == image->base.Base.TexFormat);
radeon_mipmap_level *srclvl = &image->mt->levels[image->base.Base.Level];
assert(image->base.Base.Level == level);
assert(srclvl->size == dstlvl->size);
assert(srclvl->rowstride == dstlvl->rowstride);
radeon_bo_map(image->mt->bo, GL_FALSE);
memcpy(dest,
image->mt->bo->ptr + srclvl->faces[face].offset,
dstlvl->size);
radeon_bo_unmap(image->mt->bo);
radeon_miptree_unreference(&image->mt);
}
radeon_bo_unmap(mt->bo);
radeon_miptree_reference(mt, &image->mt);
}
/**
* Filter matching miptrees, and select one with the most of data.
* @param[in] texObj radeon texture object
* @param[in] firstLevel first texture level to check
* @param[in] lastLevel last texture level to check
*/
static radeon_mipmap_tree * get_biggest_matching_miptree(radeonTexObj *texObj,
unsigned firstLevel,
unsigned lastLevel)
{
const unsigned numLevels = lastLevel - firstLevel + 1;
unsigned *mtSizes = calloc(numLevels, sizeof(unsigned));
radeon_mipmap_tree **mts = calloc(numLevels, sizeof(radeon_mipmap_tree *));
unsigned mtCount = 0;
unsigned maxMtIndex = 0;
radeon_mipmap_tree *tmp;
unsigned int level;
int i;
for (level = firstLevel; level <= lastLevel; ++level) {
radeon_texture_image *img = get_radeon_texture_image(texObj->base.Image[0][level]);
unsigned found = 0;
// TODO: why this hack??
if (!img)
break;
if (!img->mt)
continue;
for (i = 0; i < mtCount; ++i) {
if (mts[i] == img->mt) {
found = 1;
mtSizes[i] += img->mt->levels[img->base.Base.Level].size;
break;
}
}
if (!found && radeon_miptree_matches_texture(img->mt, &texObj->base)) {
mtSizes[mtCount] = img->mt->levels[img->base.Base.Level].size;
mts[mtCount] = img->mt;
mtCount++;
}
}
if (mtCount == 0) {
free(mtSizes);
free(mts);
return NULL;
}
for (i = 1; i < mtCount; ++i) {
if (mtSizes[i] > mtSizes[maxMtIndex]) {
maxMtIndex = i;
}
}
tmp = mts[maxMtIndex];
free(mtSizes);
free(mts);
return tmp;
}
/**
* Validate texture mipmap tree.
* If individual images are stored in different mipmap trees
* use the mipmap tree that has the most of the correct data.
*/
int radeon_validate_texture_miptree(struct gl_context * ctx,
struct gl_sampler_object *samp,
struct gl_texture_object *texObj)
{
radeonContextPtr rmesa = RADEON_CONTEXT(ctx);
radeonTexObj *t = radeon_tex_obj(texObj);
radeon_mipmap_tree *dst_miptree;
if (samp == &texObj->Sampler && (t->validated || t->image_override)) {
return GL_TRUE;
}
calculate_min_max_lod(samp, &t->base, &t->minLod, &t->maxLod);
radeon_print(RADEON_TEXTURE, RADEON_NORMAL,
"%s: Validating texture %p now, minLod = %d, maxLod = %d\n",
__func__, texObj ,t->minLod, t->maxLod);
dst_miptree = get_biggest_matching_miptree(t, t->base.BaseLevel, t->base._MaxLevel);
radeon_miptree_unreference(&t->mt);
if (!dst_miptree) {
radeon_try_alloc_miptree(rmesa, t);
radeon_print(RADEON_TEXTURE, RADEON_NORMAL,
"%s: No matching miptree found, allocated new one %p\n",
__func__, t->mt);
} else {
radeon_miptree_reference(dst_miptree, &t->mt);
radeon_print(RADEON_TEXTURE, RADEON_NORMAL,
"%s: Using miptree %p\n", __func__, t->mt);
}
const unsigned faces = _mesa_num_tex_faces(texObj->Target);
unsigned face, level;
radeon_texture_image *img;
/* Validate only the levels that will actually be used during rendering */
for (face = 0; face < faces; ++face) {
for (level = t->minLod; level <= t->maxLod; ++level) {
img = get_radeon_texture_image(texObj->Image[face][level]);
radeon_print(RADEON_TEXTURE, RADEON_TRACE,
"Checking image level %d, face %d, mt %p ... ",
level, face, img->mt);
if (img->mt != t->mt && !img->used_as_render_target) {
radeon_print(RADEON_TEXTURE, RADEON_TRACE,
"MIGRATING\n");
struct radeon_bo *src_bo = (img->mt) ? img->mt->bo : img->bo;
if (src_bo && radeon_bo_is_referenced_by_cs(src_bo, rmesa->cmdbuf.cs)) {
radeon_firevertices(rmesa);
}
migrate_image_to_miptree(t->mt, img, face, level);
} else
radeon_print(RADEON_TEXTURE, RADEON_TRACE, "OK\n");
}
}
t->validated = GL_TRUE;
return GL_TRUE;
}
uint32_t get_base_teximage_offset(radeonTexObj *texObj)
{
if (!texObj->mt) {
return 0;
} else {
return radeon_miptree_image_offset(texObj->mt, 0, texObj->minLod);
}
}