/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "brw_nir.h"
#include "brw_vec4.h"
#include "brw_vec4_builder.h"
#include "brw_vec4_surface_builder.h"
#include "brw_program.h"
using namespace brw;
using namespace brw::surface_access;
namespace brw {
void
vec4_visitor::emit_nir_code()
{
if (nir->num_uniforms > 0)
nir_setup_uniforms();
nir_setup_system_values();
/* get the main function and emit it */
nir_foreach_function(function, nir) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
nir_emit_impl(function->impl);
}
}
void
vec4_visitor::nir_setup_system_value_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg *reg;
switch (instr->intrinsic) {
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id().");
case nir_intrinsic_load_vertex_id_zero_base:
reg = &nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
break;
case nir_intrinsic_load_base_vertex:
reg = &nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_VERTEX);
break;
case nir_intrinsic_load_instance_id:
reg = &nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_INSTANCE_ID);
break;
case nir_intrinsic_load_base_instance:
reg = &nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_BASE_INSTANCE);
break;
case nir_intrinsic_load_draw_id:
reg = &nir_system_values[SYSTEM_VALUE_DRAW_ID];
if (reg->file == BAD_FILE)
*reg = *make_reg_for_system_value(SYSTEM_VALUE_DRAW_ID);
break;
default:
break;
}
}
static bool
setup_system_values_block(nir_block *block, vec4_visitor *v)
{
nir_foreach_instr(instr, block) {
if (instr->type != nir_instr_type_intrinsic)
continue;
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
v->nir_setup_system_value_intrinsic(intrin);
}
return true;
}
void
vec4_visitor::nir_setup_system_values()
{
nir_system_values = ralloc_array(mem_ctx, dst_reg, SYSTEM_VALUE_MAX);
for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
nir_system_values[i] = dst_reg();
}
nir_foreach_function(function, nir) {
assert(strcmp(function->name, "main") == 0);
assert(function->impl);
nir_foreach_block(block, function->impl) {
setup_system_values_block(block, this);
}
}
}
void
vec4_visitor::nir_setup_uniforms()
{
uniforms = nir->num_uniforms / 16;
}
void
vec4_visitor::nir_emit_impl(nir_function_impl *impl)
{
nir_locals = ralloc_array(mem_ctx, dst_reg, impl->reg_alloc);
for (unsigned i = 0; i < impl->reg_alloc; i++) {
nir_locals[i] = dst_reg();
}
foreach_list_typed(nir_register, reg, node, &impl->registers) {
unsigned array_elems =
reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
const unsigned num_regs = array_elems * DIV_ROUND_UP(reg->bit_size, 32);
nir_locals[reg->index] = dst_reg(VGRF, alloc.allocate(num_regs));
if (reg->bit_size == 64)
nir_locals[reg->index].type = BRW_REGISTER_TYPE_DF;
}
nir_ssa_values = ralloc_array(mem_ctx, dst_reg, impl->ssa_alloc);
nir_emit_cf_list(&impl->body);
}
void
vec4_visitor::nir_emit_cf_list(exec_list *list)
{
exec_list_validate(list);
foreach_list_typed(nir_cf_node, node, node, list) {
switch (node->type) {
case nir_cf_node_if:
nir_emit_if(nir_cf_node_as_if(node));
break;
case nir_cf_node_loop:
nir_emit_loop(nir_cf_node_as_loop(node));
break;
case nir_cf_node_block:
nir_emit_block(nir_cf_node_as_block(node));
break;
default:
unreachable("Invalid CFG node block");
}
}
}
void
vec4_visitor::nir_emit_if(nir_if *if_stmt)
{
/* First, put the condition in f0 */
src_reg condition = get_nir_src(if_stmt->condition, BRW_REGISTER_TYPE_D, 1);
vec4_instruction *inst = emit(MOV(dst_null_d(), condition));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* We can just predicate based on the X channel, as the condition only
* goes on its own line */
emit(IF(BRW_PREDICATE_ALIGN16_REPLICATE_X));
nir_emit_cf_list(&if_stmt->then_list);
/* note: if the else is empty, dead CF elimination will remove it */
emit(BRW_OPCODE_ELSE);
nir_emit_cf_list(&if_stmt->else_list);
emit(BRW_OPCODE_ENDIF);
}
void
vec4_visitor::nir_emit_loop(nir_loop *loop)
{
emit(BRW_OPCODE_DO);
nir_emit_cf_list(&loop->body);
emit(BRW_OPCODE_WHILE);
}
void
vec4_visitor::nir_emit_block(nir_block *block)
{
nir_foreach_instr(instr, block) {
nir_emit_instr(instr);
}
}
void
vec4_visitor::nir_emit_instr(nir_instr *instr)
{
base_ir = instr;
switch (instr->type) {
case nir_instr_type_load_const:
nir_emit_load_const(nir_instr_as_load_const(instr));
break;
case nir_instr_type_intrinsic:
nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
break;
case nir_instr_type_alu:
nir_emit_alu(nir_instr_as_alu(instr));
break;
case nir_instr_type_jump:
nir_emit_jump(nir_instr_as_jump(instr));
break;
case nir_instr_type_tex:
nir_emit_texture(nir_instr_as_tex(instr));
break;
case nir_instr_type_ssa_undef:
nir_emit_undef(nir_instr_as_ssa_undef(instr));
break;
default:
fprintf(stderr, "VS instruction not yet implemented by NIR->vec4\n");
break;
}
}
static dst_reg
dst_reg_for_nir_reg(vec4_visitor *v, nir_register *nir_reg,
unsigned base_offset, nir_src *indirect)
{
dst_reg reg;
reg = v->nir_locals[nir_reg->index];
if (nir_reg->bit_size == 64)
reg.type = BRW_REGISTER_TYPE_DF;
reg = offset(reg, 8, base_offset);
if (indirect) {
reg.reladdr =
new(v->mem_ctx) src_reg(v->get_nir_src(*indirect,
BRW_REGISTER_TYPE_D,
1));
}
return reg;
}
dst_reg
vec4_visitor::get_nir_dest(const nir_dest &dest)
{
if (dest.is_ssa) {
dst_reg dst =
dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(dest.ssa.bit_size, 32)));
if (dest.ssa.bit_size == 64)
dst.type = BRW_REGISTER_TYPE_DF;
nir_ssa_values[dest.ssa.index] = dst;
return dst;
} else {
return dst_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
dest.reg.indirect);
}
}
dst_reg
vec4_visitor::get_nir_dest(const nir_dest &dest, enum brw_reg_type type)
{
return retype(get_nir_dest(dest), type);
}
dst_reg
vec4_visitor::get_nir_dest(const nir_dest &dest, nir_alu_type type)
{
return get_nir_dest(dest, brw_type_for_nir_type(type));
}
src_reg
vec4_visitor::get_nir_src(const nir_src &src, enum brw_reg_type type,
unsigned num_components)
{
dst_reg reg;
if (src.is_ssa) {
assert(src.ssa != NULL);
reg = nir_ssa_values[src.ssa->index];
}
else {
reg = dst_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
src.reg.indirect);
}
reg = retype(reg, type);
src_reg reg_as_src = src_reg(reg);
reg_as_src.swizzle = brw_swizzle_for_size(num_components);
return reg_as_src;
}
src_reg
vec4_visitor::get_nir_src(const nir_src &src, nir_alu_type type,
unsigned num_components)
{
return get_nir_src(src, brw_type_for_nir_type(type), num_components);
}
src_reg
vec4_visitor::get_nir_src(const nir_src &src, unsigned num_components)
{
/* if type is not specified, default to signed int */
return get_nir_src(src, nir_type_int32, num_components);
}
src_reg
vec4_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
{
nir_src *offset_src = nir_get_io_offset_src(instr);
nir_const_value *const_value = nir_src_as_const_value(*offset_src);
if (const_value) {
/* The only constant offset we should find is 0. brw_nir.c's
* add_const_offset_to_base() will fold other constant offsets
* into instr->const_index[0].
*/
assert(const_value->u32[0] == 0);
return src_reg();
}
return get_nir_src(*offset_src, BRW_REGISTER_TYPE_UD, 1);
}
void
vec4_visitor::nir_emit_load_const(nir_load_const_instr *instr)
{
dst_reg reg;
if (instr->def.bit_size == 64) {
reg = dst_reg(VGRF, alloc.allocate(2));
reg.type = BRW_REGISTER_TYPE_DF;
} else {
reg = dst_reg(VGRF, alloc.allocate(1));
reg.type = BRW_REGISTER_TYPE_D;
}
unsigned remaining = brw_writemask_for_size(instr->def.num_components);
/* @FIXME: consider emitting vector operations to save some MOVs in
* cases where the components are representable in 8 bits.
* For now, we emit a MOV for each distinct value.
*/
for (unsigned i = 0; i < instr->def.num_components; i++) {
unsigned writemask = 1 << i;
if ((remaining & writemask) == 0)
continue;
for (unsigned j = i; j < instr->def.num_components; j++) {
if ((instr->def.bit_size == 32 &&
instr->value.u32[i] == instr->value.u32[j]) ||
(instr->def.bit_size == 64 &&
instr->value.f64[i] == instr->value.f64[j])) {
writemask |= 1 << j;
}
}
reg.writemask = writemask;
if (instr->def.bit_size == 64) {
emit(MOV(reg, setup_imm_df(instr->value.f64[i])));
} else {
emit(MOV(reg, brw_imm_d(instr->value.i32[i])));
}
remaining &= ~writemask;
}
/* Set final writemask */
reg.writemask = brw_writemask_for_size(instr->def.num_components);
nir_ssa_values[instr->def.index] = reg;
}
void
vec4_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
dst_reg dest;
src_reg src;
switch (instr->intrinsic) {
case nir_intrinsic_load_input: {
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
/* We set EmitNoIndirectInput for VS */
assert(const_offset);
dest = get_nir_dest(instr->dest);
dest.writemask = brw_writemask_for_size(instr->num_components);
src = src_reg(ATTR, instr->const_index[0] + const_offset->u32[0],
glsl_type::uvec4_type);
src = retype(src, dest.type);
bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
if (is_64bit) {
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
src.swizzle = BRW_SWIZZLE_XYZW;
shuffle_64bit_data(tmp, src, false);
emit(MOV(dest, src_reg(tmp)));
} else {
/* Swizzle source based on component layout qualifier */
src.swizzle = BRW_SWZ_COMP_INPUT(nir_intrinsic_component(instr));
emit(MOV(dest, src));
}
break;
}
case nir_intrinsic_store_output: {
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
assert(const_offset);
int varying = instr->const_index[0] + const_offset->u32[0];
bool is_64bit = nir_src_bit_size(instr->src[0]) == 64;
if (is_64bit) {
src_reg data;
src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_DF,
instr->num_components);
data = src_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(dst_reg(data), src, true);
src = retype(data, BRW_REGISTER_TYPE_F);
} else {
src = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F,
instr->num_components);
}
unsigned c = nir_intrinsic_component(instr);
output_reg[varying][c] = dst_reg(src);
output_num_components[varying][c] = instr->num_components;
unsigned num_components = instr->num_components;
if (is_64bit)
num_components *= 2;
output_reg[varying][c] = dst_reg(src);
output_num_components[varying][c] = MIN2(4, num_components);
if (is_64bit && num_components > 4) {
assert(num_components <= 8);
output_reg[varying + 1][c] = byte_offset(dst_reg(src), REG_SIZE);
output_num_components[varying + 1][c] = num_components - 4;
}
break;
}
case nir_intrinsic_get_buffer_size: {
nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
const unsigned index =
prog_data->base.binding_table.ssbo_start + ssbo_index;
dst_reg result_dst = get_nir_dest(instr->dest);
vec4_instruction *inst = new(mem_ctx)
vec4_instruction(VS_OPCODE_GET_BUFFER_SIZE, result_dst);
inst->base_mrf = 2;
inst->mlen = 1; /* always at least one */
inst->src[1] = brw_imm_ud(index);
/* MRF for the first parameter */
src_reg lod = brw_imm_d(0);
int param_base = inst->base_mrf;
int writemask = WRITEMASK_X;
emit(MOV(dst_reg(MRF, param_base, glsl_type::int_type, writemask), lod));
emit(inst);
brw_mark_surface_used(&prog_data->base, index);
break;
}
case nir_intrinsic_store_ssbo: {
assert(devinfo->gen >= 7);
/* Block index */
src_reg surf_index;
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[1]);
if (const_uniform_block) {
unsigned index = prog_data->base.binding_table.ssbo_start +
const_uniform_block->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[1], 1),
brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
surf_index = emit_uniformize(surf_index);
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ssbo_start +
nir->info->num_ssbos - 1);
}
/* Offset */
src_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0]);
} else {
offset_reg = get_nir_src(instr->src[2], 1);
}
/* Value */
src_reg val_reg = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_F, 4);
/* Writemask */
unsigned write_mask = instr->const_index[0];
/* IvyBridge does not have a native SIMD4x2 untyped write message so untyped
* writes will use SIMD8 mode. In order to hide this and keep symmetry across
* typed and untyped messages and across hardware platforms, the
* current implementation of the untyped messages will transparently convert
* the SIMD4x2 payload into an equivalent SIMD8 payload by transposing it
* and enabling only channel X on the SEND instruction.
*
* The above, works well for full vector writes, but not for partial writes
* where we want to write some channels and not others, like when we have
* code such as v.xyw = vec3(1,2,4). Because the untyped write messages are
* quite restrictive with regards to the channel enables we can configure in
* the message descriptor (not all combinations are allowed) we cannot simply
* implement these scenarios with a single message while keeping the
* aforementioned symmetry in the implementation. For now we de decided that
* it is better to keep the symmetry to reduce complexity, so in situations
* such as the one described we end up emitting two untyped write messages
* (one for xy and another for w).
*
* The code below packs consecutive channels into a single write message,
* detects gaps in the vector write and if needed, sends a second message
* with the remaining channels. If in the future we decide that we want to
* emit a single message at the expense of losing the symmetry in the
* implementation we can:
*
* 1) For IvyBridge: Only use the red channel of the untyped write SIMD8
* message payload. In this mode we can write up to 8 offsets and dwords
* to the red channel only (for the two vec4s in the SIMD4x2 execution)
* and select which of the 8 channels carry data to write by setting the
* appropriate writemask in the dst register of the SEND instruction.
* It would require to write a new generator opcode specifically for
* IvyBridge since we would need to prepare a SIMD8 payload that could
* use any channel, not just X.
*
* 2) For Haswell+: Simply send a single write message but set the writemask
* on the dst of the SEND instruction to select the channels we want to
* write. It would require to modify the current messages to receive
* and honor the writemask provided.
*/
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
unsigned type_slots = nir_src_bit_size(instr->src[0]) / 32;
if (type_slots == 2) {
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(tmp, retype(val_reg, tmp.type), true);
val_reg = src_reg(retype(tmp, BRW_REGISTER_TYPE_F));
}
uint8_t swizzle[4] = { 0, 0, 0, 0};
int num_channels = 0;
unsigned skipped_channels = 0;
int num_components = instr->num_components;
for (int i = 0; i < num_components; i++) {
/* Read components Z/W of a dvec from the appropriate place. We will
* also have to adjust the swizzle (we do that with the '% 4' below)
*/
if (i == 2 && type_slots == 2)
val_reg = byte_offset(val_reg, REG_SIZE);
/* Check if this channel needs to be written. If so, record the
* channel we need to take the data from in the swizzle array
*/
int component_mask = 1 << i;
int write_test = write_mask & component_mask;
if (write_test) {
/* If we are writing doubles we have to write 2 channels worth of
* of data (64 bits) for each double component.
*/
swizzle[num_channels++] = (i * type_slots) % 4;
if (type_slots == 2)
swizzle[num_channels++] = (i * type_slots + 1) % 4;
}
/* If we don't have to write this channel it means we have a gap in the
* vector, so write the channels we accumulated until now, if any. Do
* the same if this was the last component in the vector, if we have
* enough channels for a full vec4 write or if we have processed
* components XY of a dvec (since components ZW are not in the same
* SIMD register)
*/
if (!write_test || i == num_components - 1 || num_channels == 4 ||
(i == 1 && type_slots == 2)) {
if (num_channels > 0) {
/* We have channels to write, so update the offset we need to
* write at to skip the channels we skipped, if any.
*/
if (skipped_channels > 0) {
if (offset_reg.file == IMM) {
offset_reg.ud += 4 * skipped_channels;
} else {
emit(ADD(dst_reg(offset_reg), offset_reg,
brw_imm_ud(4 * skipped_channels)));
}
}
/* Swizzle the data register so we take the data from the channels
* we need to write and send the write message. This will write
* num_channels consecutive dwords starting at offset.
*/
val_reg.swizzle =
BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
emit_untyped_write(bld, surf_index, offset_reg, val_reg,
1 /* dims */, num_channels /* size */,
BRW_PREDICATE_NONE);
/* If we have to do a second write we will have to update the
* offset so that we jump over the channels we have just written
* now.
*/
skipped_channels = num_channels;
/* Restart the count for the next write message */
num_channels = 0;
}
/* If we didn't write the channel, increase skipped count */
if (!write_test)
skipped_channels += type_slots;
}
}
break;
}
case nir_intrinsic_load_ssbo: {
assert(devinfo->gen >= 7);
nir_const_value *const_uniform_block =
nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
if (const_uniform_block) {
unsigned index = prog_data->base.binding_table.ssbo_start +
const_uniform_block->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], 1),
brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ssbo_start +
nir->info->num_ssbos - 1);
}
src_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0]);
} else {
offset_reg = get_nir_src(instr->src[1], 1);
}
/* Read the vector */
const vec4_builder bld = vec4_builder(this).at_end()
.annotate(current_annotation, base_ir);
src_reg read_result;
dst_reg dest = get_nir_dest(instr->dest);
if (type_sz(dest.type) < 8) {
read_result = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
} else {
src_reg shuffled = src_reg(this, glsl_type::dvec4_type);
src_reg temp;
temp = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
emit(MOV(dst_reg(retype(shuffled, temp.type)), temp));
if (offset_reg.file == IMM)
offset_reg.ud += 16;
else
emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16)));
temp = emit_untyped_read(bld, surf_index, offset_reg,
1 /* dims */, 4 /* size*/,
BRW_PREDICATE_NONE);
emit(MOV(dst_reg(retype(byte_offset(shuffled, REG_SIZE), temp.type)),
temp));
read_result = src_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(dst_reg(read_result), shuffled, false);
}
read_result.type = dest.type;
read_result.swizzle = brw_swizzle_for_size(instr->num_components);
emit(MOV(dest, read_result));
break;
}
case nir_intrinsic_ssbo_atomic_add:
nir_emit_ssbo_atomic(BRW_AOP_ADD, instr);
break;
case nir_intrinsic_ssbo_atomic_imin:
nir_emit_ssbo_atomic(BRW_AOP_IMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_umin:
nir_emit_ssbo_atomic(BRW_AOP_UMIN, instr);
break;
case nir_intrinsic_ssbo_atomic_imax:
nir_emit_ssbo_atomic(BRW_AOP_IMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_umax:
nir_emit_ssbo_atomic(BRW_AOP_UMAX, instr);
break;
case nir_intrinsic_ssbo_atomic_and:
nir_emit_ssbo_atomic(BRW_AOP_AND, instr);
break;
case nir_intrinsic_ssbo_atomic_or:
nir_emit_ssbo_atomic(BRW_AOP_OR, instr);
break;
case nir_intrinsic_ssbo_atomic_xor:
nir_emit_ssbo_atomic(BRW_AOP_XOR, instr);
break;
case nir_intrinsic_ssbo_atomic_exchange:
nir_emit_ssbo_atomic(BRW_AOP_MOV, instr);
break;
case nir_intrinsic_ssbo_atomic_comp_swap:
nir_emit_ssbo_atomic(BRW_AOP_CMPWR, instr);
break;
case nir_intrinsic_load_vertex_id:
unreachable("should be lowered by lower_vertex_id()");
case nir_intrinsic_load_vertex_id_zero_base:
case nir_intrinsic_load_base_vertex:
case nir_intrinsic_load_instance_id:
case nir_intrinsic_load_base_instance:
case nir_intrinsic_load_draw_id:
case nir_intrinsic_load_invocation_id: {
gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
src_reg val = src_reg(nir_system_values[sv]);
assert(val.file != BAD_FILE);
dest = get_nir_dest(instr->dest, val.type);
emit(MOV(dest, val));
break;
}
case nir_intrinsic_load_uniform: {
/* Offsets are in bytes but they should always be multiples of 4 */
assert(nir_intrinsic_base(instr) % 4 == 0);
dest = get_nir_dest(instr->dest);
src = src_reg(dst_reg(UNIFORM, nir_intrinsic_base(instr) / 16));
src.type = dest.type;
/* Uniforms don't actually have to be vec4 aligned. In the case that
* it isn't, we have to use a swizzle to shift things around. They
* do still have the std140 alignment requirement that vec2's have to
* be vec2-aligned and vec3's and vec4's have to be vec4-aligned.
*
* The swizzle also works in the indirect case as the generator adds
* the swizzle to the offset for us.
*/
unsigned shift = (nir_intrinsic_base(instr) % 16) / 4;
assert(shift + instr->num_components <= 4);
nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
if (const_offset) {
/* Offsets are in bytes but they should always be multiples of 4 */
assert(const_offset->u32[0] % 4 == 0);
unsigned offset = const_offset->u32[0] + shift * 4;
src.offset = ROUND_DOWN_TO(offset, 16);
shift = (offset % 16) / 4;
src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
emit(MOV(dest, src));
} else {
src.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
src_reg indirect = get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
/* MOV_INDIRECT is going to stomp the whole thing anyway */
dest.writemask = WRITEMASK_XYZW;
emit(SHADER_OPCODE_MOV_INDIRECT, dest, src,
indirect, brw_imm_ud(instr->const_index[1]));
}
break;
}
case nir_intrinsic_atomic_counter_read:
case nir_intrinsic_atomic_counter_inc:
case nir_intrinsic_atomic_counter_dec: {
unsigned surf_index = prog_data->base.binding_table.abo_start +
(unsigned) instr->const_index[0];
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
/* Get some metadata from the image intrinsic. */
const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
/* Get the arguments of the atomic intrinsic. */
src_reg offset = get_nir_src(instr->src[0], nir_type_int32,
instr->num_components);
const src_reg surface = brw_imm_ud(surf_index);
const src_reg src0 = (info->num_srcs >= 2
? get_nir_src(instr->src[1]) : src_reg());
const src_reg src1 = (info->num_srcs >= 3
? get_nir_src(instr->src[2]) : src_reg());
src_reg tmp;
dest = get_nir_dest(instr->dest);
if (instr->intrinsic == nir_intrinsic_atomic_counter_read) {
tmp = emit_untyped_read(bld, surface, offset, 1, 1);
} else {
tmp = emit_untyped_atomic(bld, surface, offset,
src0, src1,
1, 1,
get_atomic_counter_op(instr->intrinsic));
}
bld.MOV(retype(dest, tmp.type), tmp);
brw_mark_surface_used(stage_prog_data, surf_index);
break;
}
case nir_intrinsic_load_ubo: {
nir_const_value *const_block_index = nir_src_as_const_value(instr->src[0]);
src_reg surf_index;
dest = get_nir_dest(instr->dest);
if (const_block_index) {
/* The block index is a constant, so just emit the binding table entry
* as an immediate.
*/
const unsigned index = prog_data->base.binding_table.ubo_start +
const_block_index->u32[0];
surf_index = brw_imm_ud(index);
brw_mark_surface_used(&prog_data->base, index);
} else {
/* The block index is not a constant. Evaluate the index expression
* per-channel and add the base UBO index; we have to select a value
* from any live channel.
*/
surf_index = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surf_index), get_nir_src(instr->src[0], nir_type_int32,
instr->num_components),
brw_imm_ud(prog_data->base.binding_table.ubo_start)));
surf_index = emit_uniformize(surf_index);
/* Assume this may touch any UBO. It would be nice to provide
* a tighter bound, but the array information is already lowered away.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ubo_start +
nir->info->num_ubos - 1);
}
src_reg offset_reg;
nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
if (const_offset) {
offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
} else {
offset_reg = get_nir_src(instr->src[1], nir_type_uint32, 1);
}
src_reg packed_consts;
if (nir_dest_bit_size(instr->dest) == 32) {
packed_consts = src_reg(this, glsl_type::vec4_type);
emit_pull_constant_load_reg(dst_reg(packed_consts),
surf_index,
offset_reg,
NULL, NULL /* before_block/inst */);
} else {
src_reg temp = src_reg(this, glsl_type::dvec4_type);
src_reg temp_float = retype(temp, BRW_REGISTER_TYPE_F);
emit_pull_constant_load_reg(dst_reg(temp_float),
surf_index, offset_reg, NULL, NULL);
if (offset_reg.file == IMM)
offset_reg.ud += 16;
else
emit(ADD(dst_reg(offset_reg), offset_reg, brw_imm_ud(16u)));
emit_pull_constant_load_reg(dst_reg(byte_offset(temp_float, REG_SIZE)),
surf_index, offset_reg, NULL, NULL);
packed_consts = src_reg(this, glsl_type::dvec4_type);
shuffle_64bit_data(dst_reg(packed_consts), temp, false);
}
packed_consts.swizzle = brw_swizzle_for_size(instr->num_components);
if (const_offset) {
unsigned type_size = type_sz(dest.type);
packed_consts.swizzle +=
BRW_SWIZZLE4(const_offset->u32[0] % 16 / type_size,
const_offset->u32[0] % 16 / type_size,
const_offset->u32[0] % 16 / type_size,
const_offset->u32[0] % 16 / type_size);
}
emit(MOV(dest, retype(packed_consts, dest.type)));
break;
}
case nir_intrinsic_memory_barrier: {
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
const dst_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
->size_written = 2 * REG_SIZE;
break;
}
case nir_intrinsic_shader_clock: {
/* We cannot do anything if there is an event, so ignore it for now */
const src_reg shader_clock = get_timestamp();
const enum brw_reg_type type = brw_type_for_base_type(glsl_type::uvec2_type);
dest = get_nir_dest(instr->dest, type);
emit(MOV(dest, shader_clock));
break;
}
default:
unreachable("Unknown intrinsic");
}
}
void
vec4_visitor::nir_emit_ssbo_atomic(int op, nir_intrinsic_instr *instr)
{
dst_reg dest;
if (nir_intrinsic_infos[instr->intrinsic].has_dest)
dest = get_nir_dest(instr->dest);
src_reg surface;
nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
if (const_surface) {
unsigned surf_index = prog_data->base.binding_table.ssbo_start +
const_surface->u32[0];
surface = brw_imm_ud(surf_index);
brw_mark_surface_used(&prog_data->base, surf_index);
} else {
surface = src_reg(this, glsl_type::uint_type);
emit(ADD(dst_reg(surface), get_nir_src(instr->src[0]),
brw_imm_ud(prog_data->base.binding_table.ssbo_start)));
/* Assume this may touch any UBO. This is the same we do for other
* UBO/SSBO accesses with non-constant surface.
*/
brw_mark_surface_used(&prog_data->base,
prog_data->base.binding_table.ssbo_start +
nir->info->num_ssbos - 1);
}
src_reg offset = get_nir_src(instr->src[1], 1);
src_reg data1 = get_nir_src(instr->src[2], 1);
src_reg data2;
if (op == BRW_AOP_CMPWR)
data2 = get_nir_src(instr->src[3], 1);
/* Emit the actual atomic operation operation */
const vec4_builder bld =
vec4_builder(this).at_end().annotate(current_annotation, base_ir);
src_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
data1, data2,
1 /* dims */, 1 /* rsize */,
op,
BRW_PREDICATE_NONE);
dest.type = atomic_result.type;
bld.MOV(dest, atomic_result);
}
static unsigned
brw_swizzle_for_nir_swizzle(uint8_t swizzle[4])
{
return BRW_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
}
static enum brw_conditional_mod
brw_conditional_for_nir_comparison(nir_op op)
{
switch (op) {
case nir_op_flt:
case nir_op_ilt:
case nir_op_ult:
return BRW_CONDITIONAL_L;
case nir_op_fge:
case nir_op_ige:
case nir_op_uge:
return BRW_CONDITIONAL_GE;
case nir_op_feq:
case nir_op_ieq:
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
return BRW_CONDITIONAL_Z;
case nir_op_fne:
case nir_op_ine:
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
return BRW_CONDITIONAL_NZ;
default:
unreachable("not reached: bad operation for comparison");
}
}
bool
vec4_visitor::optimize_predicate(nir_alu_instr *instr,
enum brw_predicate *predicate)
{
if (!instr->src[0].src.is_ssa ||
instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
return false;
nir_alu_instr *cmp_instr =
nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
switch (cmp_instr->op) {
case nir_op_bany_fnequal2:
case nir_op_bany_inequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_inequal3:
case nir_op_bany_fnequal4:
case nir_op_bany_inequal4:
*predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
case nir_op_ball_fequal2:
case nir_op_ball_iequal2:
case nir_op_ball_fequal3:
case nir_op_ball_iequal3:
case nir_op_ball_fequal4:
case nir_op_ball_iequal4:
*predicate = BRW_PREDICATE_ALIGN16_ALL4H;
break;
default:
return false;
}
unsigned size_swizzle =
brw_swizzle_for_size(nir_op_infos[cmp_instr->op].input_sizes[0]);
src_reg op[2];
assert(nir_op_infos[cmp_instr->op].num_inputs == 2);
for (unsigned i = 0; i < 2; i++) {
nir_alu_type type = nir_op_infos[cmp_instr->op].input_types[i];
unsigned bit_size = nir_src_bit_size(cmp_instr->src[i].src);
type = (nir_alu_type) (((unsigned) type) | bit_size);
op[i] = get_nir_src(cmp_instr->src[i].src, type, 4);
unsigned base_swizzle =
brw_swizzle_for_nir_swizzle(cmp_instr->src[i].swizzle);
op[i].swizzle = brw_compose_swizzle(size_swizzle, base_swizzle);
op[i].abs = cmp_instr->src[i].abs;
op[i].negate = cmp_instr->src[i].negate;
}
emit(CMP(dst_null_d(), op[0], op[1],
brw_conditional_for_nir_comparison(cmp_instr->op)));
return true;
}
static void
emit_find_msb_using_lzd(const vec4_builder &bld,
const dst_reg &dst,
const src_reg &src,
bool is_signed)
{
vec4_instruction *inst;
src_reg temp = src;
if (is_signed) {
/* LZD of an absolute value source almost always does the right
* thing. There are two problem values:
*
* * 0x80000000. Since abs(0x80000000) == 0x80000000, LZD returns
* 0. However, findMSB(int(0x80000000)) == 30.
*
* * 0xffffffff. Since abs(0xffffffff) == 1, LZD returns
* 31. Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
*
* For a value of zero or negative one, -1 will be returned.
*
* * Negative powers of two. LZD(abs(-(1<<x))) returns x, but
* findMSB(-(1<<x)) should return x-1.
*
* For all negative number cases, including 0x80000000 and
* 0xffffffff, the correct value is obtained from LZD if instead of
* negating the (already negative) value the logical-not is used. A
* conditonal logical-not can be achieved in two instructions.
*/
temp = src_reg(bld.vgrf(BRW_REGISTER_TYPE_D));
bld.ASR(dst_reg(temp), src, brw_imm_d(31));
bld.XOR(dst_reg(temp), temp, src);
}
bld.LZD(retype(dst, BRW_REGISTER_TYPE_UD),
retype(temp, BRW_REGISTER_TYPE_UD));
/* LZD counts from the MSB side, while GLSL's findMSB() wants the count
* from the LSB side. Subtract the result from 31 to convert the MSB count
* into an LSB count. If no bits are set, LZD will return 32. 31-32 = -1,
* which is exactly what findMSB() is supposed to return.
*/
inst = bld.ADD(dst, retype(src_reg(dst), BRW_REGISTER_TYPE_D),
brw_imm_d(31));
inst->src[0].negate = true;
}
void
vec4_visitor::emit_conversion_from_double(dst_reg dst, src_reg src,
bool saturate,
brw_reg_type single_type)
{
/* BDW PRM vol 15 - workarounds:
* DF->f format conversion for Align16 has wrong emask calculation when
* source is immediate.
*/
if (devinfo->gen == 8 && single_type == BRW_REGISTER_TYPE_F &&
src.file == BRW_IMMEDIATE_VALUE) {
vec4_instruction *inst = emit(MOV(dst, brw_imm_f(src.df)));
inst->saturate = saturate;
return;
}
dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
emit(MOV(temp, src));
dst_reg temp2 = dst_reg(this, glsl_type::dvec4_type);
temp2 = retype(temp2, single_type);
emit(VEC4_OPCODE_FROM_DOUBLE, temp2, src_reg(temp))
->size_written = 2 * REG_SIZE;
vec4_instruction *inst = emit(MOV(dst, src_reg(temp2)));
inst->saturate = saturate;
}
void
vec4_visitor::emit_conversion_to_double(dst_reg dst, src_reg src,
bool saturate,
brw_reg_type single_type)
{
dst_reg tmp_dst = dst_reg(src_reg(this, glsl_type::dvec4_type));
src_reg tmp_src = retype(src_reg(this, glsl_type::vec4_type), single_type);
emit(MOV(dst_reg(tmp_src), retype(src, single_type)));
emit(VEC4_OPCODE_TO_DOUBLE, tmp_dst, tmp_src);
vec4_instruction *inst = emit(MOV(dst, src_reg(tmp_dst)));
inst->saturate = saturate;
}
src_reg
vec4_visitor::setup_imm_df(double v)
{
assert(devinfo->gen >= 7);
if (devinfo->gen >= 8)
return brw_imm_df(v);
/* gen7.5 does not support DF immediates straighforward but the DIM
* instruction allows to set the 64-bit immediate value.
*/
if (devinfo->is_haswell) {
dst_reg dst = retype(dst_reg(VGRF, alloc.allocate(2)), BRW_REGISTER_TYPE_DF);
emit(DIM(dst, brw_imm_df(v)))->force_writemask_all = true;
return swizzle(src_reg(retype(dst, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
}
/* gen7 does not support DF immediates */
union {
double d;
struct {
uint32_t i1;
uint32_t i2;
};
} di;
di.d = v;
/* Write the low 32-bit of the constant to the X:UD channel and the
* high 32-bit to the Y:UD channel to build the constant in a VGRF.
* We have to do this twice (offset 0 and offset 1), since a DF VGRF takes
* two SIMD8 registers in SIMD4x2 execution. Finally, return a swizzle
* XXXX so any access to the VGRF only reads the constant data in these
* channels.
*/
const dst_reg tmp =
retype(dst_reg(VGRF, alloc.allocate(2)), BRW_REGISTER_TYPE_UD);
for (int n = 0; n < 2; n++) {
emit(MOV(writemask(offset(tmp, 8, n), WRITEMASK_X), brw_imm_ud(di.i1)))
->force_writemask_all = true;
emit(MOV(writemask(offset(tmp, 8, n), WRITEMASK_Y), brw_imm_ud(di.i2)))
->force_writemask_all = true;
}
return swizzle(src_reg(retype(tmp, BRW_REGISTER_TYPE_DF)), BRW_SWIZZLE_XXXX);
}
void
vec4_visitor::nir_emit_alu(nir_alu_instr *instr)
{
vec4_instruction *inst;
nir_alu_type dst_type = (nir_alu_type) (nir_op_infos[instr->op].output_type |
nir_dest_bit_size(instr->dest.dest));
dst_reg dst = get_nir_dest(instr->dest.dest, dst_type);
dst.writemask = instr->dest.write_mask;
src_reg op[4];
for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
nir_alu_type src_type = (nir_alu_type)
(nir_op_infos[instr->op].input_types[i] |
nir_src_bit_size(instr->src[i].src));
op[i] = get_nir_src(instr->src[i].src, src_type, 4);
op[i].swizzle = brw_swizzle_for_nir_swizzle(instr->src[i].swizzle);
op[i].abs = instr->src[i].abs;
op[i].negate = instr->src[i].negate;
}
switch (instr->op) {
case nir_op_imov:
case nir_op_fmov:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_vec2:
case nir_op_vec3:
case nir_op_vec4:
unreachable("not reached: should be handled by lower_vec_to_movs()");
case nir_op_i2f:
case nir_op_u2f:
inst = emit(MOV(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_f2i:
case nir_op_f2u:
inst = emit(MOV(dst, op[0]));
break;
case nir_op_d2f:
emit_conversion_from_double(dst, op[0], instr->dest.saturate,
BRW_REGISTER_TYPE_F);
break;
case nir_op_f2d:
emit_conversion_to_double(dst, op[0], instr->dest.saturate,
BRW_REGISTER_TYPE_F);
break;
case nir_op_d2i:
case nir_op_d2u:
emit_conversion_from_double(dst, op[0], instr->dest.saturate,
instr->op == nir_op_d2i ? BRW_REGISTER_TYPE_D :
BRW_REGISTER_TYPE_UD);
break;
case nir_op_i2d:
case nir_op_u2d:
emit_conversion_to_double(dst, op[0], instr->dest.saturate,
instr->op == nir_op_i2d ? BRW_REGISTER_TYPE_D :
BRW_REGISTER_TYPE_UD);
break;
case nir_op_iadd:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
case nir_op_fadd:
inst = emit(ADD(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fmul:
inst = emit(MUL(dst, op[0], op[1]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_imul: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen < 8) {
nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
/* For integer multiplication, the MUL uses the low 16 bits of one of
* the operands (src0 through SNB, src1 on IVB and later). The MACH
* accumulates in the contribution of the upper 16 bits of that
* operand. If we can determine that one of the args is in the low
* 16 bits, though, we can just emit a single MUL.
*/
if (value0 && value0->u32[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[0], op[1]));
else
emit(MUL(dst, op[1], op[0]));
} else if (value1 && value1->u32[0] < (1 << 16)) {
if (devinfo->gen < 7)
emit(MUL(dst, op[1], op[0]));
else
emit(MUL(dst, op[0], op[1]));
} else {
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst_null_d(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
}
} else {
emit(MUL(dst, op[0], op[1]));
}
break;
}
case nir_op_imul_high:
case nir_op_umul_high: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
struct brw_reg acc = retype(brw_acc_reg(8), dst.type);
if (devinfo->gen >= 8)
emit(MUL(acc, op[0], retype(op[1], BRW_REGISTER_TYPE_UW)));
else
emit(MUL(acc, op[0], op[1]));
emit(MACH(dst, op[0], op[1]));
break;
}
case nir_op_frcp:
inst = emit_math(SHADER_OPCODE_RCP, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fexp2:
inst = emit_math(SHADER_OPCODE_EXP2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_flog2:
inst = emit_math(SHADER_OPCODE_LOG2, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fsin:
inst = emit_math(SHADER_OPCODE_SIN, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fcos:
inst = emit_math(SHADER_OPCODE_COS, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_idiv:
case nir_op_udiv:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_math(SHADER_OPCODE_INT_QUOTIENT, dst, op[0], op[1]);
break;
case nir_op_umod:
case nir_op_irem:
/* According to the sign table for INT DIV in the Ivy Bridge PRM, it
* appears that our hardware just does the right thing for signed
* remainder.
*/
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
break;
case nir_op_imod: {
/* Get a regular C-style remainder. If a % b == 0, set the predicate. */
inst = emit_math(SHADER_OPCODE_INT_REMAINDER, dst, op[0], op[1]);
/* Math instructions don't support conditional mod */
inst = emit(MOV(dst_null_d(), src_reg(dst)));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* Now, we need to determine if signs of the sources are different.
* When we XOR the sources, the top bit is 0 if they are the same and 1
* if they are different. We can then use a conditional modifier to
* turn that into a predicate. This leads us to an XOR.l instruction.
*
* Technically, according to the PRM, you're not allowed to use .l on a
* XOR instruction. However, emperical experiments and Curro's reading
* of the simulator source both indicate that it's safe.
*/
src_reg tmp = src_reg(this, glsl_type::ivec4_type);
inst = emit(XOR(dst_reg(tmp), op[0], op[1]));
inst->predicate = BRW_PREDICATE_NORMAL;
inst->conditional_mod = BRW_CONDITIONAL_L;
/* If the result of the initial remainder operation is non-zero and the
* two sources have different signs, add in a copy of op[1] to get the
* final integer modulus value.
*/
inst = emit(ADD(dst, src_reg(dst), op[1]));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case nir_op_ldexp:
unreachable("not reached: should be handled by ldexp_to_arith()");
case nir_op_fsqrt:
inst = emit_math(SHADER_OPCODE_SQRT, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_frsq:
inst = emit_math(SHADER_OPCODE_RSQ, dst, op[0]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fpow:
inst = emit_math(SHADER_OPCODE_POW, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_uadd_carry: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(ADDC(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_usub_borrow: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
struct brw_reg acc = retype(brw_acc_reg(8), BRW_REGISTER_TYPE_UD);
emit(SUBB(dst_null_ud(), op[0], op[1]));
emit(MOV(dst, src_reg(acc)));
break;
}
case nir_op_ftrunc:
inst = emit(RNDZ(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fceil: {
src_reg tmp = src_reg(this, glsl_type::float_type);
tmp.swizzle =
brw_swizzle_for_size(instr->src[0].src.is_ssa ?
instr->src[0].src.ssa->num_components :
instr->src[0].src.reg.reg->num_components);
op[0].negate = !op[0].negate;
emit(RNDD(dst_reg(tmp), op[0]));
tmp.negate = true;
inst = emit(MOV(dst, tmp));
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_ffloor:
inst = emit(RNDD(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_ffract:
inst = emit(FRC(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fround_even:
inst = emit(RNDE(dst, op[0]));
inst->saturate = instr->dest.saturate;
break;
case nir_op_fquantize2f16: {
/* See also vec4_visitor::emit_pack_half_2x16() */
src_reg tmp16 = src_reg(this, glsl_type::uvec4_type);
src_reg tmp32 = src_reg(this, glsl_type::vec4_type);
src_reg zero = src_reg(this, glsl_type::vec4_type);
/* Check for denormal */
src_reg abs_src0 = op[0];
abs_src0.abs = true;
emit(CMP(dst_null_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
BRW_CONDITIONAL_L));
/* Get the appropriately signed zero */
emit(AND(retype(dst_reg(zero), BRW_REGISTER_TYPE_UD),
retype(op[0], BRW_REGISTER_TYPE_UD),
brw_imm_ud(0x80000000)));
/* Do the actual F32 -> F16 -> F32 conversion */
emit(F32TO16(dst_reg(tmp16), op[0]));
emit(F16TO32(dst_reg(tmp32), tmp16));
/* Select that or zero based on normal status */
inst = emit(BRW_OPCODE_SEL, dst, zero, tmp32);
inst->predicate = BRW_PREDICATE_NORMAL;
inst->saturate = instr->dest.saturate;
break;
}
case nir_op_imin:
case nir_op_umin:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
case nir_op_fmin:
inst = emit_minmax(BRW_CONDITIONAL_L, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_imax:
case nir_op_umax:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
case nir_op_fmax:
inst = emit_minmax(BRW_CONDITIONAL_GE, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fddx:
case nir_op_fddx_coarse:
case nir_op_fddx_fine:
case nir_op_fddy:
case nir_op_fddy_coarse:
case nir_op_fddy_fine:
unreachable("derivatives are not valid in vertex shaders");
case nir_op_ilt:
case nir_op_ult:
case nir_op_ige:
case nir_op_uge:
case nir_op_ieq:
case nir_op_ine:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* Fallthrough */
case nir_op_flt:
case nir_op_fge:
case nir_op_feq:
case nir_op_fne: {
enum brw_conditional_mod conditional_mod =
brw_conditional_for_nir_comparison(instr->op);
if (nir_src_bit_size(instr->src[0].src) < 64) {
emit(CMP(dst, op[0], op[1], conditional_mod));
} else {
/* Produce a 32-bit boolean result from the DF comparison by selecting
* only the low 32-bit in each DF produced. Do this in a temporary
* so we can then move from there to the result using align16 again
* to honor the original writemask.
*/
dst_reg temp = dst_reg(this, glsl_type::dvec4_type);
emit(CMP(temp, op[0], op[1], conditional_mod));
dst_reg result = dst_reg(this, glsl_type::bvec4_type);
emit(VEC4_OPCODE_PICK_LOW_32BIT, result, src_reg(temp));
emit(MOV(dst, src_reg(result)));
}
break;
}
case nir_op_ball_iequal2:
case nir_op_ball_iequal3:
case nir_op_ball_iequal4:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* Fallthrough */
case nir_op_ball_fequal2:
case nir_op_ball_fequal3:
case nir_op_ball_fequal4: {
unsigned swiz =
brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
brw_conditional_for_nir_comparison(instr->op)));
emit(MOV(dst, brw_imm_d(0)));
inst = emit(MOV(dst, brw_imm_d(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ALL4H;
break;
}
case nir_op_bany_inequal2:
case nir_op_bany_inequal3:
case nir_op_bany_inequal4:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
/* Fallthrough */
case nir_op_bany_fnequal2:
case nir_op_bany_fnequal3:
case nir_op_bany_fnequal4: {
unsigned swiz =
brw_swizzle_for_size(nir_op_infos[instr->op].input_sizes[0]);
emit(CMP(dst_null_d(), swizzle(op[0], swiz), swizzle(op[1], swiz),
brw_conditional_for_nir_comparison(instr->op)));
emit(MOV(dst, brw_imm_d(0)));
inst = emit(MOV(dst, brw_imm_d(~0)));
inst->predicate = BRW_PREDICATE_ALIGN16_ANY4H;
break;
}
case nir_op_inot:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
}
emit(NOT(dst, op[0]));
break;
case nir_op_ixor:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(XOR(dst, op[0], op[1]));
break;
case nir_op_ior:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(OR(dst, op[0], op[1]));
break;
case nir_op_iand:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
if (devinfo->gen >= 8) {
op[0] = resolve_source_modifiers(op[0]);
op[1] = resolve_source_modifiers(op[1]);
}
emit(AND(dst, op[0], op[1]));
break;
case nir_op_b2i:
case nir_op_b2f:
emit(MOV(dst, negate(op[0])));
break;
case nir_op_f2b:
emit(CMP(dst, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
break;
case nir_op_d2b: {
/* We use a MOV with conditional_mod to check if the provided value is
* 0.0. We want this to flush denormalized numbers to zero, so we set a
* source modifier on the source operand to trigger this, as source
* modifiers don't affect the result of the testing against 0.0.
*/
src_reg value = op[0];
value.abs = true;
vec4_instruction *inst = emit(MOV(dst_null_df(), value));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
src_reg one = src_reg(this, glsl_type::ivec4_type);
emit(MOV(dst_reg(one), brw_imm_d(~0)));
inst = emit(BRW_OPCODE_SEL, dst, one, brw_imm_d(0));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
}
case nir_op_i2b:
emit(CMP(dst, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
break;
case nir_op_fnoise1_1:
case nir_op_fnoise1_2:
case nir_op_fnoise1_3:
case nir_op_fnoise1_4:
case nir_op_fnoise2_1:
case nir_op_fnoise2_2:
case nir_op_fnoise2_3:
case nir_op_fnoise2_4:
case nir_op_fnoise3_1:
case nir_op_fnoise3_2:
case nir_op_fnoise3_3:
case nir_op_fnoise3_4:
case nir_op_fnoise4_1:
case nir_op_fnoise4_2:
case nir_op_fnoise4_3:
case nir_op_fnoise4_4:
unreachable("not reached: should be handled by lower_noise");
case nir_op_unpack_half_2x16_split_x:
case nir_op_unpack_half_2x16_split_y:
case nir_op_pack_half_2x16_split:
unreachable("not reached: should not occur in vertex shader");
case nir_op_unpack_snorm_2x16:
case nir_op_unpack_unorm_2x16:
case nir_op_pack_snorm_2x16:
case nir_op_pack_unorm_2x16:
unreachable("not reached: should be handled by lower_packing_builtins");
case nir_op_pack_uvec4_to_uint:
unreachable("not reached");
case nir_op_pack_uvec2_to_uint: {
dst_reg tmp1 = dst_reg(this, glsl_type::uint_type);
tmp1.writemask = WRITEMASK_X;
op[0].swizzle = BRW_SWIZZLE_YYYY;
emit(SHL(tmp1, op[0], src_reg(brw_imm_ud(16u))));
dst_reg tmp2 = dst_reg(this, glsl_type::uint_type);
tmp2.writemask = WRITEMASK_X;
op[0].swizzle = BRW_SWIZZLE_XXXX;
emit(AND(tmp2, op[0], src_reg(brw_imm_ud(0xffffu))));
emit(OR(dst, src_reg(tmp1), src_reg(tmp2)));
break;
}
case nir_op_pack_double_2x32_split: {
dst_reg result = dst_reg(this, glsl_type::dvec4_type);
dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
emit(MOV(tmp, retype(op[0], BRW_REGISTER_TYPE_UD)));
emit(VEC4_OPCODE_SET_LOW_32BIT, result, src_reg(tmp));
emit(MOV(tmp, retype(op[1], BRW_REGISTER_TYPE_UD)));
emit(VEC4_OPCODE_SET_HIGH_32BIT, result, src_reg(tmp));
emit(MOV(dst, src_reg(result)));
break;
}
case nir_op_unpack_double_2x32_split_x:
case nir_op_unpack_double_2x32_split_y: {
enum opcode oper = (instr->op == nir_op_unpack_double_2x32_split_x) ?
VEC4_OPCODE_PICK_LOW_32BIT : VEC4_OPCODE_PICK_HIGH_32BIT;
dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
emit(MOV(tmp, op[0]));
dst_reg tmp2 = dst_reg(this, glsl_type::uvec4_type);
emit(oper, tmp2, src_reg(tmp));
emit(MOV(dst, src_reg(tmp2)));
break;
}
case nir_op_unpack_half_2x16:
/* As NIR does not guarantee that we have a correct swizzle outside the
* boundaries of a vector, and the implementation of emit_unpack_half_2x16
* uses the source operand in an operation with WRITEMASK_Y while our
* source operand has only size 1, it accessed incorrect data producing
* regressions in Piglit. We repeat the swizzle of the first component on the
* rest of components to avoid regressions. In the vec4_visitor IR code path
* this is not needed because the operand has already the correct swizzle.
*/
op[0].swizzle = brw_compose_swizzle(BRW_SWIZZLE_XXXX, op[0].swizzle);
emit_unpack_half_2x16(dst, op[0]);
break;
case nir_op_pack_half_2x16:
emit_pack_half_2x16(dst, op[0]);
break;
case nir_op_unpack_unorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_unpack_unorm_4x8(dst, op[0]);
break;
case nir_op_pack_unorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_pack_unorm_4x8(dst, op[0]);
break;
case nir_op_unpack_snorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_unpack_snorm_4x8(dst, op[0]);
break;
case nir_op_pack_snorm_4x8:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_pack_snorm_4x8(dst, op[0]);
break;
case nir_op_bitfield_reverse:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(BFREV(dst, op[0]));
break;
case nir_op_bit_count:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(CBIT(dst, op[0]));
break;
case nir_op_ufind_msb:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit_find_msb_using_lzd(vec4_builder(this).at_end(), dst, op[0], false);
break;
case nir_op_ifind_msb: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
vec4_builder bld = vec4_builder(this).at_end();
src_reg src(dst);
if (devinfo->gen < 7) {
emit_find_msb_using_lzd(bld, dst, op[0], true);
} else {
emit(FBH(retype(dst, BRW_REGISTER_TYPE_UD), op[0]));
/* FBH counts from the MSB side, while GLSL's findMSB() wants the
* count from the LSB side. If FBH didn't return an error
* (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
* count into an LSB count.
*/
bld.CMP(dst_null_d(), src, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
inst = bld.ADD(dst, src, brw_imm_d(31));
inst->predicate = BRW_PREDICATE_NORMAL;
inst->src[0].negate = true;
}
break;
}
case nir_op_find_lsb: {
assert(nir_dest_bit_size(instr->dest.dest) < 64);
vec4_builder bld = vec4_builder(this).at_end();
if (devinfo->gen < 7) {
dst_reg temp = bld.vgrf(BRW_REGISTER_TYPE_D);
/* (x & -x) generates a value that consists of only the LSB of x.
* For all powers of 2, findMSB(y) == findLSB(y).
*/
src_reg src = src_reg(retype(op[0], BRW_REGISTER_TYPE_D));
src_reg negated_src = src;
/* One must be negated, and the other must be non-negated. It
* doesn't matter which is which.
*/
negated_src.negate = true;
src.negate = false;
bld.AND(temp, src, negated_src);
emit_find_msb_using_lzd(bld, dst, src_reg(temp), false);
} else {
bld.FBL(dst, op[0]);
}
break;
}
case nir_op_ubitfield_extract:
case nir_op_ibitfield_extract:
unreachable("should have been lowered");
case nir_op_ubfe:
case nir_op_ibfe:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFE(dst, op[2], op[1], op[0]));
break;
case nir_op_bfm:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(BFI1(dst, op[0], op[1]));
break;
case nir_op_bfi:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
emit(BFI2(dst, op[0], op[1], op[2]));
break;
case nir_op_bitfield_insert:
unreachable("not reached: should have been lowered");
case nir_op_fsign:
if (type_sz(op[0].type) < 8) {
/* AND(val, 0x80000000) gives the sign bit.
*
* Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
* zero.
*/
emit(CMP(dst_null_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ));
op[0].type = BRW_REGISTER_TYPE_UD;
dst.type = BRW_REGISTER_TYPE_UD;
emit(AND(dst, op[0], brw_imm_ud(0x80000000u)));
inst = emit(OR(dst, src_reg(dst), brw_imm_ud(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
dst.type = BRW_REGISTER_TYPE_F;
if (instr->dest.saturate) {
inst = emit(MOV(dst, src_reg(dst)));
inst->saturate = true;
}
} else {
/* For doubles we do the same but we need to consider:
*
* - We use a MOV with conditional_mod instead of a CMP so that we can
* skip loading a 0.0 immediate. We use a source modifier on the
* source of the MOV so that we flush denormalized values to 0.
* Since we want to compare against 0, this won't alter the result.
* - We need to extract the high 32-bit of each DF where the sign
* is stored.
* - We need to produce a DF result.
*/
/* Check for zero */
src_reg value = op[0];
value.abs = true;
inst = emit(MOV(dst_null_df(), value));
inst->conditional_mod = BRW_CONDITIONAL_NZ;
/* AND each high 32-bit channel with 0x80000000u */
dst_reg tmp = dst_reg(this, glsl_type::uvec4_type);
emit(VEC4_OPCODE_PICK_HIGH_32BIT, tmp, op[0]);
emit(AND(tmp, src_reg(tmp), brw_imm_ud(0x80000000u)));
/* Add 1.0 to each channel, predicated to skip the cases where the
* channel's value was 0
*/
inst = emit(OR(tmp, src_reg(tmp), brw_imm_ud(0x3f800000u)));
inst->predicate = BRW_PREDICATE_NORMAL;
/* Now convert the result from float to double */
emit_conversion_to_double(dst, src_reg(tmp), instr->dest.saturate,
BRW_REGISTER_TYPE_F);
}
break;
case nir_op_isign:
/* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
* -> non-negative val generates 0x00000000.
* Predicated OR sets 1 if val is positive.
*/
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G));
emit(ASR(dst, op[0], brw_imm_d(31)));
inst = emit(OR(dst, src_reg(dst), brw_imm_d(1)));
inst->predicate = BRW_PREDICATE_NORMAL;
break;
case nir_op_ishl:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(SHL(dst, op[0], op[1]));
break;
case nir_op_ishr:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(ASR(dst, op[0], op[1]));
break;
case nir_op_ushr:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
emit(SHR(dst, op[0], op[1]));
break;
case nir_op_ffma:
if (type_sz(dst.type) == 8) {
dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type);
emit(MUL(mul_dst, op[1], op[0]));
inst = emit(ADD(dst, src_reg(mul_dst), op[2]));
inst->saturate = instr->dest.saturate;
} else {
op[0] = fix_3src_operand(op[0]);
op[1] = fix_3src_operand(op[1]);
op[2] = fix_3src_operand(op[2]);
inst = emit(MAD(dst, op[2], op[1], op[0]));
inst->saturate = instr->dest.saturate;
}
break;
case nir_op_flrp:
inst = emit_lrp(dst, op[0], op[1], op[2]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_bcsel:
enum brw_predicate predicate;
if (!optimize_predicate(instr, &predicate)) {
emit(CMP(dst_null_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ));
switch (dst.writemask) {
case WRITEMASK_X:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_X;
break;
case WRITEMASK_Y:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Y;
break;
case WRITEMASK_Z:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_Z;
break;
case WRITEMASK_W:
predicate = BRW_PREDICATE_ALIGN16_REPLICATE_W;
break;
default:
predicate = BRW_PREDICATE_NORMAL;
break;
}
}
inst = emit(BRW_OPCODE_SEL, dst, op[1], op[2]);
inst->predicate = predicate;
break;
case nir_op_fdot_replicated2:
inst = emit(BRW_OPCODE_DP2, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdot_replicated3:
inst = emit(BRW_OPCODE_DP3, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdot_replicated4:
inst = emit(BRW_OPCODE_DP4, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_fdph_replicated:
inst = emit(BRW_OPCODE_DPH, dst, op[0], op[1]);
inst->saturate = instr->dest.saturate;
break;
case nir_op_iabs:
case nir_op_ineg:
assert(nir_dest_bit_size(instr->dest.dest) < 64);
case nir_op_fabs:
case nir_op_fneg:
case nir_op_fsat:
unreachable("not reached: should be lowered by lower_source mods");
case nir_op_fdiv:
unreachable("not reached: should be lowered by DIV_TO_MUL_RCP in the compiler");
case nir_op_fmod:
unreachable("not reached: should be lowered by MOD_TO_FLOOR in the compiler");
case nir_op_fsub:
case nir_op_isub:
unreachable("not reached: should be handled by ir_sub_to_add_neg");
default:
unreachable("Unimplemented ALU operation");
}
/* If we need to do a boolean resolve, replace the result with -(x & 1)
* to sign extend the low bit to 0/~0
*/
if (devinfo->gen <= 5 &&
(instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) ==
BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
dst_reg masked = dst_reg(this, glsl_type::int_type);
masked.writemask = dst.writemask;
emit(AND(masked, src_reg(dst), brw_imm_d(1)));
src_reg masked_neg = src_reg(masked);
masked_neg.negate = true;
emit(MOV(retype(dst, BRW_REGISTER_TYPE_D), masked_neg));
}
}
void
vec4_visitor::nir_emit_jump(nir_jump_instr *instr)
{
switch (instr->type) {
case nir_jump_break:
emit(BRW_OPCODE_BREAK);
break;
case nir_jump_continue:
emit(BRW_OPCODE_CONTINUE);
break;
case nir_jump_return:
/* fall through */
default:
unreachable("unknown jump");
}
}
enum ir_texture_opcode
ir_texture_opcode_for_nir_texop(nir_texop texop)
{
enum ir_texture_opcode op;
switch (texop) {
case nir_texop_lod: op = ir_lod; break;
case nir_texop_query_levels: op = ir_query_levels; break;
case nir_texop_texture_samples: op = ir_texture_samples; break;
case nir_texop_tex: op = ir_tex; break;
case nir_texop_tg4: op = ir_tg4; break;
case nir_texop_txb: op = ir_txb; break;
case nir_texop_txd: op = ir_txd; break;
case nir_texop_txf: op = ir_txf; break;
case nir_texop_txf_ms: op = ir_txf_ms; break;
case nir_texop_txl: op = ir_txl; break;
case nir_texop_txs: op = ir_txs; break;
case nir_texop_samples_identical: op = ir_samples_identical; break;
default:
unreachable("unknown texture opcode");
}
return op;
}
const glsl_type *
glsl_type_for_nir_alu_type(nir_alu_type alu_type,
unsigned components)
{
return glsl_type::get_instance(brw_glsl_base_type_for_nir_type(alu_type),
components, 1);
}
void
vec4_visitor::nir_emit_texture(nir_tex_instr *instr)
{
unsigned texture = instr->texture_index;
unsigned sampler = instr->sampler_index;
src_reg texture_reg = brw_imm_ud(texture);
src_reg sampler_reg = brw_imm_ud(sampler);
src_reg coordinate;
const glsl_type *coord_type = NULL;
src_reg shadow_comparator;
src_reg offset_value;
src_reg lod, lod2;
src_reg sample_index;
src_reg mcs;
const glsl_type *dest_type =
glsl_type_for_nir_alu_type(instr->dest_type,
nir_tex_instr_dest_size(instr));
dst_reg dest = get_nir_dest(instr->dest, instr->dest_type);
/* The hardware requires a LOD for buffer textures */
if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
lod = brw_imm_d(0);
/* Load the texture operation sources */
uint32_t constant_offset = 0;
for (unsigned i = 0; i < instr->num_srcs; i++) {
switch (instr->src[i].src_type) {
case nir_tex_src_comparator:
shadow_comparator = get_nir_src(instr->src[i].src,
BRW_REGISTER_TYPE_F, 1);
break;
case nir_tex_src_coord: {
unsigned src_size = nir_tex_instr_src_size(instr, i);
switch (instr->op) {
case nir_texop_txf:
case nir_texop_txf_ms:
case nir_texop_samples_identical:
coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D,
src_size);
coord_type = glsl_type::ivec(src_size);
break;
default:
coordinate = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
src_size);
coord_type = glsl_type::vec(src_size);
break;
}
break;
}
case nir_tex_src_ddx:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
nir_tex_instr_src_size(instr, i));
break;
case nir_tex_src_ddy:
lod2 = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F,
nir_tex_instr_src_size(instr, i));
break;
case nir_tex_src_lod:
switch (instr->op) {
case nir_texop_txs:
case nir_texop_txf:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
break;
default:
lod = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_F, 1);
break;
}
break;
case nir_tex_src_ms_index: {
sample_index = get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 1);
break;
}
case nir_tex_src_offset: {
nir_const_value *const_offset =
nir_src_as_const_value(instr->src[i].src);
if (!const_offset ||
!brw_texture_offset(const_offset->i32,
nir_tex_instr_src_size(instr, i),
&constant_offset)) {
offset_value =
get_nir_src(instr->src[i].src, BRW_REGISTER_TYPE_D, 2);
}
break;
}
case nir_tex_src_texture_offset: {
/* The highest texture which may be used by this operation is
* the last element of the array. Mark it here, because the generator
* doesn't have enough information to determine the bound.
*/
uint32_t array_size = instr->texture_array_size;
uint32_t max_used = texture + array_size - 1;
if (instr->op == nir_texop_tg4) {
max_used += prog_data->base.binding_table.gather_texture_start;
} else {
max_used += prog_data->base.binding_table.texture_start;
}
brw_mark_surface_used(&prog_data->base, max_used);
/* Emit code to evaluate the actual indexing expression */
src_reg src = get_nir_src(instr->src[i].src, 1);
src_reg temp(this, glsl_type::uint_type);
emit(ADD(dst_reg(temp), src, brw_imm_ud(texture)));
texture_reg = emit_uniformize(temp);
break;
}
case nir_tex_src_sampler_offset: {
/* Emit code to evaluate the actual indexing expression */
src_reg src = get_nir_src(instr->src[i].src, 1);
src_reg temp(this, glsl_type::uint_type);
emit(ADD(dst_reg(temp), src, brw_imm_ud(sampler)));
sampler_reg = emit_uniformize(temp);
break;
}
case nir_tex_src_projector:
unreachable("Should be lowered by do_lower_texture_projection");
case nir_tex_src_bias:
unreachable("LOD bias is not valid for vertex shaders.\n");
default:
unreachable("unknown texture source");
}
}
if (instr->op == nir_texop_txf_ms ||
instr->op == nir_texop_samples_identical) {
assert(coord_type != NULL);
if (devinfo->gen >= 7 &&
key_tex->compressed_multisample_layout_mask & (1 << texture)) {
mcs = emit_mcs_fetch(coord_type, coordinate, texture_reg);
} else {
mcs = brw_imm_ud(0u);
}
}
/* Stuff the channel select bits in the top of the texture offset */
if (instr->op == nir_texop_tg4) {
if (instr->component == 1 &&
(key_tex->gather_channel_quirk_mask & (1 << texture))) {
/* gather4 sampler is broken for green channel on RG32F --
* we must ask for blue instead.
*/
constant_offset |= 2 << 16;
} else {
constant_offset |= instr->component << 16;
}
}
ir_texture_opcode op = ir_texture_opcode_for_nir_texop(instr->op);
emit_texture(op, dest, dest_type, coordinate, instr->coord_components,
shadow_comparator,
lod, lod2, sample_index,
constant_offset, offset_value, mcs,
texture, texture_reg, sampler_reg);
}
void
vec4_visitor::nir_emit_undef(nir_ssa_undef_instr *instr)
{
nir_ssa_values[instr->def.index] =
dst_reg(VGRF, alloc.allocate(DIV_ROUND_UP(instr->def.bit_size, 32)));
}
/* SIMD4x2 64bit data is stored in register space like this:
*
* r0.0:DF x0 y0 z0 w0
* r1.0:DF x1 y1 z1 w1
*
* When we need to write data such as this to memory using 32-bit write
* messages we need to shuffle it in this fashion:
*
* r0.0:DF x0 y0 x1 y1 (to be written at base offset)
* r0.0:DF z0 w0 z1 w1 (to be written at base offset + 16)
*
* We need to do the inverse operation when we read using 32-bit messages,
* which we can do by applying the same exact shuffling on the 64-bit data
* read, only that because the data for each vertex is positioned differently
* we need to apply different channel enables.
*
* This function takes 64bit data and shuffles it as explained above.
*
* The @for_write parameter is used to specify if the shuffling is being done
* for proper SIMD4x2 64-bit data that needs to be shuffled prior to a 32-bit
* write message (for_write = true), or instead we are doing the inverse
* operation and we have just read 64-bit data using a 32-bit messages that we
* need to shuffle to create valid SIMD4x2 64-bit data (for_write = false).
*
* If @block and @ref are non-NULL, then the shuffling is done after @ref,
* otherwise the instructions are emitted normally at the end. The function
* returns the last instruction inserted.
*
* Notice that @src and @dst cannot be the same register.
*/
vec4_instruction *
vec4_visitor::shuffle_64bit_data(dst_reg dst, src_reg src, bool for_write,
bblock_t *block, vec4_instruction *ref)
{
assert(type_sz(src.type) == 8);
assert(type_sz(dst.type) == 8);
assert(!regions_overlap(dst, 2 * REG_SIZE, src, 2 * REG_SIZE));
assert(!ref == !block);
const vec4_builder bld = !ref ? vec4_builder(this).at_end() :
vec4_builder(this).at(block, ref->next);
/* Resolve swizzle in src */
vec4_instruction *inst;
if (src.swizzle != BRW_SWIZZLE_XYZW) {
dst_reg data = dst_reg(this, glsl_type::dvec4_type);
inst = bld.MOV(data, src);
src = src_reg(data);
}
/* dst+0.XY = src+0.XY */
inst = bld.group(4, 0).MOV(writemask(dst, WRITEMASK_XY), src);
/* dst+0.ZW = src+1.XY */
inst = bld.group(4, for_write ? 1 : 0)
.MOV(writemask(dst, WRITEMASK_ZW),
swizzle(byte_offset(src, REG_SIZE), BRW_SWIZZLE_XYXY));
/* dst+1.XY = src+0.ZW */
inst = bld.group(4, for_write ? 0 : 1)
.MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_XY),
swizzle(src, BRW_SWIZZLE_ZWZW));
/* dst+1.ZW = src+1.ZW */
inst = bld.group(4, 1)
.MOV(writemask(byte_offset(dst, REG_SIZE), WRITEMASK_ZW),
byte_offset(src, REG_SIZE));
return inst;
}
}