/*
* Copyright 2003 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <sys/errno.h>
#include "main/context.h"
#include "main/condrender.h"
#include "main/samplerobj.h"
#include "main/state.h"
#include "main/enums.h"
#include "main/macros.h"
#include "main/transformfeedback.h"
#include "main/framebuffer.h"
#include "tnl/tnl.h"
#include "vbo/vbo_context.h"
#include "swrast/swrast.h"
#include "swrast_setup/swrast_setup.h"
#include "drivers/common/meta.h"
#include "util/bitscan.h"
#include "brw_blorp.h"
#include "brw_draw.h"
#include "brw_defines.h"
#include "brw_context.h"
#include "brw_state.h"
#include "brw_vs.h"
#include "intel_batchbuffer.h"
#include "intel_buffers.h"
#include "intel_fbo.h"
#include "intel_mipmap_tree.h"
#include "intel_buffer_objects.h"
#define FILE_DEBUG_FLAG DEBUG_PRIMS
static const GLenum reduced_prim[GL_POLYGON+1] = {
[GL_POINTS] = GL_POINTS,
[GL_LINES] = GL_LINES,
[GL_LINE_LOOP] = GL_LINES,
[GL_LINE_STRIP] = GL_LINES,
[GL_TRIANGLES] = GL_TRIANGLES,
[GL_TRIANGLE_STRIP] = GL_TRIANGLES,
[GL_TRIANGLE_FAN] = GL_TRIANGLES,
[GL_QUADS] = GL_TRIANGLES,
[GL_QUAD_STRIP] = GL_TRIANGLES,
[GL_POLYGON] = GL_TRIANGLES
};
/* When the primitive changes, set a state bit and re-validate. Not
* the nicest and would rather deal with this by having all the
* programs be immune to the active primitive (ie. cope with all
* possibilities). That may not be realistic however.
*/
static void
brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
{
struct gl_context *ctx = &brw->ctx;
uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
/* Slight optimization to avoid the GS program when not needed:
*/
if (prim->mode == GL_QUAD_STRIP &&
ctx->Light.ShadeModel != GL_FLAT &&
ctx->Polygon.FrontMode == GL_FILL &&
ctx->Polygon.BackMode == GL_FILL)
hw_prim = _3DPRIM_TRISTRIP;
if (prim->mode == GL_QUADS && prim->count == 4 &&
ctx->Light.ShadeModel != GL_FLAT &&
ctx->Polygon.FrontMode == GL_FILL &&
ctx->Polygon.BackMode == GL_FILL) {
hw_prim = _3DPRIM_TRIFAN;
}
if (hw_prim != brw->primitive) {
brw->primitive = hw_prim;
brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
if (reduced_prim[prim->mode] != brw->reduced_primitive) {
brw->reduced_primitive = reduced_prim[prim->mode];
brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
}
}
}
static void
gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
{
const struct gl_context *ctx = &brw->ctx;
uint32_t hw_prim;
DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
if (prim->mode == GL_PATCHES) {
hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
} else {
hw_prim = get_hw_prim_for_gl_prim(prim->mode);
}
if (hw_prim != brw->primitive) {
brw->primitive = hw_prim;
brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
if (prim->mode == GL_PATCHES)
brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
}
}
/**
* The hardware is capable of removing dangling vertices on its own; however,
* prior to Gen6, we sometimes convert quads into trifans (and quad strips
* into tristrips), since pre-Gen6 hardware requires a GS to render quads.
* This function manually trims dangling vertices from a draw call involving
* quads so that those dangling vertices won't get drawn when we convert to
* trifans/tristrips.
*/
static GLuint
trim(GLenum prim, GLuint length)
{
if (prim == GL_QUAD_STRIP)
return length > 3 ? (length - length % 2) : 0;
else if (prim == GL_QUADS)
return length - length % 4;
else
return length;
}
static void
brw_emit_prim(struct brw_context *brw,
const struct _mesa_prim *prim,
uint32_t hw_prim,
struct brw_transform_feedback_object *xfb_obj,
unsigned stream)
{
int verts_per_instance;
int vertex_access_type;
int indirect_flag;
DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
prim->start, prim->count);
int start_vertex_location = prim->start;
int base_vertex_location = prim->basevertex;
if (prim->indexed) {
vertex_access_type = brw->gen >= 7 ?
GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
start_vertex_location += brw->ib.start_vertex_offset;
base_vertex_location += brw->vb.start_vertex_bias;
} else {
vertex_access_type = brw->gen >= 7 ?
GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
start_vertex_location += brw->vb.start_vertex_bias;
}
/* We only need to trim the primitive count on pre-Gen6. */
if (brw->gen < 6)
verts_per_instance = trim(prim->mode, prim->count);
else
verts_per_instance = prim->count;
/* If nothing to emit, just return. */
if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
return;
/* If we're set to always flush, do it before and after the primitive emit.
* We want to catch both missed flushes that hurt instruction/state cache
* and missed flushes of the render cache as it heads to other parts of
* the besides the draw code.
*/
if (brw->always_flush_cache)
brw_emit_mi_flush(brw);
/* If indirect, emit a bunch of loads from the indirect BO. */
if (xfb_obj) {
indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
xfb_obj->prim_count_bo,
I915_GEM_DOMAIN_VERTEX, 0,
stream * sizeof(uint32_t));
BEGIN_BATCH(9);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
OUT_BATCH(prim->num_instances);
OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
OUT_BATCH(0);
OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
OUT_BATCH(0);
OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
OUT_BATCH(0);
ADVANCE_BATCH();
} else if (prim->is_indirect) {
struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
drm_intel_bo *bo = intel_bufferobj_buffer(brw,
intel_buffer_object(indirect_buffer),
prim->indirect_offset, 5 * sizeof(GLuint));
indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
I915_GEM_DOMAIN_VERTEX, 0,
prim->indirect_offset + 0);
brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
I915_GEM_DOMAIN_VERTEX, 0,
prim->indirect_offset + 4);
brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
I915_GEM_DOMAIN_VERTEX, 0,
prim->indirect_offset + 8);
if (prim->indexed) {
brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
I915_GEM_DOMAIN_VERTEX, 0,
prim->indirect_offset + 12);
brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
I915_GEM_DOMAIN_VERTEX, 0,
prim->indirect_offset + 16);
} else {
brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
I915_GEM_DOMAIN_VERTEX, 0,
prim->indirect_offset + 12);
BEGIN_BATCH(3);
OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
OUT_BATCH(0);
ADVANCE_BATCH();
}
} else {
indirect_flag = 0;
}
BEGIN_BATCH(brw->gen >= 7 ? 7 : 6);
if (brw->gen >= 7) {
const int predicate_enable =
(brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
OUT_BATCH(hw_prim | vertex_access_type);
} else {
OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
vertex_access_type);
}
OUT_BATCH(verts_per_instance);
OUT_BATCH(start_vertex_location);
OUT_BATCH(prim->num_instances);
OUT_BATCH(prim->base_instance);
OUT_BATCH(base_vertex_location);
ADVANCE_BATCH();
if (brw->always_flush_cache)
brw_emit_mi_flush(brw);
}
static void
brw_merge_inputs(struct brw_context *brw,
const struct gl_vertex_array *arrays[])
{
const struct gl_context *ctx = &brw->ctx;
GLuint i;
for (i = 0; i < brw->vb.nr_buffers; i++) {
drm_intel_bo_unreference(brw->vb.buffers[i].bo);
brw->vb.buffers[i].bo = NULL;
}
brw->vb.nr_buffers = 0;
for (i = 0; i < VERT_ATTRIB_MAX; i++) {
brw->vb.inputs[i].buffer = -1;
brw->vb.inputs[i].glarray = arrays[i];
}
if (brw->gen < 8 && !brw->is_haswell) {
uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
/* Prior to Haswell, the hardware can't natively support GL_FIXED or
* 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
*/
while (mask) {
uint8_t wa_flags = 0;
i = u_bit_scan64(&mask);
switch (brw->vb.inputs[i].glarray->Type) {
case GL_FIXED:
wa_flags = brw->vb.inputs[i].glarray->Size;
break;
case GL_INT_2_10_10_10_REV:
wa_flags |= BRW_ATTRIB_WA_SIGN;
/* fallthough */
case GL_UNSIGNED_INT_2_10_10_10_REV:
if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
wa_flags |= BRW_ATTRIB_WA_BGRA;
if (brw->vb.inputs[i].glarray->Normalized)
wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
else if (!brw->vb.inputs[i].glarray->Integer)
wa_flags |= BRW_ATTRIB_WA_SCALE;
break;
}
if (brw->vb.attrib_wa_flags[i] != wa_flags) {
brw->vb.attrib_wa_flags[i] = wa_flags;
brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
}
}
}
}
/**
* \brief Call this after drawing to mark which buffers need resolving
*
* If the depth buffer was written to and if it has an accompanying HiZ
* buffer, then mark that it needs a depth resolve.
*
* If the color buffer is a multisample window system buffer, then
* mark that it needs a downsample.
*
* Also mark any render targets which will be textured as needing a render
* cache flush.
*/
static void
brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
struct gl_framebuffer *fb = ctx->DrawBuffer;
struct intel_renderbuffer *front_irb = NULL;
struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
if (_mesa_is_front_buffer_drawing(fb))
front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
if (front_irb)
front_irb->need_downsample = true;
if (back_irb)
back_irb->need_downsample = true;
if (depth_irb && brw_depth_writes_enabled(brw)) {
intel_renderbuffer_att_set_needs_depth_resolve(depth_att);
brw_render_cache_set_add_bo(brw, depth_irb->mt->bo);
}
if (ctx->Extensions.ARB_stencil_texturing &&
stencil_irb && ctx->Stencil._WriteEnabled) {
brw_render_cache_set_add_bo(brw, stencil_irb->mt->bo);
}
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (!irb)
continue;
brw_render_cache_set_add_bo(brw, irb->mt->bo);
intel_miptree_used_for_rendering(
brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count);
}
}
static void
brw_predraw_set_aux_buffers(struct brw_context *brw)
{
if (brw->gen < 9)
return;
struct gl_context *ctx = &brw->ctx;
struct gl_framebuffer *fb = ctx->DrawBuffer;
for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
struct intel_renderbuffer *irb =
intel_renderbuffer(fb->_ColorDrawBuffers[i]);
if (!irb) {
continue;
}
/* For layered rendering non-compressed fast cleared buffers need to be
* resolved. Surface state can carry only one fast color clear value
* while each layer may have its own fast clear color value. For
* compressed buffers color value is available in the color buffer.
*/
if (irb->layer_count > 1 &&
!(irb->mt->aux_disable & INTEL_AUX_DISABLE_CCS) &&
!intel_miptree_is_lossless_compressed(brw, irb->mt)) {
assert(brw->gen >= 8);
intel_miptree_resolve_color(brw, irb->mt, irb->mt_level,
irb->mt_layer, irb->layer_count, 0);
}
}
}
/* May fail if out of video memory for texture or vbo upload, or on
* fallback conditions.
*/
static void
brw_try_draw_prims(struct gl_context *ctx,
const struct gl_vertex_array *arrays[],
const struct _mesa_prim *prims,
GLuint nr_prims,
const struct _mesa_index_buffer *ib,
bool index_bounds_valid,
GLuint min_index,
GLuint max_index,
struct brw_transform_feedback_object *xfb_obj,
unsigned stream,
struct gl_buffer_object *indirect)
{
struct brw_context *brw = brw_context(ctx);
GLuint i;
bool fail_next = false;
if (ctx->NewState)
_mesa_update_state(ctx);
/* We have to validate the textures *before* checking for fallbacks;
* otherwise, the software fallback won't be able to rely on the
* texture state, the firstLevel and lastLevel fields won't be
* set in the intel texture object (they'll both be 0), and the
* software fallback will segfault if it attempts to access any
* texture level other than level 0.
*/
brw_validate_textures(brw);
/* Find the highest sampler unit used by each shader program. A bit-count
* won't work since ARB programs use the texture unit number as the sampler
* index.
*/
brw->wm.base.sampler_count =
util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
brw->vs.base.sampler_count =
util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
intel_prepare_render(brw);
brw_predraw_set_aux_buffers(brw);
/* This workaround has to happen outside of brw_upload_render_state()
* because it may flush the batchbuffer for a blit, affecting the state
* flags.
*/
brw_workaround_depthstencil_alignment(brw, 0);
/* Bind all inputs, derive varying and size information:
*/
brw_merge_inputs(brw, arrays);
brw->ib.ib = ib;
brw->ctx.NewDriverState |= BRW_NEW_INDICES;
brw->vb.index_bounds_valid = index_bounds_valid;
brw->vb.min_index = min_index;
brw->vb.max_index = max_index;
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
for (i = 0; i < nr_prims; i++) {
int estimated_max_prim_size;
const int sampler_state_size = 16;
estimated_max_prim_size = 512; /* batchbuffer commands */
estimated_max_prim_size += BRW_MAX_TEX_UNIT *
(sampler_state_size + sizeof(struct gen5_sampler_default_color));
estimated_max_prim_size += 1024; /* gen6 VS push constants */
estimated_max_prim_size += 1024; /* gen6 WM push constants */
estimated_max_prim_size += 512; /* misc. pad */
/* Flush the batch if it's approaching full, so that we don't wrap while
* we've got validated state that needs to be in the same batch as the
* primitives.
*/
intel_batchbuffer_require_space(brw, estimated_max_prim_size, RENDER_RING);
intel_batchbuffer_save_state(brw);
if (brw->num_instances != prims[i].num_instances ||
brw->basevertex != prims[i].basevertex ||
brw->baseinstance != prims[i].base_instance) {
brw->num_instances = prims[i].num_instances;
brw->basevertex = prims[i].basevertex;
brw->baseinstance = prims[i].base_instance;
if (i > 0) { /* For i == 0 we just did this before the loop */
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
brw_merge_inputs(brw, arrays);
}
}
/* Determine if we need to flag BRW_NEW_VERTICES for updating the
* gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
* always flag if the shader uses one of the values. For direct draws,
* we only flag if the values change.
*/
const int new_basevertex =
prims[i].indexed ? prims[i].basevertex : prims[i].start;
const int new_baseinstance = prims[i].base_instance;
const struct brw_vs_prog_data *vs_prog_data =
brw_vs_prog_data(brw->vs.base.prog_data);
if (i > 0) {
const bool uses_draw_parameters =
vs_prog_data->uses_basevertex ||
vs_prog_data->uses_baseinstance;
if ((uses_draw_parameters && prims[i].is_indirect) ||
(vs_prog_data->uses_basevertex &&
brw->draw.params.gl_basevertex != new_basevertex) ||
(vs_prog_data->uses_baseinstance &&
brw->draw.params.gl_baseinstance != new_baseinstance))
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
}
brw->draw.params.gl_basevertex = new_basevertex;
brw->draw.params.gl_baseinstance = new_baseinstance;
drm_intel_bo_unreference(brw->draw.draw_params_bo);
if (prims[i].is_indirect) {
/* Point draw_params_bo at the indirect buffer. */
brw->draw.draw_params_bo =
intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
drm_intel_bo_reference(brw->draw.draw_params_bo);
brw->draw.draw_params_offset =
prims[i].indirect_offset + (prims[i].indexed ? 12 : 8);
} else {
/* Set draw_params_bo to NULL so brw_prepare_vertices knows it
* has to upload gl_BaseVertex and such if they're needed.
*/
brw->draw.draw_params_bo = NULL;
brw->draw.draw_params_offset = 0;
}
/* gl_DrawID always needs its own vertex buffer since it's not part of
* the indirect parameter buffer. If the program uses gl_DrawID we need
* to flag BRW_NEW_VERTICES. For the first iteration, we don't have
* valid vs_prog_data, but we always flag BRW_NEW_VERTICES before
* the loop.
*/
brw->draw.gl_drawid = prims[i].draw_id;
drm_intel_bo_unreference(brw->draw.draw_id_bo);
brw->draw.draw_id_bo = NULL;
if (i > 0 && vs_prog_data->uses_drawid)
brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
if (brw->gen < 6)
brw_set_prim(brw, &prims[i]);
else
gen6_set_prim(brw, &prims[i]);
retry:
/* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
* that the state updated in the loop outside of this block is that in
* *_set_prim or intel_batchbuffer_flush(), which only impacts
* brw->ctx.NewDriverState.
*/
if (brw->ctx.NewDriverState) {
brw->no_batch_wrap = true;
brw_upload_render_state(brw);
}
brw_emit_prim(brw, &prims[i], brw->primitive, xfb_obj, stream);
brw->no_batch_wrap = false;
if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
if (!fail_next) {
intel_batchbuffer_reset_to_saved(brw);
intel_batchbuffer_flush(brw);
fail_next = true;
goto retry;
} else {
int ret = intel_batchbuffer_flush(brw);
WARN_ONCE(ret == -ENOSPC,
"i965: Single primitive emit exceeded "
"available aperture space\n");
}
}
/* Now that we know we haven't run out of aperture space, we can safely
* reset the dirty bits.
*/
if (brw->ctx.NewDriverState)
brw_render_state_finished(brw);
}
if (brw->always_flush_batch)
intel_batchbuffer_flush(brw);
brw_program_cache_check_size(brw);
brw_postdraw_set_buffers_need_resolve(brw);
return;
}
void
brw_draw_prims(struct gl_context *ctx,
const struct _mesa_prim *prims,
GLuint nr_prims,
const struct _mesa_index_buffer *ib,
GLboolean index_bounds_valid,
GLuint min_index,
GLuint max_index,
struct gl_transform_feedback_object *gl_xfb_obj,
unsigned stream,
struct gl_buffer_object *indirect)
{
struct brw_context *brw = brw_context(ctx);
const struct gl_vertex_array **arrays = ctx->Array._DrawArrays;
struct brw_transform_feedback_object *xfb_obj =
(struct brw_transform_feedback_object *) gl_xfb_obj;
if (!brw_check_conditional_render(brw))
return;
/* Handle primitive restart if needed */
if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
/* The draw was handled, so we can exit now */
return;
}
/* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
* won't support all the extensions we support.
*/
if (ctx->RenderMode != GL_RENDER) {
perf_debug("%s render mode not supported in hardware\n",
_mesa_enum_to_string(ctx->RenderMode));
_swsetup_Wakeup(ctx);
_tnl_wakeup(ctx);
_tnl_draw_prims(ctx, prims, nr_prims, ib,
index_bounds_valid, min_index, max_index, NULL, 0, NULL);
return;
}
/* If we're going to have to upload any of the user's vertex arrays, then
* get the minimum and maximum of their index buffer so we know what range
* to upload.
*/
if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
perf_debug("Scanning index buffer to compute index buffer bounds. "
"Use glDrawRangeElements() to avoid this.\n");
vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
index_bounds_valid = true;
}
/* Try drawing with the hardware, but don't do anything else if we can't
* manage it. swrast doesn't support our featureset, so we can't fall back
* to it.
*/
brw_try_draw_prims(ctx, arrays, prims, nr_prims, ib, index_bounds_valid,
min_index, max_index, xfb_obj, stream, indirect);
}
void
brw_draw_init(struct brw_context *brw)
{
struct gl_context *ctx = &brw->ctx;
struct vbo_context *vbo = vbo_context(ctx);
/* Register our drawing function:
*/
vbo->draw_prims = brw_draw_prims;
for (int i = 0; i < VERT_ATTRIB_MAX; i++)
brw->vb.inputs[i].buffer = -1;
brw->vb.nr_buffers = 0;
brw->vb.nr_enabled = 0;
}
void
brw_draw_destroy(struct brw_context *brw)
{
unsigned i;
for (i = 0; i < brw->vb.nr_buffers; i++) {
drm_intel_bo_unreference(brw->vb.buffers[i].bo);
brw->vb.buffers[i].bo = NULL;
}
brw->vb.nr_buffers = 0;
for (i = 0; i < brw->vb.nr_enabled; i++) {
brw->vb.enabled[i]->buffer = -1;
}
brw->vb.nr_enabled = 0;
drm_intel_bo_unreference(brw->ib.bo);
brw->ib.bo = NULL;
}