/*
* Mesa 3-D graphics library
*
* Copyright (C) 2009 VMware, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* Meta operations. Some GL operations can be expressed in terms of
* other GL operations. For example, glBlitFramebuffer() can be done
* with texture mapping and glClear() can be done with polygon rendering.
*
* \author Brian Paul
*/
#include "main/glheader.h"
#include "main/mtypes.h"
#include "main/imports.h"
#include "main/arbprogram.h"
#include "main/arrayobj.h"
#include "main/blend.h"
#include "main/blit.h"
#include "main/bufferobj.h"
#include "main/buffers.h"
#include "main/clear.h"
#include "main/condrender.h"
#include "main/depth.h"
#include "main/enable.h"
#include "main/fbobject.h"
#include "main/feedback.h"
#include "main/formats.h"
#include "main/format_unpack.h"
#include "main/framebuffer.h"
#include "main/glformats.h"
#include "main/image.h"
#include "main/macros.h"
#include "main/matrix.h"
#include "main/mipmap.h"
#include "main/multisample.h"
#include "main/objectlabel.h"
#include "main/pipelineobj.h"
#include "main/pixel.h"
#include "main/pbo.h"
#include "main/polygon.h"
#include "main/queryobj.h"
#include "main/readpix.h"
#include "main/renderbuffer.h"
#include "main/scissor.h"
#include "main/shaderapi.h"
#include "main/shaderobj.h"
#include "main/state.h"
#include "main/stencil.h"
#include "main/texobj.h"
#include "main/texenv.h"
#include "main/texgetimage.h"
#include "main/teximage.h"
#include "main/texparam.h"
#include "main/texstate.h"
#include "main/texstore.h"
#include "main/transformfeedback.h"
#include "main/uniforms.h"
#include "main/varray.h"
#include "main/viewport.h"
#include "main/samplerobj.h"
#include "program/program.h"
#include "swrast/swrast.h"
#include "drivers/common/meta.h"
#include "main/enums.h"
#include "main/glformats.h"
#include "util/bitscan.h"
#include "util/ralloc.h"
/** Return offset in bytes of the field within a vertex struct */
#define OFFSET(FIELD) ((void *) offsetof(struct vertex, FIELD))
static void
meta_clear(struct gl_context *ctx, GLbitfield buffers, bool glsl);
static struct blit_shader *
choose_blit_shader(GLenum target, struct blit_shader_table *table);
static void cleanup_temp_texture(struct temp_texture *tex);
static void meta_glsl_clear_cleanup(struct gl_context *ctx,
struct clear_state *clear);
static void meta_decompress_cleanup(struct gl_context *ctx,
struct decompress_state *decompress);
static void meta_drawpix_cleanup(struct gl_context *ctx,
struct drawpix_state *drawpix);
void
_mesa_meta_framebuffer_texture_image(struct gl_context *ctx,
struct gl_framebuffer *fb,
GLenum attachment,
struct gl_texture_image *texImage,
GLuint layer)
{
struct gl_texture_object *texObj = texImage->TexObject;
int level = texImage->Level;
const GLenum texTarget = texObj->Target == GL_TEXTURE_CUBE_MAP
? GL_TEXTURE_CUBE_MAP_POSITIVE_X + texImage->Face
: texObj->Target;
_mesa_framebuffer_texture(ctx, fb, attachment, texObj, texTarget,
level, layer, false, __func__);
}
static struct gl_shader *
meta_compile_shader_with_debug(struct gl_context *ctx, gl_shader_stage stage,
const GLcharARB *source)
{
const GLuint name = ~0;
struct gl_shader *sh;
sh = _mesa_new_shader(name, stage);
sh->Source = strdup(source);
sh->CompileStatus = false;
_mesa_compile_shader(ctx, sh);
if (!sh->CompileStatus) {
if (sh->InfoLog) {
_mesa_problem(ctx,
"meta program compile failed:\n%s\nsource:\n%s\n",
sh->InfoLog, source);
}
_mesa_reference_shader(ctx, &sh, NULL);
}
return sh;
}
void
_mesa_meta_link_program_with_debug(struct gl_context *ctx,
struct gl_shader_program *sh_prog)
{
_mesa_link_program(ctx, sh_prog);
if (!sh_prog->data->LinkStatus) {
_mesa_problem(ctx, "meta program link failed:\n%s",
sh_prog->data->InfoLog);
}
}
void
_mesa_meta_use_program(struct gl_context *ctx,
struct gl_shader_program *sh_prog)
{
/* Attach shader state to the binding point */
_mesa_reference_pipeline_object(ctx, &ctx->_Shader, &ctx->Shader);
/* Update the program */
_mesa_use_program(ctx, sh_prog);
}
void
_mesa_meta_compile_and_link_program(struct gl_context *ctx,
const char *vs_source,
const char *fs_source,
const char *name,
struct gl_shader_program **out_sh_prog)
{
struct gl_shader_program *sh_prog;
const GLuint id = ~0;
sh_prog = _mesa_new_shader_program(id);
sh_prog->Label = strdup(name);
sh_prog->NumShaders = 2;
sh_prog->Shaders = malloc(2 * sizeof(struct gl_shader *));
sh_prog->Shaders[0] =
meta_compile_shader_with_debug(ctx, MESA_SHADER_VERTEX, vs_source);
sh_prog->Shaders[1] =
meta_compile_shader_with_debug(ctx, MESA_SHADER_FRAGMENT, fs_source);
_mesa_meta_link_program_with_debug(ctx, sh_prog);
_mesa_meta_use_program(ctx, sh_prog);
*out_sh_prog = sh_prog;
}
/**
* Generate a generic shader to blit from a texture to a framebuffer
*
* \param ctx Current GL context
* \param texTarget Texture target that will be the source of the blit
*
* \returns a handle to a shader program on success or zero on failure.
*/
void
_mesa_meta_setup_blit_shader(struct gl_context *ctx,
GLenum target,
bool do_depth,
struct blit_shader_table *table)
{
char *vs_source, *fs_source;
struct blit_shader *shader = choose_blit_shader(target, table);
const char *fs_input, *vs_preprocess, *fs_preprocess;
void *mem_ctx;
if (ctx->Const.GLSLVersion < 130) {
vs_preprocess = "";
fs_preprocess = "#extension GL_EXT_texture_array : enable";
fs_input = "varying";
} else {
vs_preprocess = "#version 130";
fs_preprocess = "#version 130";
fs_input = "in";
shader->func = "texture";
}
assert(shader != NULL);
if (shader->shader_prog != NULL) {
_mesa_meta_use_program(ctx, shader->shader_prog);
return;
}
mem_ctx = ralloc_context(NULL);
vs_source = ralloc_asprintf(mem_ctx,
"%s\n"
"#extension GL_ARB_explicit_attrib_location: enable\n"
"layout(location = 0) in vec2 position;\n"
"layout(location = 1) in vec4 textureCoords;\n"
"out vec4 texCoords;\n"
"void main()\n"
"{\n"
" texCoords = textureCoords;\n"
" gl_Position = vec4(position, 0.0, 1.0);\n"
"}\n",
vs_preprocess);
fs_source = ralloc_asprintf(mem_ctx,
"%s\n"
"#extension GL_ARB_texture_cube_map_array: enable\n"
"uniform %s texSampler;\n"
"%s vec4 texCoords;\n"
"void main()\n"
"{\n"
" gl_FragColor = %s(texSampler, %s);\n"
"%s"
"}\n",
fs_preprocess, shader->type, fs_input,
shader->func, shader->texcoords,
do_depth ? " gl_FragDepth = gl_FragColor.x;\n" : "");
_mesa_meta_compile_and_link_program(ctx, vs_source, fs_source,
ralloc_asprintf(mem_ctx, "%s blit",
shader->type),
&shader->shader_prog);
ralloc_free(mem_ctx);
}
/**
* Configure vertex buffer and vertex array objects for tests
*
* Regardless of whether a new VAO is created, the object referenced by \c VAO
* will be bound into the GL state vector when this function terminates. The
* object referenced by \c VBO will \b not be bound.
*
* \param VAO Storage for vertex array object handle. If 0, a new VAO
* will be created.
* \param buf_obj Storage for vertex buffer object pointer. If \c NULL, a new VBO
* will be created. The new VBO will have storage for 4
* \c vertex structures.
* \param use_generic_attributes Should generic attributes 0 and 1 be used,
* or should traditional, fixed-function color and texture
* coordinate be used?
* \param vertex_size Number of components for attribute 0 / vertex.
* \param texcoord_size Number of components for attribute 1 / texture
* coordinate. If this is 0, attribute 1 will not be set or
* enabled.
* \param color_size Number of components for attribute 1 / primary color.
* If this is 0, attribute 1 will not be set or enabled.
*
* \note If \c use_generic_attributes is \c true, \c color_size must be zero.
* Use \c texcoord_size instead.
*/
void
_mesa_meta_setup_vertex_objects(struct gl_context *ctx,
GLuint *VAO, struct gl_buffer_object **buf_obj,
bool use_generic_attributes,
unsigned vertex_size, unsigned texcoord_size,
unsigned color_size)
{
if (*VAO == 0) {
struct gl_vertex_array_object *array_obj;
assert(*buf_obj == NULL);
/* create vertex array object */
_mesa_GenVertexArrays(1, VAO);
_mesa_BindVertexArray(*VAO);
array_obj = _mesa_lookup_vao(ctx, *VAO);
assert(array_obj != NULL);
/* create vertex array buffer */
*buf_obj = ctx->Driver.NewBufferObject(ctx, 0xDEADBEEF);
if (*buf_obj == NULL)
return;
_mesa_buffer_data(ctx, *buf_obj, GL_NONE, 4 * sizeof(struct vertex), NULL,
GL_DYNAMIC_DRAW, __func__);
/* setup vertex arrays */
if (use_generic_attributes) {
assert(color_size == 0);
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_GENERIC(0),
vertex_size, GL_FLOAT, GL_RGBA, GL_FALSE,
GL_FALSE, GL_FALSE,
offsetof(struct vertex, x), true);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_GENERIC(0),
*buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj,
VERT_ATTRIB_GENERIC(0));
if (texcoord_size > 0) {
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_GENERIC(1),
texcoord_size, GL_FLOAT, GL_RGBA,
GL_FALSE, GL_FALSE, GL_FALSE,
offsetof(struct vertex, tex), false);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_GENERIC(1),
*buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj,
VERT_ATTRIB_GENERIC(1));
}
} else {
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_POS,
vertex_size, GL_FLOAT, GL_RGBA, GL_FALSE,
GL_FALSE, GL_FALSE,
offsetof(struct vertex, x), true);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_POS,
*buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj, VERT_ATTRIB_POS);
if (texcoord_size > 0) {
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_TEX(0),
vertex_size, GL_FLOAT, GL_RGBA, GL_FALSE,
GL_FALSE, GL_FALSE,
offsetof(struct vertex, tex), false);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_TEX(0),
*buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj, VERT_ATTRIB_TEX(0));
}
if (color_size > 0) {
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_COLOR0,
vertex_size, GL_FLOAT, GL_RGBA, GL_FALSE,
GL_FALSE, GL_FALSE,
offsetof(struct vertex, r), false);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_COLOR0,
*buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj, VERT_ATTRIB_COLOR0);
}
}
} else {
_mesa_BindVertexArray(*VAO);
}
}
/**
* Initialize meta-ops for a context.
* To be called once during context creation.
*/
void
_mesa_meta_init(struct gl_context *ctx)
{
assert(!ctx->Meta);
ctx->Meta = CALLOC_STRUCT(gl_meta_state);
}
/**
* Free context meta-op state.
* To be called once during context destruction.
*/
void
_mesa_meta_free(struct gl_context *ctx)
{
GET_CURRENT_CONTEXT(old_context);
_mesa_make_current(ctx, NULL, NULL);
_mesa_meta_glsl_blit_cleanup(ctx, &ctx->Meta->Blit);
meta_glsl_clear_cleanup(ctx, &ctx->Meta->Clear);
_mesa_meta_glsl_generate_mipmap_cleanup(ctx, &ctx->Meta->Mipmap);
cleanup_temp_texture(&ctx->Meta->TempTex);
meta_decompress_cleanup(ctx, &ctx->Meta->Decompress);
meta_drawpix_cleanup(ctx, &ctx->Meta->DrawPix);
if (old_context)
_mesa_make_current(old_context, old_context->WinSysDrawBuffer, old_context->WinSysReadBuffer);
else
_mesa_make_current(NULL, NULL, NULL);
free(ctx->Meta);
ctx->Meta = NULL;
}
/**
* Enter meta state. This is like a light-weight version of glPushAttrib
* but it also resets most GL state back to default values.
*
* \param state bitmask of MESA_META_* flags indicating which attribute groups
* to save and reset to their defaults
*/
void
_mesa_meta_begin(struct gl_context *ctx, GLbitfield state)
{
struct save_state *save;
/* hope MAX_META_OPS_DEPTH is large enough */
assert(ctx->Meta->SaveStackDepth < MAX_META_OPS_DEPTH);
save = &ctx->Meta->Save[ctx->Meta->SaveStackDepth++];
memset(save, 0, sizeof(*save));
save->SavedState = state;
/* We always push into desktop GL mode and pop out at the end. No sense in
* writing our shaders varying based on the user's context choice, when
* Mesa can handle either.
*/
save->API = ctx->API;
ctx->API = API_OPENGL_COMPAT;
/* Mesa's extension helper functions use the current context's API to look up
* the version required by an extension as a step in determining whether or
* not it has been advertised. Since meta aims to only be restricted by the
* driver capability (and not by whether or not an extension has been
* advertised), set the helper functions' Version variable to a value that
* will make the checks on the context API and version unconditionally pass.
*/
save->ExtensionsVersion = ctx->Extensions.Version;
ctx->Extensions.Version = ~0;
/* Pausing transform feedback needs to be done early, or else we won't be
* able to change other state.
*/
save->TransformFeedbackNeedsResume =
_mesa_is_xfb_active_and_unpaused(ctx);
if (save->TransformFeedbackNeedsResume)
_mesa_PauseTransformFeedback();
/* After saving the current occlusion object, call EndQuery so that no
* occlusion querying will be active during the meta-operation.
*/
if (state & MESA_META_OCCLUSION_QUERY) {
save->CurrentOcclusionObject = ctx->Query.CurrentOcclusionObject;
if (save->CurrentOcclusionObject)
_mesa_EndQuery(save->CurrentOcclusionObject->Target);
}
if (state & MESA_META_ALPHA_TEST) {
save->AlphaEnabled = ctx->Color.AlphaEnabled;
save->AlphaFunc = ctx->Color.AlphaFunc;
save->AlphaRef = ctx->Color.AlphaRef;
if (ctx->Color.AlphaEnabled)
_mesa_set_enable(ctx, GL_ALPHA_TEST, GL_FALSE);
}
if (state & MESA_META_BLEND) {
save->BlendEnabled = ctx->Color.BlendEnabled;
if (ctx->Color.BlendEnabled) {
if (ctx->Extensions.EXT_draw_buffers2) {
GLuint i;
for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) {
_mesa_set_enablei(ctx, GL_BLEND, i, GL_FALSE);
}
}
else {
_mesa_set_enable(ctx, GL_BLEND, GL_FALSE);
}
}
save->ColorLogicOpEnabled = ctx->Color.ColorLogicOpEnabled;
if (ctx->Color.ColorLogicOpEnabled)
_mesa_set_enable(ctx, GL_COLOR_LOGIC_OP, GL_FALSE);
}
if (state & MESA_META_DITHER) {
save->DitherFlag = ctx->Color.DitherFlag;
_mesa_set_enable(ctx, GL_DITHER, GL_TRUE);
}
if (state & MESA_META_COLOR_MASK) {
memcpy(save->ColorMask, ctx->Color.ColorMask,
sizeof(ctx->Color.ColorMask));
}
if (state & MESA_META_DEPTH_TEST) {
save->Depth = ctx->Depth; /* struct copy */
if (ctx->Depth.Test)
_mesa_set_enable(ctx, GL_DEPTH_TEST, GL_FALSE);
}
if (state & MESA_META_FOG) {
save->Fog = ctx->Fog.Enabled;
if (ctx->Fog.Enabled)
_mesa_set_enable(ctx, GL_FOG, GL_FALSE);
}
if (state & MESA_META_PIXEL_STORE) {
save->Pack = ctx->Pack;
save->Unpack = ctx->Unpack;
ctx->Pack = ctx->DefaultPacking;
ctx->Unpack = ctx->DefaultPacking;
}
if (state & MESA_META_PIXEL_TRANSFER) {
save->RedScale = ctx->Pixel.RedScale;
save->RedBias = ctx->Pixel.RedBias;
save->GreenScale = ctx->Pixel.GreenScale;
save->GreenBias = ctx->Pixel.GreenBias;
save->BlueScale = ctx->Pixel.BlueScale;
save->BlueBias = ctx->Pixel.BlueBias;
save->AlphaScale = ctx->Pixel.AlphaScale;
save->AlphaBias = ctx->Pixel.AlphaBias;
save->MapColorFlag = ctx->Pixel.MapColorFlag;
ctx->Pixel.RedScale = 1.0F;
ctx->Pixel.RedBias = 0.0F;
ctx->Pixel.GreenScale = 1.0F;
ctx->Pixel.GreenBias = 0.0F;
ctx->Pixel.BlueScale = 1.0F;
ctx->Pixel.BlueBias = 0.0F;
ctx->Pixel.AlphaScale = 1.0F;
ctx->Pixel.AlphaBias = 0.0F;
ctx->Pixel.MapColorFlag = GL_FALSE;
/* XXX more state */
ctx->NewState |=_NEW_PIXEL;
}
if (state & MESA_META_RASTERIZATION) {
save->FrontPolygonMode = ctx->Polygon.FrontMode;
save->BackPolygonMode = ctx->Polygon.BackMode;
save->PolygonOffset = ctx->Polygon.OffsetFill;
save->PolygonSmooth = ctx->Polygon.SmoothFlag;
save->PolygonStipple = ctx->Polygon.StippleFlag;
save->PolygonCull = ctx->Polygon.CullFlag;
_mesa_PolygonMode(GL_FRONT_AND_BACK, GL_FILL);
_mesa_set_enable(ctx, GL_POLYGON_OFFSET_FILL, GL_FALSE);
_mesa_set_enable(ctx, GL_POLYGON_SMOOTH, GL_FALSE);
_mesa_set_enable(ctx, GL_POLYGON_STIPPLE, GL_FALSE);
_mesa_set_enable(ctx, GL_CULL_FACE, GL_FALSE);
}
if (state & MESA_META_SCISSOR) {
save->Scissor = ctx->Scissor; /* struct copy */
_mesa_set_enable(ctx, GL_SCISSOR_TEST, GL_FALSE);
}
if (state & MESA_META_SHADER) {
int i;
if (ctx->Extensions.ARB_vertex_program) {
save->VertexProgramEnabled = ctx->VertexProgram.Enabled;
_mesa_reference_program(ctx, &save->VertexProgram,
ctx->VertexProgram.Current);
_mesa_set_enable(ctx, GL_VERTEX_PROGRAM_ARB, GL_FALSE);
}
if (ctx->Extensions.ARB_fragment_program) {
save->FragmentProgramEnabled = ctx->FragmentProgram.Enabled;
_mesa_reference_program(ctx, &save->FragmentProgram,
ctx->FragmentProgram.Current);
_mesa_set_enable(ctx, GL_FRAGMENT_PROGRAM_ARB, GL_FALSE);
}
if (ctx->Extensions.ATI_fragment_shader) {
save->ATIFragmentShaderEnabled = ctx->ATIFragmentShader.Enabled;
_mesa_set_enable(ctx, GL_FRAGMENT_SHADER_ATI, GL_FALSE);
}
if (ctx->Pipeline.Current) {
_mesa_reference_pipeline_object(ctx, &save->Pipeline,
ctx->Pipeline.Current);
_mesa_BindProgramPipeline(0);
}
/* Save the shader state from ctx->Shader (instead of ctx->_Shader) so
* that we don't have to worry about the current pipeline state.
*/
for (i = 0; i < MESA_SHADER_STAGES; i++) {
_mesa_reference_shader_program(ctx, &save->Shader[i],
ctx->Shader.CurrentProgram[i]);
}
_mesa_reference_shader_program(ctx, &save->ActiveShader,
ctx->Shader.ActiveProgram);
_mesa_UseProgram(0);
}
if (state & MESA_META_STENCIL_TEST) {
save->Stencil = ctx->Stencil; /* struct copy */
if (ctx->Stencil.Enabled)
_mesa_set_enable(ctx, GL_STENCIL_TEST, GL_FALSE);
/* NOTE: other stencil state not reset */
}
if (state & MESA_META_TEXTURE) {
GLuint u, tgt;
save->ActiveUnit = ctx->Texture.CurrentUnit;
save->EnvMode = ctx->Texture.Unit[0].EnvMode;
/* Disable all texture units */
for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
save->TexEnabled[u] = ctx->Texture.Unit[u].Enabled;
save->TexGenEnabled[u] = ctx->Texture.Unit[u].TexGenEnabled;
if (ctx->Texture.Unit[u].Enabled ||
ctx->Texture.Unit[u].TexGenEnabled) {
_mesa_ActiveTexture(GL_TEXTURE0 + u);
_mesa_set_enable(ctx, GL_TEXTURE_2D, GL_FALSE);
if (ctx->Extensions.ARB_texture_cube_map)
_mesa_set_enable(ctx, GL_TEXTURE_CUBE_MAP, GL_FALSE);
_mesa_set_enable(ctx, GL_TEXTURE_1D, GL_FALSE);
_mesa_set_enable(ctx, GL_TEXTURE_3D, GL_FALSE);
if (ctx->Extensions.NV_texture_rectangle)
_mesa_set_enable(ctx, GL_TEXTURE_RECTANGLE, GL_FALSE);
_mesa_set_enable(ctx, GL_TEXTURE_GEN_S, GL_FALSE);
_mesa_set_enable(ctx, GL_TEXTURE_GEN_T, GL_FALSE);
_mesa_set_enable(ctx, GL_TEXTURE_GEN_R, GL_FALSE);
_mesa_set_enable(ctx, GL_TEXTURE_GEN_Q, GL_FALSE);
}
}
/* save current texture objects for unit[0] only */
for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) {
_mesa_reference_texobj(&save->CurrentTexture[tgt],
ctx->Texture.Unit[0].CurrentTex[tgt]);
}
/* set defaults for unit[0] */
_mesa_ActiveTexture(GL_TEXTURE0);
_mesa_TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
}
if (state & MESA_META_TRANSFORM) {
GLuint activeTexture = ctx->Texture.CurrentUnit;
memcpy(save->ModelviewMatrix, ctx->ModelviewMatrixStack.Top->m,
16 * sizeof(GLfloat));
memcpy(save->ProjectionMatrix, ctx->ProjectionMatrixStack.Top->m,
16 * sizeof(GLfloat));
memcpy(save->TextureMatrix, ctx->TextureMatrixStack[0].Top->m,
16 * sizeof(GLfloat));
save->MatrixMode = ctx->Transform.MatrixMode;
/* set 1:1 vertex:pixel coordinate transform */
_mesa_ActiveTexture(GL_TEXTURE0);
_mesa_MatrixMode(GL_TEXTURE);
_mesa_LoadIdentity();
_mesa_ActiveTexture(GL_TEXTURE0 + activeTexture);
_mesa_MatrixMode(GL_MODELVIEW);
_mesa_LoadIdentity();
_mesa_MatrixMode(GL_PROJECTION);
_mesa_LoadIdentity();
/* glOrtho with width = 0 or height = 0 generates GL_INVALID_VALUE.
* This can occur when there is no draw buffer.
*/
if (ctx->DrawBuffer->Width != 0 && ctx->DrawBuffer->Height != 0)
_mesa_Ortho(0.0, ctx->DrawBuffer->Width,
0.0, ctx->DrawBuffer->Height,
-1.0, 1.0);
if (ctx->Extensions.ARB_clip_control) {
save->ClipOrigin = ctx->Transform.ClipOrigin;
save->ClipDepthMode = ctx->Transform.ClipDepthMode;
_mesa_ClipControl(GL_LOWER_LEFT, GL_NEGATIVE_ONE_TO_ONE);
}
}
if (state & MESA_META_CLIP) {
GLbitfield mask;
save->ClipPlanesEnabled = ctx->Transform.ClipPlanesEnabled;
mask = ctx->Transform.ClipPlanesEnabled;
while (mask) {
const int i = u_bit_scan(&mask);
_mesa_set_enable(ctx, GL_CLIP_PLANE0 + i, GL_FALSE);
}
}
if (state & MESA_META_VERTEX) {
/* save vertex array object state */
_mesa_reference_vao(ctx, &save->VAO,
ctx->Array.VAO);
/* set some default state? */
}
if (state & MESA_META_VIEWPORT) {
/* save viewport state */
save->ViewportX = ctx->ViewportArray[0].X;
save->ViewportY = ctx->ViewportArray[0].Y;
save->ViewportW = ctx->ViewportArray[0].Width;
save->ViewportH = ctx->ViewportArray[0].Height;
/* set viewport to match window size */
if (ctx->ViewportArray[0].X != 0 ||
ctx->ViewportArray[0].Y != 0 ||
ctx->ViewportArray[0].Width != (float) ctx->DrawBuffer->Width ||
ctx->ViewportArray[0].Height != (float) ctx->DrawBuffer->Height) {
_mesa_set_viewport(ctx, 0, 0, 0,
ctx->DrawBuffer->Width, ctx->DrawBuffer->Height);
}
/* save depth range state */
save->DepthNear = ctx->ViewportArray[0].Near;
save->DepthFar = ctx->ViewportArray[0].Far;
/* set depth range to default */
_mesa_set_depth_range(ctx, 0, 0.0, 1.0);
}
if (state & MESA_META_CLAMP_FRAGMENT_COLOR) {
save->ClampFragmentColor = ctx->Color.ClampFragmentColor;
/* Generally in here we want to do clamping according to whether
* it's for the pixel path (ClampFragmentColor is GL_TRUE),
* regardless of the internal implementation of the metaops.
*/
if (ctx->Color.ClampFragmentColor != GL_TRUE &&
ctx->Extensions.ARB_color_buffer_float)
_mesa_ClampColor(GL_CLAMP_FRAGMENT_COLOR, GL_FALSE);
}
if (state & MESA_META_CLAMP_VERTEX_COLOR) {
save->ClampVertexColor = ctx->Light.ClampVertexColor;
/* Generally in here we never want vertex color clamping --
* result clamping is only dependent on fragment clamping.
*/
if (ctx->Extensions.ARB_color_buffer_float)
_mesa_ClampColor(GL_CLAMP_VERTEX_COLOR, GL_FALSE);
}
if (state & MESA_META_CONDITIONAL_RENDER) {
save->CondRenderQuery = ctx->Query.CondRenderQuery;
save->CondRenderMode = ctx->Query.CondRenderMode;
if (ctx->Query.CondRenderQuery)
_mesa_EndConditionalRender();
}
if (state & MESA_META_SELECT_FEEDBACK) {
save->RenderMode = ctx->RenderMode;
if (ctx->RenderMode == GL_SELECT) {
save->Select = ctx->Select; /* struct copy */
_mesa_RenderMode(GL_RENDER);
} else if (ctx->RenderMode == GL_FEEDBACK) {
save->Feedback = ctx->Feedback; /* struct copy */
_mesa_RenderMode(GL_RENDER);
}
}
if (state & MESA_META_MULTISAMPLE) {
save->Multisample = ctx->Multisample; /* struct copy */
if (ctx->Multisample.Enabled)
_mesa_set_multisample(ctx, GL_FALSE);
if (ctx->Multisample.SampleCoverage)
_mesa_set_enable(ctx, GL_SAMPLE_COVERAGE, GL_FALSE);
if (ctx->Multisample.SampleAlphaToCoverage)
_mesa_set_enable(ctx, GL_SAMPLE_ALPHA_TO_COVERAGE, GL_FALSE);
if (ctx->Multisample.SampleAlphaToOne)
_mesa_set_enable(ctx, GL_SAMPLE_ALPHA_TO_ONE, GL_FALSE);
if (ctx->Multisample.SampleShading)
_mesa_set_enable(ctx, GL_SAMPLE_SHADING, GL_FALSE);
if (ctx->Multisample.SampleMask)
_mesa_set_enable(ctx, GL_SAMPLE_MASK, GL_FALSE);
}
if (state & MESA_META_FRAMEBUFFER_SRGB) {
save->sRGBEnabled = ctx->Color.sRGBEnabled;
if (ctx->Color.sRGBEnabled)
_mesa_set_framebuffer_srgb(ctx, GL_FALSE);
}
if (state & MESA_META_DRAW_BUFFERS) {
struct gl_framebuffer *fb = ctx->DrawBuffer;
memcpy(save->ColorDrawBuffers, fb->ColorDrawBuffer,
sizeof(save->ColorDrawBuffers));
}
/* misc */
{
save->Lighting = ctx->Light.Enabled;
if (ctx->Light.Enabled)
_mesa_set_enable(ctx, GL_LIGHTING, GL_FALSE);
save->RasterDiscard = ctx->RasterDiscard;
if (ctx->RasterDiscard)
_mesa_set_enable(ctx, GL_RASTERIZER_DISCARD, GL_FALSE);
_mesa_reference_framebuffer(&save->DrawBuffer, ctx->DrawBuffer);
_mesa_reference_framebuffer(&save->ReadBuffer, ctx->ReadBuffer);
}
}
/**
* Leave meta state. This is like a light-weight version of glPopAttrib().
*/
void
_mesa_meta_end(struct gl_context *ctx)
{
assert(ctx->Meta->SaveStackDepth > 0);
struct save_state *save = &ctx->Meta->Save[ctx->Meta->SaveStackDepth - 1];
const GLbitfield state = save->SavedState;
int i;
/* Grab the result of the old occlusion query before starting it again. The
* old result is added to the result of the new query so the driver will
* continue adding where it left off. */
if (state & MESA_META_OCCLUSION_QUERY) {
if (save->CurrentOcclusionObject) {
struct gl_query_object *q = save->CurrentOcclusionObject;
GLuint64EXT result;
if (!q->Ready)
ctx->Driver.WaitQuery(ctx, q);
result = q->Result;
_mesa_BeginQuery(q->Target, q->Id);
ctx->Query.CurrentOcclusionObject->Result += result;
}
}
if (state & MESA_META_ALPHA_TEST) {
if (ctx->Color.AlphaEnabled != save->AlphaEnabled)
_mesa_set_enable(ctx, GL_ALPHA_TEST, save->AlphaEnabled);
_mesa_AlphaFunc(save->AlphaFunc, save->AlphaRef);
}
if (state & MESA_META_BLEND) {
if (ctx->Color.BlendEnabled != save->BlendEnabled) {
if (ctx->Extensions.EXT_draw_buffers2) {
GLuint i;
for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) {
_mesa_set_enablei(ctx, GL_BLEND, i, (save->BlendEnabled >> i) & 1);
}
}
else {
_mesa_set_enable(ctx, GL_BLEND, (save->BlendEnabled & 1));
}
}
if (ctx->Color.ColorLogicOpEnabled != save->ColorLogicOpEnabled)
_mesa_set_enable(ctx, GL_COLOR_LOGIC_OP, save->ColorLogicOpEnabled);
}
if (state & MESA_META_DITHER)
_mesa_set_enable(ctx, GL_DITHER, save->DitherFlag);
if (state & MESA_META_COLOR_MASK) {
GLuint i;
for (i = 0; i < ctx->Const.MaxDrawBuffers; i++) {
if (!TEST_EQ_4V(ctx->Color.ColorMask[i], save->ColorMask[i])) {
if (i == 0) {
_mesa_ColorMask(save->ColorMask[i][0], save->ColorMask[i][1],
save->ColorMask[i][2], save->ColorMask[i][3]);
}
else {
_mesa_ColorMaski(i,
save->ColorMask[i][0],
save->ColorMask[i][1],
save->ColorMask[i][2],
save->ColorMask[i][3]);
}
}
}
}
if (state & MESA_META_DEPTH_TEST) {
if (ctx->Depth.Test != save->Depth.Test)
_mesa_set_enable(ctx, GL_DEPTH_TEST, save->Depth.Test);
_mesa_DepthFunc(save->Depth.Func);
_mesa_DepthMask(save->Depth.Mask);
}
if (state & MESA_META_FOG) {
_mesa_set_enable(ctx, GL_FOG, save->Fog);
}
if (state & MESA_META_PIXEL_STORE) {
ctx->Pack = save->Pack;
ctx->Unpack = save->Unpack;
}
if (state & MESA_META_PIXEL_TRANSFER) {
ctx->Pixel.RedScale = save->RedScale;
ctx->Pixel.RedBias = save->RedBias;
ctx->Pixel.GreenScale = save->GreenScale;
ctx->Pixel.GreenBias = save->GreenBias;
ctx->Pixel.BlueScale = save->BlueScale;
ctx->Pixel.BlueBias = save->BlueBias;
ctx->Pixel.AlphaScale = save->AlphaScale;
ctx->Pixel.AlphaBias = save->AlphaBias;
ctx->Pixel.MapColorFlag = save->MapColorFlag;
/* XXX more state */
ctx->NewState |=_NEW_PIXEL;
}
if (state & MESA_META_RASTERIZATION) {
_mesa_PolygonMode(GL_FRONT, save->FrontPolygonMode);
_mesa_PolygonMode(GL_BACK, save->BackPolygonMode);
_mesa_set_enable(ctx, GL_POLYGON_STIPPLE, save->PolygonStipple);
_mesa_set_enable(ctx, GL_POLYGON_SMOOTH, save->PolygonSmooth);
_mesa_set_enable(ctx, GL_POLYGON_OFFSET_FILL, save->PolygonOffset);
_mesa_set_enable(ctx, GL_CULL_FACE, save->PolygonCull);
}
if (state & MESA_META_SCISSOR) {
unsigned i;
for (i = 0; i < ctx->Const.MaxViewports; i++) {
_mesa_set_scissor(ctx, i,
save->Scissor.ScissorArray[i].X,
save->Scissor.ScissorArray[i].Y,
save->Scissor.ScissorArray[i].Width,
save->Scissor.ScissorArray[i].Height);
_mesa_set_enablei(ctx, GL_SCISSOR_TEST, i,
(save->Scissor.EnableFlags >> i) & 1);
}
}
if (state & MESA_META_SHADER) {
static const GLenum targets[] = {
GL_VERTEX_SHADER,
GL_TESS_CONTROL_SHADER,
GL_TESS_EVALUATION_SHADER,
GL_GEOMETRY_SHADER,
GL_FRAGMENT_SHADER,
GL_COMPUTE_SHADER,
};
STATIC_ASSERT(MESA_SHADER_STAGES == ARRAY_SIZE(targets));
bool any_shader;
if (ctx->Extensions.ARB_vertex_program) {
_mesa_set_enable(ctx, GL_VERTEX_PROGRAM_ARB,
save->VertexProgramEnabled);
_mesa_reference_program(ctx, &ctx->VertexProgram.Current,
save->VertexProgram);
_mesa_reference_program(ctx, &save->VertexProgram, NULL);
}
if (ctx->Extensions.ARB_fragment_program) {
_mesa_set_enable(ctx, GL_FRAGMENT_PROGRAM_ARB,
save->FragmentProgramEnabled);
_mesa_reference_program(ctx, &ctx->FragmentProgram.Current,
save->FragmentProgram);
_mesa_reference_program(ctx, &save->FragmentProgram, NULL);
}
if (ctx->Extensions.ATI_fragment_shader) {
_mesa_set_enable(ctx, GL_FRAGMENT_SHADER_ATI,
save->ATIFragmentShaderEnabled);
}
any_shader = false;
for (i = 0; i < MESA_SHADER_STAGES; i++) {
/* It is safe to call _mesa_use_shader_program even if the extension
* necessary for that program state is not supported. In that case,
* the saved program object must be NULL and the currently bound
* program object must be NULL. _mesa_use_shader_program is a no-op
* in that case.
*/
_mesa_use_shader_program(ctx, targets[i],
save->Shader[i],
&ctx->Shader);
/* Do this *before* killing the reference. :)
*/
if (save->Shader[i] != NULL)
any_shader = true;
_mesa_reference_shader_program(ctx, &save->Shader[i], NULL);
}
_mesa_reference_shader_program(ctx, &ctx->Shader.ActiveProgram,
save->ActiveShader);
_mesa_reference_shader_program(ctx, &save->ActiveShader, NULL);
/* If there were any stages set with programs, use ctx->Shader as the
* current shader state. Otherwise, use Pipeline.Default. The pipeline
* hasn't been restored yet, and that may modify ctx->_Shader further.
*/
if (any_shader)
_mesa_reference_pipeline_object(ctx, &ctx->_Shader,
&ctx->Shader);
else
_mesa_reference_pipeline_object(ctx, &ctx->_Shader,
ctx->Pipeline.Default);
if (save->Pipeline) {
_mesa_bind_pipeline(ctx, save->Pipeline);
_mesa_reference_pipeline_object(ctx, &save->Pipeline, NULL);
}
}
if (state & MESA_META_STENCIL_TEST) {
const struct gl_stencil_attrib *stencil = &save->Stencil;
_mesa_set_enable(ctx, GL_STENCIL_TEST, stencil->Enabled);
_mesa_ClearStencil(stencil->Clear);
if (ctx->Extensions.EXT_stencil_two_side) {
_mesa_set_enable(ctx, GL_STENCIL_TEST_TWO_SIDE_EXT,
stencil->TestTwoSide);
_mesa_ActiveStencilFaceEXT(stencil->ActiveFace
? GL_BACK : GL_FRONT);
}
/* front state */
_mesa_StencilFuncSeparate(GL_FRONT,
stencil->Function[0],
stencil->Ref[0],
stencil->ValueMask[0]);
_mesa_StencilMaskSeparate(GL_FRONT, stencil->WriteMask[0]);
_mesa_StencilOpSeparate(GL_FRONT, stencil->FailFunc[0],
stencil->ZFailFunc[0],
stencil->ZPassFunc[0]);
/* back state */
_mesa_StencilFuncSeparate(GL_BACK,
stencil->Function[1],
stencil->Ref[1],
stencil->ValueMask[1]);
_mesa_StencilMaskSeparate(GL_BACK, stencil->WriteMask[1]);
_mesa_StencilOpSeparate(GL_BACK, stencil->FailFunc[1],
stencil->ZFailFunc[1],
stencil->ZPassFunc[1]);
}
if (state & MESA_META_TEXTURE) {
GLuint u, tgt;
assert(ctx->Texture.CurrentUnit == 0);
/* restore texenv for unit[0] */
_mesa_TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, save->EnvMode);
/* restore texture objects for unit[0] only */
for (tgt = 0; tgt < NUM_TEXTURE_TARGETS; tgt++) {
if (ctx->Texture.Unit[0].CurrentTex[tgt] != save->CurrentTexture[tgt]) {
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
_mesa_reference_texobj(&ctx->Texture.Unit[0].CurrentTex[tgt],
save->CurrentTexture[tgt]);
}
_mesa_reference_texobj(&save->CurrentTexture[tgt], NULL);
}
/* Restore fixed function texture enables, texgen */
for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
if (ctx->Texture.Unit[u].Enabled != save->TexEnabled[u]) {
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
ctx->Texture.Unit[u].Enabled = save->TexEnabled[u];
}
if (ctx->Texture.Unit[u].TexGenEnabled != save->TexGenEnabled[u]) {
FLUSH_VERTICES(ctx, _NEW_TEXTURE);
ctx->Texture.Unit[u].TexGenEnabled = save->TexGenEnabled[u];
}
}
/* restore current unit state */
_mesa_ActiveTexture(GL_TEXTURE0 + save->ActiveUnit);
}
if (state & MESA_META_TRANSFORM) {
GLuint activeTexture = ctx->Texture.CurrentUnit;
_mesa_ActiveTexture(GL_TEXTURE0);
_mesa_MatrixMode(GL_TEXTURE);
_mesa_LoadMatrixf(save->TextureMatrix);
_mesa_ActiveTexture(GL_TEXTURE0 + activeTexture);
_mesa_MatrixMode(GL_MODELVIEW);
_mesa_LoadMatrixf(save->ModelviewMatrix);
_mesa_MatrixMode(GL_PROJECTION);
_mesa_LoadMatrixf(save->ProjectionMatrix);
_mesa_MatrixMode(save->MatrixMode);
if (ctx->Extensions.ARB_clip_control)
_mesa_ClipControl(save->ClipOrigin, save->ClipDepthMode);
}
if (state & MESA_META_CLIP) {
GLbitfield mask = save->ClipPlanesEnabled;
while (mask) {
const int i = u_bit_scan(&mask);
_mesa_set_enable(ctx, GL_CLIP_PLANE0 + i, GL_TRUE);
}
}
if (state & MESA_META_VERTEX) {
/* restore vertex array object */
_mesa_BindVertexArray(save->VAO->Name);
_mesa_reference_vao(ctx, &save->VAO, NULL);
}
if (state & MESA_META_VIEWPORT) {
if (save->ViewportX != ctx->ViewportArray[0].X ||
save->ViewportY != ctx->ViewportArray[0].Y ||
save->ViewportW != ctx->ViewportArray[0].Width ||
save->ViewportH != ctx->ViewportArray[0].Height) {
_mesa_set_viewport(ctx, 0, save->ViewportX, save->ViewportY,
save->ViewportW, save->ViewportH);
}
_mesa_set_depth_range(ctx, 0, save->DepthNear, save->DepthFar);
}
if (state & MESA_META_CLAMP_FRAGMENT_COLOR &&
ctx->Extensions.ARB_color_buffer_float) {
_mesa_ClampColor(GL_CLAMP_FRAGMENT_COLOR, save->ClampFragmentColor);
}
if (state & MESA_META_CLAMP_VERTEX_COLOR &&
ctx->Extensions.ARB_color_buffer_float) {
_mesa_ClampColor(GL_CLAMP_VERTEX_COLOR, save->ClampVertexColor);
}
if (state & MESA_META_CONDITIONAL_RENDER) {
if (save->CondRenderQuery)
_mesa_BeginConditionalRender(save->CondRenderQuery->Id,
save->CondRenderMode);
}
if (state & MESA_META_SELECT_FEEDBACK) {
if (save->RenderMode == GL_SELECT) {
_mesa_RenderMode(GL_SELECT);
ctx->Select = save->Select;
} else if (save->RenderMode == GL_FEEDBACK) {
_mesa_RenderMode(GL_FEEDBACK);
ctx->Feedback = save->Feedback;
}
}
if (state & MESA_META_MULTISAMPLE) {
struct gl_multisample_attrib *ctx_ms = &ctx->Multisample;
struct gl_multisample_attrib *save_ms = &save->Multisample;
if (ctx_ms->Enabled != save_ms->Enabled)
_mesa_set_multisample(ctx, save_ms->Enabled);
if (ctx_ms->SampleCoverage != save_ms->SampleCoverage)
_mesa_set_enable(ctx, GL_SAMPLE_COVERAGE, save_ms->SampleCoverage);
if (ctx_ms->SampleAlphaToCoverage != save_ms->SampleAlphaToCoverage)
_mesa_set_enable(ctx, GL_SAMPLE_ALPHA_TO_COVERAGE, save_ms->SampleAlphaToCoverage);
if (ctx_ms->SampleAlphaToOne != save_ms->SampleAlphaToOne)
_mesa_set_enable(ctx, GL_SAMPLE_ALPHA_TO_ONE, save_ms->SampleAlphaToOne);
if (ctx_ms->SampleCoverageValue != save_ms->SampleCoverageValue ||
ctx_ms->SampleCoverageInvert != save_ms->SampleCoverageInvert) {
_mesa_SampleCoverage(save_ms->SampleCoverageValue,
save_ms->SampleCoverageInvert);
}
if (ctx_ms->SampleShading != save_ms->SampleShading)
_mesa_set_enable(ctx, GL_SAMPLE_SHADING, save_ms->SampleShading);
if (ctx_ms->SampleMask != save_ms->SampleMask)
_mesa_set_enable(ctx, GL_SAMPLE_MASK, save_ms->SampleMask);
if (ctx_ms->SampleMaskValue != save_ms->SampleMaskValue)
_mesa_SampleMaski(0, save_ms->SampleMaskValue);
if (ctx_ms->MinSampleShadingValue != save_ms->MinSampleShadingValue)
_mesa_MinSampleShading(save_ms->MinSampleShadingValue);
}
if (state & MESA_META_FRAMEBUFFER_SRGB) {
if (ctx->Color.sRGBEnabled != save->sRGBEnabled)
_mesa_set_framebuffer_srgb(ctx, save->sRGBEnabled);
}
/* misc */
if (save->Lighting) {
_mesa_set_enable(ctx, GL_LIGHTING, GL_TRUE);
}
if (save->RasterDiscard) {
_mesa_set_enable(ctx, GL_RASTERIZER_DISCARD, GL_TRUE);
}
if (save->TransformFeedbackNeedsResume)
_mesa_ResumeTransformFeedback();
_mesa_bind_framebuffers(ctx, save->DrawBuffer, save->ReadBuffer);
_mesa_reference_framebuffer(&save->DrawBuffer, NULL);
_mesa_reference_framebuffer(&save->ReadBuffer, NULL);
if (state & MESA_META_DRAW_BUFFERS) {
_mesa_drawbuffers(ctx, ctx->DrawBuffer, ctx->Const.MaxDrawBuffers,
save->ColorDrawBuffers, NULL);
}
ctx->Meta->SaveStackDepth--;
ctx->API = save->API;
ctx->Extensions.Version = save->ExtensionsVersion;
}
/**
* Convert Z from a normalized value in the range [0, 1] to an object-space
* Z coordinate in [-1, +1] so that drawing at the new Z position with the
* default/identity ortho projection results in the original Z value.
* Used by the meta-Clear, Draw/CopyPixels and Bitmap functions where the Z
* value comes from the clear value or raster position.
*/
static inline GLfloat
invert_z(GLfloat normZ)
{
GLfloat objZ = 1.0f - 2.0f * normZ;
return objZ;
}
/**
* One-time init for a temp_texture object.
* Choose tex target, compute max tex size, etc.
*/
static void
init_temp_texture(struct gl_context *ctx, struct temp_texture *tex)
{
/* prefer texture rectangle */
if (_mesa_is_desktop_gl(ctx) && ctx->Extensions.NV_texture_rectangle) {
tex->Target = GL_TEXTURE_RECTANGLE;
tex->MaxSize = ctx->Const.MaxTextureRectSize;
tex->NPOT = GL_TRUE;
}
else {
/* use 2D texture, NPOT if possible */
tex->Target = GL_TEXTURE_2D;
tex->MaxSize = 1 << (ctx->Const.MaxTextureLevels - 1);
tex->NPOT = ctx->Extensions.ARB_texture_non_power_of_two;
}
tex->MinSize = 16; /* 16 x 16 at least */
assert(tex->MaxSize > 0);
_mesa_GenTextures(1, &tex->TexObj);
}
static void
cleanup_temp_texture(struct temp_texture *tex)
{
if (!tex->TexObj)
return;
_mesa_DeleteTextures(1, &tex->TexObj);
tex->TexObj = 0;
}
/**
* Return pointer to temp_texture info for non-bitmap ops.
* This does some one-time init if needed.
*/
struct temp_texture *
_mesa_meta_get_temp_texture(struct gl_context *ctx)
{
struct temp_texture *tex = &ctx->Meta->TempTex;
if (!tex->TexObj) {
init_temp_texture(ctx, tex);
}
return tex;
}
/**
* Return pointer to temp_texture info for _mesa_meta_bitmap().
* We use a separate texture for bitmaps to reduce texture
* allocation/deallocation.
*/
static struct temp_texture *
get_bitmap_temp_texture(struct gl_context *ctx)
{
struct temp_texture *tex = &ctx->Meta->Bitmap.Tex;
if (!tex->TexObj) {
init_temp_texture(ctx, tex);
}
return tex;
}
/**
* Return pointer to depth temp_texture.
* This does some one-time init if needed.
*/
struct temp_texture *
_mesa_meta_get_temp_depth_texture(struct gl_context *ctx)
{
struct temp_texture *tex = &ctx->Meta->Blit.depthTex;
if (!tex->TexObj) {
init_temp_texture(ctx, tex);
}
return tex;
}
/**
* Compute the width/height of texture needed to draw an image of the
* given size. Return a flag indicating whether the current texture
* can be re-used (glTexSubImage2D) or if a new texture needs to be
* allocated (glTexImage2D).
* Also, compute s/t texcoords for drawing.
*
* \return GL_TRUE if new texture is needed, GL_FALSE otherwise
*/
GLboolean
_mesa_meta_alloc_texture(struct temp_texture *tex,
GLsizei width, GLsizei height, GLenum intFormat)
{
GLboolean newTex = GL_FALSE;
assert(width <= tex->MaxSize);
assert(height <= tex->MaxSize);
if (width > tex->Width ||
height > tex->Height ||
intFormat != tex->IntFormat) {
/* alloc new texture (larger or different format) */
if (tex->NPOT) {
/* use non-power of two size */
tex->Width = MAX2(tex->MinSize, width);
tex->Height = MAX2(tex->MinSize, height);
}
else {
/* find power of two size */
GLsizei w, h;
w = h = tex->MinSize;
while (w < width)
w *= 2;
while (h < height)
h *= 2;
tex->Width = w;
tex->Height = h;
}
tex->IntFormat = intFormat;
newTex = GL_TRUE;
}
/* compute texcoords */
if (tex->Target == GL_TEXTURE_RECTANGLE) {
tex->Sright = (GLfloat) width;
tex->Ttop = (GLfloat) height;
}
else {
tex->Sright = (GLfloat) width / tex->Width;
tex->Ttop = (GLfloat) height / tex->Height;
}
return newTex;
}
/**
* Setup/load texture for glCopyPixels or glBlitFramebuffer.
*/
void
_mesa_meta_setup_copypix_texture(struct gl_context *ctx,
struct temp_texture *tex,
GLint srcX, GLint srcY,
GLsizei width, GLsizei height,
GLenum intFormat,
GLenum filter)
{
bool newTex;
_mesa_BindTexture(tex->Target, tex->TexObj);
_mesa_TexParameteri(tex->Target, GL_TEXTURE_MIN_FILTER, filter);
_mesa_TexParameteri(tex->Target, GL_TEXTURE_MAG_FILTER, filter);
_mesa_TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
newTex = _mesa_meta_alloc_texture(tex, width, height, intFormat);
/* copy framebuffer image to texture */
if (newTex) {
/* create new tex image */
if (tex->Width == width && tex->Height == height) {
/* create new tex with framebuffer data */
_mesa_CopyTexImage2D(tex->Target, 0, tex->IntFormat,
srcX, srcY, width, height, 0);
}
else {
/* create empty texture */
_mesa_TexImage2D(tex->Target, 0, tex->IntFormat,
tex->Width, tex->Height, 0,
intFormat, GL_UNSIGNED_BYTE, NULL);
/* load image */
_mesa_CopyTexSubImage2D(tex->Target, 0,
0, 0, srcX, srcY, width, height);
}
}
else {
/* replace existing tex image */
_mesa_CopyTexSubImage2D(tex->Target, 0,
0, 0, srcX, srcY, width, height);
}
}
/**
* Setup/load texture for glDrawPixels.
*/
void
_mesa_meta_setup_drawpix_texture(struct gl_context *ctx,
struct temp_texture *tex,
GLboolean newTex,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const GLvoid *pixels)
{
_mesa_BindTexture(tex->Target, tex->TexObj);
_mesa_TexParameteri(tex->Target, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
_mesa_TexParameteri(tex->Target, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
_mesa_TexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
/* copy pixel data to texture */
if (newTex) {
/* create new tex image */
if (tex->Width == width && tex->Height == height) {
/* create new tex and load image data */
_mesa_TexImage2D(tex->Target, 0, tex->IntFormat,
tex->Width, tex->Height, 0, format, type, pixels);
}
else {
struct gl_buffer_object *save_unpack_obj = NULL;
_mesa_reference_buffer_object(ctx, &save_unpack_obj,
ctx->Unpack.BufferObj);
_mesa_BindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
/* create empty texture */
_mesa_TexImage2D(tex->Target, 0, tex->IntFormat,
tex->Width, tex->Height, 0, format, type, NULL);
if (save_unpack_obj != NULL)
_mesa_BindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB,
save_unpack_obj->Name);
/* load image */
_mesa_TexSubImage2D(tex->Target, 0,
0, 0, width, height, format, type, pixels);
}
}
else {
/* replace existing tex image */
_mesa_TexSubImage2D(tex->Target, 0,
0, 0, width, height, format, type, pixels);
}
}
void
_mesa_meta_setup_ff_tnl_for_blit(struct gl_context *ctx,
GLuint *VAO, struct gl_buffer_object **buf_obj,
unsigned texcoord_size)
{
_mesa_meta_setup_vertex_objects(ctx, VAO, buf_obj, false, 2, texcoord_size,
0);
/* setup projection matrix */
_mesa_MatrixMode(GL_PROJECTION);
_mesa_LoadIdentity();
}
/**
* Meta implementation of ctx->Driver.Clear() in terms of polygon rendering.
*/
void
_mesa_meta_Clear(struct gl_context *ctx, GLbitfield buffers)
{
meta_clear(ctx, buffers, false);
}
void
_mesa_meta_glsl_Clear(struct gl_context *ctx, GLbitfield buffers)
{
meta_clear(ctx, buffers, true);
}
static void
meta_glsl_clear_init(struct gl_context *ctx, struct clear_state *clear)
{
const char *vs_source =
"#extension GL_AMD_vertex_shader_layer : enable\n"
"#extension GL_ARB_draw_instanced : enable\n"
"#extension GL_ARB_explicit_attrib_location :enable\n"
"layout(location = 0) in vec4 position;\n"
"void main()\n"
"{\n"
"#ifdef GL_AMD_vertex_shader_layer\n"
" gl_Layer = gl_InstanceID;\n"
"#endif\n"
" gl_Position = position;\n"
"}\n";
const char *fs_source =
"#extension GL_ARB_explicit_attrib_location :enable\n"
"#extension GL_ARB_explicit_uniform_location :enable\n"
"layout(location = 0) uniform vec4 color;\n"
"void main()\n"
"{\n"
" gl_FragColor = color;\n"
"}\n";
bool has_integer_textures;
_mesa_meta_setup_vertex_objects(ctx, &clear->VAO, &clear->buf_obj, true,
3, 0, 0);
if (clear->ShaderProg != 0)
return;
_mesa_meta_compile_and_link_program(ctx, vs_source, fs_source, "meta clear",
&clear->ShaderProg);
has_integer_textures = _mesa_is_gles3(ctx) ||
(_mesa_is_desktop_gl(ctx) && ctx->Const.GLSLVersion >= 130);
if (has_integer_textures) {
void *shader_source_mem_ctx = ralloc_context(NULL);
const char *vs_int_source =
ralloc_asprintf(shader_source_mem_ctx,
"#version 130\n"
"#extension GL_AMD_vertex_shader_layer : enable\n"
"#extension GL_ARB_draw_instanced : enable\n"
"#extension GL_ARB_explicit_attrib_location :enable\n"
"layout(location = 0) in vec4 position;\n"
"void main()\n"
"{\n"
"#ifdef GL_AMD_vertex_shader_layer\n"
" gl_Layer = gl_InstanceID;\n"
"#endif\n"
" gl_Position = position;\n"
"}\n");
const char *fs_int_source =
ralloc_asprintf(shader_source_mem_ctx,
"#version 130\n"
"#extension GL_ARB_explicit_attrib_location :enable\n"
"#extension GL_ARB_explicit_uniform_location :enable\n"
"layout(location = 0) uniform ivec4 color;\n"
"out ivec4 out_color;\n"
"\n"
"void main()\n"
"{\n"
" out_color = color;\n"
"}\n");
_mesa_meta_compile_and_link_program(ctx, vs_int_source, fs_int_source,
"integer clear",
&clear->IntegerShaderProg);
ralloc_free(shader_source_mem_ctx);
/* Note that user-defined out attributes get automatically assigned
* locations starting from 0, so we don't need to explicitly
* BindFragDataLocation to 0.
*/
}
}
static void
meta_glsl_clear_cleanup(struct gl_context *ctx, struct clear_state *clear)
{
if (clear->VAO == 0)
return;
_mesa_DeleteVertexArrays(1, &clear->VAO);
clear->VAO = 0;
_mesa_reference_buffer_object(ctx, &clear->buf_obj, NULL);
_mesa_reference_shader_program(ctx, &clear->ShaderProg, NULL);
if (clear->IntegerShaderProg) {
_mesa_reference_shader_program(ctx, &clear->IntegerShaderProg, NULL);
}
}
/**
* Given a bitfield of BUFFER_BIT_x draw buffers, call glDrawBuffers to
* set GL to only draw to those buffers.
*
* Since the bitfield has no associated order, the assignment of draw buffer
* indices to color attachment indices is rather arbitrary.
*/
void
_mesa_meta_drawbuffers_from_bitfield(GLbitfield bits)
{
GLenum enums[MAX_DRAW_BUFFERS];
int i = 0;
int n;
/* This function is only legal for color buffer bitfields. */
assert((bits & ~BUFFER_BITS_COLOR) == 0);
/* Make sure we don't overflow any arrays. */
assert(_mesa_bitcount(bits) <= MAX_DRAW_BUFFERS);
enums[0] = GL_NONE;
if (bits & BUFFER_BIT_FRONT_LEFT)
enums[i++] = GL_FRONT_LEFT;
if (bits & BUFFER_BIT_FRONT_RIGHT)
enums[i++] = GL_FRONT_RIGHT;
if (bits & BUFFER_BIT_BACK_LEFT)
enums[i++] = GL_BACK_LEFT;
if (bits & BUFFER_BIT_BACK_RIGHT)
enums[i++] = GL_BACK_RIGHT;
for (n = 0; n < MAX_COLOR_ATTACHMENTS; n++) {
if (bits & (1 << (BUFFER_COLOR0 + n)))
enums[i++] = GL_COLOR_ATTACHMENT0 + n;
}
_mesa_DrawBuffers(i, enums);
}
/**
* Return if all of the color channels are masked.
*/
static inline GLboolean
is_color_disabled(struct gl_context *ctx, int i)
{
return !ctx->Color.ColorMask[i][0] &&
!ctx->Color.ColorMask[i][1] &&
!ctx->Color.ColorMask[i][2] &&
!ctx->Color.ColorMask[i][3];
}
/**
* Given a bitfield of BUFFER_BIT_x draw buffers, call glDrawBuffers to
* set GL to only draw to those buffers. Also, update color masks to
* reflect the new draw buffer ordering.
*/
static void
_mesa_meta_drawbuffers_and_colormask(struct gl_context *ctx, GLbitfield mask)
{
GLenum enums[MAX_DRAW_BUFFERS];
GLubyte colormask[MAX_DRAW_BUFFERS][4];
int num_bufs = 0;
/* This function is only legal for color buffer bitfields. */
assert((mask & ~BUFFER_BITS_COLOR) == 0);
/* Make sure we don't overflow any arrays. */
assert(_mesa_bitcount(mask) <= MAX_DRAW_BUFFERS);
enums[0] = GL_NONE;
for (int i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
int b = ctx->DrawBuffer->_ColorDrawBufferIndexes[i];
int colormask_idx = ctx->Extensions.EXT_draw_buffers2 ? i : 0;
if (b < 0 || !(mask & (1 << b)) || is_color_disabled(ctx, colormask_idx))
continue;
switch (b) {
case BUFFER_FRONT_LEFT:
enums[num_bufs] = GL_FRONT_LEFT;
break;
case BUFFER_FRONT_RIGHT:
enums[num_bufs] = GL_FRONT_RIGHT;
break;
case BUFFER_BACK_LEFT:
enums[num_bufs] = GL_BACK_LEFT;
break;
case BUFFER_BACK_RIGHT:
enums[num_bufs] = GL_BACK_RIGHT;
break;
default:
assert(b >= BUFFER_COLOR0 && b <= BUFFER_COLOR7);
enums[num_bufs] = GL_COLOR_ATTACHMENT0 + (b - BUFFER_COLOR0);
break;
}
for (int k = 0; k < 4; k++)
colormask[num_bufs][k] = ctx->Color.ColorMask[colormask_idx][k];
num_bufs++;
}
_mesa_DrawBuffers(num_bufs, enums);
for (int i = 0; i < num_bufs; i++) {
_mesa_ColorMaski(i, colormask[i][0], colormask[i][1],
colormask[i][2], colormask[i][3]);
}
}
/**
* Meta implementation of ctx->Driver.Clear() in terms of polygon rendering.
*/
static void
meta_clear(struct gl_context *ctx, GLbitfield buffers, bool glsl)
{
struct clear_state *clear = &ctx->Meta->Clear;
GLbitfield metaSave;
const GLuint stencilMax = (1 << ctx->DrawBuffer->Visual.stencilBits) - 1;
struct gl_framebuffer *fb = ctx->DrawBuffer;
float x0, y0, x1, y1, z;
struct vertex verts[4];
int i;
metaSave = (MESA_META_ALPHA_TEST |
MESA_META_BLEND |
MESA_META_COLOR_MASK |
MESA_META_DEPTH_TEST |
MESA_META_RASTERIZATION |
MESA_META_SHADER |
MESA_META_STENCIL_TEST |
MESA_META_VERTEX |
MESA_META_VIEWPORT |
MESA_META_CLIP |
MESA_META_CLAMP_FRAGMENT_COLOR |
MESA_META_MULTISAMPLE |
MESA_META_OCCLUSION_QUERY);
if (!glsl) {
metaSave |= MESA_META_FOG |
MESA_META_PIXEL_TRANSFER |
MESA_META_TRANSFORM |
MESA_META_TEXTURE |
MESA_META_CLAMP_VERTEX_COLOR |
MESA_META_SELECT_FEEDBACK;
}
if (buffers & BUFFER_BITS_COLOR) {
metaSave |= MESA_META_DRAW_BUFFERS;
}
_mesa_meta_begin(ctx, metaSave);
if (glsl) {
meta_glsl_clear_init(ctx, clear);
x0 = ((float) fb->_Xmin / fb->Width) * 2.0f - 1.0f;
y0 = ((float) fb->_Ymin / fb->Height) * 2.0f - 1.0f;
x1 = ((float) fb->_Xmax / fb->Width) * 2.0f - 1.0f;
y1 = ((float) fb->_Ymax / fb->Height) * 2.0f - 1.0f;
z = -invert_z(ctx->Depth.Clear);
} else {
_mesa_meta_setup_vertex_objects(ctx, &clear->VAO, &clear->buf_obj, false,
3, 0, 4);
x0 = (float) fb->_Xmin;
y0 = (float) fb->_Ymin;
x1 = (float) fb->_Xmax;
y1 = (float) fb->_Ymax;
z = invert_z(ctx->Depth.Clear);
}
if (fb->_IntegerBuffers) {
assert(glsl);
_mesa_meta_use_program(ctx, clear->IntegerShaderProg);
_mesa_Uniform4iv(0, 1, ctx->Color.ClearColor.i);
} else if (glsl) {
_mesa_meta_use_program(ctx, clear->ShaderProg);
_mesa_Uniform4fv(0, 1, ctx->Color.ClearColor.f);
}
/* GL_COLOR_BUFFER_BIT */
if (buffers & BUFFER_BITS_COLOR) {
/* Only draw to the buffers we were asked to clear. */
_mesa_meta_drawbuffers_and_colormask(ctx, buffers & BUFFER_BITS_COLOR);
/* leave colormask state as-is */
/* Clears never have the color clamped. */
if (ctx->Extensions.ARB_color_buffer_float)
_mesa_ClampColor(GL_CLAMP_FRAGMENT_COLOR, GL_FALSE);
}
else {
_mesa_ColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
}
/* GL_DEPTH_BUFFER_BIT */
if (buffers & BUFFER_BIT_DEPTH) {
_mesa_set_enable(ctx, GL_DEPTH_TEST, GL_TRUE);
_mesa_DepthFunc(GL_ALWAYS);
_mesa_DepthMask(GL_TRUE);
}
else {
assert(!ctx->Depth.Test);
}
/* GL_STENCIL_BUFFER_BIT */
if (buffers & BUFFER_BIT_STENCIL) {
_mesa_set_enable(ctx, GL_STENCIL_TEST, GL_TRUE);
_mesa_StencilOpSeparate(GL_FRONT_AND_BACK,
GL_REPLACE, GL_REPLACE, GL_REPLACE);
_mesa_StencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS,
ctx->Stencil.Clear & stencilMax,
ctx->Stencil.WriteMask[0]);
}
else {
assert(!ctx->Stencil.Enabled);
}
/* vertex positions */
verts[0].x = x0;
verts[0].y = y0;
verts[0].z = z;
verts[1].x = x1;
verts[1].y = y0;
verts[1].z = z;
verts[2].x = x1;
verts[2].y = y1;
verts[2].z = z;
verts[3].x = x0;
verts[3].y = y1;
verts[3].z = z;
if (!glsl) {
for (i = 0; i < 4; i++) {
verts[i].r = ctx->Color.ClearColor.f[0];
verts[i].g = ctx->Color.ClearColor.f[1];
verts[i].b = ctx->Color.ClearColor.f[2];
verts[i].a = ctx->Color.ClearColor.f[3];
}
}
/* upload new vertex data */
_mesa_buffer_data(ctx, clear->buf_obj, GL_NONE, sizeof(verts), verts,
GL_DYNAMIC_DRAW, __func__);
/* draw quad(s) */
if (fb->MaxNumLayers > 0) {
_mesa_DrawArraysInstanced(GL_TRIANGLE_FAN, 0, 4, fb->MaxNumLayers);
} else {
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
_mesa_meta_end(ctx);
}
/**
* Meta implementation of ctx->Driver.CopyPixels() in terms
* of texture mapping and polygon rendering and GLSL shaders.
*/
void
_mesa_meta_CopyPixels(struct gl_context *ctx, GLint srcX, GLint srcY,
GLsizei width, GLsizei height,
GLint dstX, GLint dstY, GLenum type)
{
struct copypix_state *copypix = &ctx->Meta->CopyPix;
struct temp_texture *tex = _mesa_meta_get_temp_texture(ctx);
struct vertex verts[4];
if (type != GL_COLOR ||
ctx->_ImageTransferState ||
ctx->Fog.Enabled ||
width > tex->MaxSize ||
height > tex->MaxSize) {
/* XXX avoid this fallback */
_swrast_CopyPixels(ctx, srcX, srcY, width, height, dstX, dstY, type);
return;
}
/* Most GL state applies to glCopyPixels, but a there's a few things
* we need to override:
*/
_mesa_meta_begin(ctx, (MESA_META_RASTERIZATION |
MESA_META_SHADER |
MESA_META_TEXTURE |
MESA_META_TRANSFORM |
MESA_META_CLIP |
MESA_META_VERTEX |
MESA_META_VIEWPORT));
_mesa_meta_setup_vertex_objects(ctx, ©pix->VAO, ©pix->buf_obj, false,
3, 2, 0);
/* Silence valgrind warnings about reading uninitialized stack. */
memset(verts, 0, sizeof(verts));
/* Alloc/setup texture */
_mesa_meta_setup_copypix_texture(ctx, tex, srcX, srcY, width, height,
GL_RGBA, GL_NEAREST);
/* vertex positions, texcoords (after texture allocation!) */
{
const GLfloat dstX0 = (GLfloat) dstX;
const GLfloat dstY0 = (GLfloat) dstY;
const GLfloat dstX1 = dstX + width * ctx->Pixel.ZoomX;
const GLfloat dstY1 = dstY + height * ctx->Pixel.ZoomY;
const GLfloat z = invert_z(ctx->Current.RasterPos[2]);
verts[0].x = dstX0;
verts[0].y = dstY0;
verts[0].z = z;
verts[0].tex[0] = 0.0F;
verts[0].tex[1] = 0.0F;
verts[1].x = dstX1;
verts[1].y = dstY0;
verts[1].z = z;
verts[1].tex[0] = tex->Sright;
verts[1].tex[1] = 0.0F;
verts[2].x = dstX1;
verts[2].y = dstY1;
verts[2].z = z;
verts[2].tex[0] = tex->Sright;
verts[2].tex[1] = tex->Ttop;
verts[3].x = dstX0;
verts[3].y = dstY1;
verts[3].z = z;
verts[3].tex[0] = 0.0F;
verts[3].tex[1] = tex->Ttop;
/* upload new vertex data */
_mesa_buffer_sub_data(ctx, copypix->buf_obj, 0, sizeof(verts), verts,
__func__);
}
_mesa_set_enable(ctx, tex->Target, GL_TRUE);
/* draw textured quad */
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
_mesa_set_enable(ctx, tex->Target, GL_FALSE);
_mesa_meta_end(ctx);
}
static void
meta_drawpix_cleanup(struct gl_context *ctx, struct drawpix_state *drawpix)
{
if (drawpix->VAO != 0) {
_mesa_DeleteVertexArrays(1, &drawpix->VAO);
drawpix->VAO = 0;
_mesa_reference_buffer_object(ctx, &drawpix->buf_obj, NULL);
}
if (drawpix->StencilFP != 0) {
_mesa_DeleteProgramsARB(1, &drawpix->StencilFP);
drawpix->StencilFP = 0;
}
if (drawpix->DepthFP != 0) {
_mesa_DeleteProgramsARB(1, &drawpix->DepthFP);
drawpix->DepthFP = 0;
}
}
/**
* When the glDrawPixels() image size is greater than the max rectangle
* texture size we use this function to break the glDrawPixels() image
* into tiles which fit into the max texture size.
*/
static void
tiled_draw_pixels(struct gl_context *ctx,
GLint tileSize,
GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
const GLvoid *pixels)
{
struct gl_pixelstore_attrib tileUnpack = *unpack;
GLint i, j;
if (tileUnpack.RowLength == 0)
tileUnpack.RowLength = width;
for (i = 0; i < width; i += tileSize) {
const GLint tileWidth = MIN2(tileSize, width - i);
const GLint tileX = (GLint) (x + i * ctx->Pixel.ZoomX);
tileUnpack.SkipPixels = unpack->SkipPixels + i;
for (j = 0; j < height; j += tileSize) {
const GLint tileHeight = MIN2(tileSize, height - j);
const GLint tileY = (GLint) (y + j * ctx->Pixel.ZoomY);
tileUnpack.SkipRows = unpack->SkipRows + j;
_mesa_meta_DrawPixels(ctx, tileX, tileY, tileWidth, tileHeight,
format, type, &tileUnpack, pixels);
}
}
}
/**
* One-time init for drawing stencil pixels.
*/
static void
init_draw_stencil_pixels(struct gl_context *ctx)
{
/* This program is run eight times, once for each stencil bit.
* The stencil values to draw are found in an 8-bit alpha texture.
* We read the texture/stencil value and test if bit 'b' is set.
* If the bit is not set, use KIL to kill the fragment.
* Finally, we use the stencil test to update the stencil buffer.
*
* The basic algorithm for checking if a bit is set is:
* if (is_odd(value / (1 << bit)))
* result is one (or non-zero).
* else
* result is zero.
* The program parameter contains three values:
* parm.x = 255 / (1 << bit)
* parm.y = 0.5
* parm.z = 0.0
*/
static const char *program =
"!!ARBfp1.0\n"
"PARAM parm = program.local[0]; \n"
"TEMP t; \n"
"TEX t, fragment.texcoord[0], texture[0], %s; \n" /* NOTE %s here! */
"# t = t * 255 / bit \n"
"MUL t.x, t.a, parm.x; \n"
"# t = (int) t \n"
"FRC t.y, t.x; \n"
"SUB t.x, t.x, t.y; \n"
"# t = t * 0.5 \n"
"MUL t.x, t.x, parm.y; \n"
"# t = fract(t.x) \n"
"FRC t.x, t.x; # if t.x != 0, then the bit is set \n"
"# t.x = (t.x == 0 ? 1 : 0) \n"
"SGE t.x, -t.x, parm.z; \n"
"KIL -t.x; \n"
"# for debug only \n"
"#MOV result.color, t.x; \n"
"END \n";
char program2[1000];
struct drawpix_state *drawpix = &ctx->Meta->DrawPix;
struct temp_texture *tex = _mesa_meta_get_temp_texture(ctx);
const char *texTarget;
assert(drawpix->StencilFP == 0);
/* replace %s with "RECT" or "2D" */
assert(strlen(program) + 4 < sizeof(program2));
if (tex->Target == GL_TEXTURE_RECTANGLE)
texTarget = "RECT";
else
texTarget = "2D";
_mesa_snprintf(program2, sizeof(program2), program, texTarget);
_mesa_GenProgramsARB(1, &drawpix->StencilFP);
_mesa_BindProgramARB(GL_FRAGMENT_PROGRAM_ARB, drawpix->StencilFP);
_mesa_ProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(program2), (const GLubyte *) program2);
}
/**
* One-time init for drawing depth pixels.
*/
static void
init_draw_depth_pixels(struct gl_context *ctx)
{
static const char *program =
"!!ARBfp1.0\n"
"PARAM color = program.local[0]; \n"
"TEX result.depth, fragment.texcoord[0], texture[0], %s; \n"
"MOV result.color, color; \n"
"END \n";
char program2[200];
struct drawpix_state *drawpix = &ctx->Meta->DrawPix;
struct temp_texture *tex = _mesa_meta_get_temp_texture(ctx);
const char *texTarget;
assert(drawpix->DepthFP == 0);
/* replace %s with "RECT" or "2D" */
assert(strlen(program) + 4 < sizeof(program2));
if (tex->Target == GL_TEXTURE_RECTANGLE)
texTarget = "RECT";
else
texTarget = "2D";
_mesa_snprintf(program2, sizeof(program2), program, texTarget);
_mesa_GenProgramsARB(1, &drawpix->DepthFP);
_mesa_BindProgramARB(GL_FRAGMENT_PROGRAM_ARB, drawpix->DepthFP);
_mesa_ProgramStringARB(GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB,
strlen(program2), (const GLubyte *) program2);
}
/**
* Meta implementation of ctx->Driver.DrawPixels() in terms
* of texture mapping and polygon rendering.
*/
void
_mesa_meta_DrawPixels(struct gl_context *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type,
const struct gl_pixelstore_attrib *unpack,
const GLvoid *pixels)
{
struct drawpix_state *drawpix = &ctx->Meta->DrawPix;
struct temp_texture *tex = _mesa_meta_get_temp_texture(ctx);
const struct gl_pixelstore_attrib unpackSave = ctx->Unpack;
const GLuint origStencilMask = ctx->Stencil.WriteMask[0];
struct vertex verts[4];
GLenum texIntFormat;
GLboolean fallback, newTex;
GLbitfield metaExtraSave = 0x0;
/*
* Determine if we can do the glDrawPixels with texture mapping.
*/
fallback = GL_FALSE;
if (ctx->Fog.Enabled) {
fallback = GL_TRUE;
}
if (_mesa_is_color_format(format)) {
/* use more compact format when possible */
/* XXX disable special case for GL_LUMINANCE for now to work around
* apparent i965 driver bug (see bug #23670).
*/
if (/*format == GL_LUMINANCE ||*/ format == GL_LUMINANCE_ALPHA)
texIntFormat = format;
else
texIntFormat = GL_RGBA;
/* If we're not supposed to clamp the resulting color, then just
* promote our texture to fully float. We could do better by
* just going for the matching set of channels, in floating
* point.
*/
if (ctx->Color.ClampFragmentColor != GL_TRUE &&
ctx->Extensions.ARB_texture_float)
texIntFormat = GL_RGBA32F;
}
else if (_mesa_is_stencil_format(format)) {
if (ctx->Extensions.ARB_fragment_program &&
ctx->Pixel.IndexShift == 0 &&
ctx->Pixel.IndexOffset == 0 &&
type == GL_UNSIGNED_BYTE) {
/* We'll store stencil as alpha. This only works for GLubyte
* image data because of how incoming values are mapped to alpha
* in [0,1].
*/
texIntFormat = GL_ALPHA;
metaExtraSave = (MESA_META_COLOR_MASK |
MESA_META_DEPTH_TEST |
MESA_META_PIXEL_TRANSFER |
MESA_META_SHADER |
MESA_META_STENCIL_TEST);
}
else {
fallback = GL_TRUE;
}
}
else if (_mesa_is_depth_format(format)) {
if (ctx->Extensions.ARB_depth_texture &&
ctx->Extensions.ARB_fragment_program) {
texIntFormat = GL_DEPTH_COMPONENT;
metaExtraSave = (MESA_META_SHADER);
}
else {
fallback = GL_TRUE;
}
}
else {
fallback = GL_TRUE;
}
if (fallback) {
_swrast_DrawPixels(ctx, x, y, width, height,
format, type, unpack, pixels);
return;
}
/*
* Check image size against max texture size, draw as tiles if needed.
*/
if (width > tex->MaxSize || height > tex->MaxSize) {
tiled_draw_pixels(ctx, tex->MaxSize, x, y, width, height,
format, type, unpack, pixels);
return;
}
/* Most GL state applies to glDrawPixels (like blending, stencil, etc),
* but a there's a few things we need to override:
*/
_mesa_meta_begin(ctx, (MESA_META_RASTERIZATION |
MESA_META_SHADER |
MESA_META_TEXTURE |
MESA_META_TRANSFORM |
MESA_META_CLIP |
MESA_META_VERTEX |
MESA_META_VIEWPORT |
metaExtraSave));
newTex = _mesa_meta_alloc_texture(tex, width, height, texIntFormat);
_mesa_meta_setup_vertex_objects(ctx, &drawpix->VAO, &drawpix->buf_obj, false,
3, 2, 0);
/* Silence valgrind warnings about reading uninitialized stack. */
memset(verts, 0, sizeof(verts));
/* vertex positions, texcoords (after texture allocation!) */
{
const GLfloat x0 = (GLfloat) x;
const GLfloat y0 = (GLfloat) y;
const GLfloat x1 = x + width * ctx->Pixel.ZoomX;
const GLfloat y1 = y + height * ctx->Pixel.ZoomY;
const GLfloat z = invert_z(ctx->Current.RasterPos[2]);
verts[0].x = x0;
verts[0].y = y0;
verts[0].z = z;
verts[0].tex[0] = 0.0F;
verts[0].tex[1] = 0.0F;
verts[1].x = x1;
verts[1].y = y0;
verts[1].z = z;
verts[1].tex[0] = tex->Sright;
verts[1].tex[1] = 0.0F;
verts[2].x = x1;
verts[2].y = y1;
verts[2].z = z;
verts[2].tex[0] = tex->Sright;
verts[2].tex[1] = tex->Ttop;
verts[3].x = x0;
verts[3].y = y1;
verts[3].z = z;
verts[3].tex[0] = 0.0F;
verts[3].tex[1] = tex->Ttop;
}
/* upload new vertex data */
_mesa_buffer_data(ctx, drawpix->buf_obj, GL_NONE, sizeof(verts), verts,
GL_DYNAMIC_DRAW, __func__);
/* set given unpack params */
ctx->Unpack = *unpack;
_mesa_set_enable(ctx, tex->Target, GL_TRUE);
if (_mesa_is_stencil_format(format)) {
/* Drawing stencil */
GLint bit;
if (!drawpix->StencilFP)
init_draw_stencil_pixels(ctx);
_mesa_meta_setup_drawpix_texture(ctx, tex, newTex, width, height,
GL_ALPHA, type, pixels);
_mesa_ColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
_mesa_set_enable(ctx, GL_STENCIL_TEST, GL_TRUE);
/* set all stencil bits to 0 */
_mesa_StencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);
_mesa_StencilFunc(GL_ALWAYS, 0, 255);
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
/* set stencil bits to 1 where needed */
_mesa_StencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
_mesa_BindProgramARB(GL_FRAGMENT_PROGRAM_ARB, drawpix->StencilFP);
_mesa_set_enable(ctx, GL_FRAGMENT_PROGRAM_ARB, GL_TRUE);
for (bit = 0; bit < ctx->DrawBuffer->Visual.stencilBits; bit++) {
const GLuint mask = 1 << bit;
if (mask & origStencilMask) {
_mesa_StencilFunc(GL_ALWAYS, mask, mask);
_mesa_StencilMask(mask);
_mesa_ProgramLocalParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, 0,
255.0f / mask, 0.5f, 0.0f, 0.0f);
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
}
}
else if (_mesa_is_depth_format(format)) {
/* Drawing depth */
if (!drawpix->DepthFP)
init_draw_depth_pixels(ctx);
_mesa_BindProgramARB(GL_FRAGMENT_PROGRAM_ARB, drawpix->DepthFP);
_mesa_set_enable(ctx, GL_FRAGMENT_PROGRAM_ARB, GL_TRUE);
/* polygon color = current raster color */
_mesa_ProgramLocalParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, 0,
ctx->Current.RasterColor);
_mesa_meta_setup_drawpix_texture(ctx, tex, newTex, width, height,
format, type, pixels);
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
else {
/* Drawing RGBA */
_mesa_meta_setup_drawpix_texture(ctx, tex, newTex, width, height,
format, type, pixels);
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
}
_mesa_set_enable(ctx, tex->Target, GL_FALSE);
/* restore unpack params */
ctx->Unpack = unpackSave;
_mesa_meta_end(ctx);
}
static GLboolean
alpha_test_raster_color(struct gl_context *ctx)
{
GLfloat alpha = ctx->Current.RasterColor[ACOMP];
GLfloat ref = ctx->Color.AlphaRef;
switch (ctx->Color.AlphaFunc) {
case GL_NEVER:
return GL_FALSE;
case GL_LESS:
return alpha < ref;
case GL_EQUAL:
return alpha == ref;
case GL_LEQUAL:
return alpha <= ref;
case GL_GREATER:
return alpha > ref;
case GL_NOTEQUAL:
return alpha != ref;
case GL_GEQUAL:
return alpha >= ref;
case GL_ALWAYS:
return GL_TRUE;
default:
assert(0);
return GL_FALSE;
}
}
/**
* Do glBitmap with a alpha texture quad. Use the alpha test to cull
* the 'off' bits. A bitmap cache as in the gallium/mesa state
* tracker would improve performance a lot.
*/
void
_mesa_meta_Bitmap(struct gl_context *ctx,
GLint x, GLint y, GLsizei width, GLsizei height,
const struct gl_pixelstore_attrib *unpack,
const GLubyte *bitmap1)
{
struct bitmap_state *bitmap = &ctx->Meta->Bitmap;
struct temp_texture *tex = get_bitmap_temp_texture(ctx);
const GLenum texIntFormat = GL_ALPHA;
const struct gl_pixelstore_attrib unpackSave = *unpack;
GLubyte fg, bg;
struct vertex verts[4];
GLboolean newTex;
GLubyte *bitmap8;
/*
* Check if swrast fallback is needed.
*/
if (ctx->_ImageTransferState ||
ctx->FragmentProgram._Enabled ||
ctx->Fog.Enabled ||
ctx->Texture._MaxEnabledTexImageUnit != -1 ||
width > tex->MaxSize ||
height > tex->MaxSize) {
_swrast_Bitmap(ctx, x, y, width, height, unpack, bitmap1);
return;
}
if (ctx->Color.AlphaEnabled && !alpha_test_raster_color(ctx))
return;
/* Most GL state applies to glBitmap (like blending, stencil, etc),
* but a there's a few things we need to override:
*/
_mesa_meta_begin(ctx, (MESA_META_ALPHA_TEST |
MESA_META_PIXEL_STORE |
MESA_META_RASTERIZATION |
MESA_META_SHADER |
MESA_META_TEXTURE |
MESA_META_TRANSFORM |
MESA_META_CLIP |
MESA_META_VERTEX |
MESA_META_VIEWPORT));
_mesa_meta_setup_vertex_objects(ctx, &bitmap->VAO, &bitmap->buf_obj, false,
3, 2, 4);
newTex = _mesa_meta_alloc_texture(tex, width, height, texIntFormat);
/* Silence valgrind warnings about reading uninitialized stack. */
memset(verts, 0, sizeof(verts));
/* vertex positions, texcoords, colors (after texture allocation!) */
{
const GLfloat x0 = (GLfloat) x;
const GLfloat y0 = (GLfloat) y;
const GLfloat x1 = (GLfloat) (x + width);
const GLfloat y1 = (GLfloat) (y + height);
const GLfloat z = invert_z(ctx->Current.RasterPos[2]);
GLuint i;
verts[0].x = x0;
verts[0].y = y0;
verts[0].z = z;
verts[0].tex[0] = 0.0F;
verts[0].tex[1] = 0.0F;
verts[1].x = x1;
verts[1].y = y0;
verts[1].z = z;
verts[1].tex[0] = tex->Sright;
verts[1].tex[1] = 0.0F;
verts[2].x = x1;
verts[2].y = y1;
verts[2].z = z;
verts[2].tex[0] = tex->Sright;
verts[2].tex[1] = tex->Ttop;
verts[3].x = x0;
verts[3].y = y1;
verts[3].z = z;
verts[3].tex[0] = 0.0F;
verts[3].tex[1] = tex->Ttop;
for (i = 0; i < 4; i++) {
verts[i].r = ctx->Current.RasterColor[0];
verts[i].g = ctx->Current.RasterColor[1];
verts[i].b = ctx->Current.RasterColor[2];
verts[i].a = ctx->Current.RasterColor[3];
}
/* upload new vertex data */
_mesa_buffer_sub_data(ctx, bitmap->buf_obj, 0, sizeof(verts), verts,
__func__);
}
/* choose different foreground/background alpha values */
CLAMPED_FLOAT_TO_UBYTE(fg, ctx->Current.RasterColor[ACOMP]);
bg = (fg > 127 ? 0 : 255);
bitmap1 = _mesa_map_pbo_source(ctx, &unpackSave, bitmap1);
if (!bitmap1) {
_mesa_meta_end(ctx);
return;
}
bitmap8 = malloc(width * height);
if (bitmap8) {
memset(bitmap8, bg, width * height);
_mesa_expand_bitmap(width, height, &unpackSave, bitmap1,
bitmap8, width, fg);
_mesa_set_enable(ctx, tex->Target, GL_TRUE);
_mesa_set_enable(ctx, GL_ALPHA_TEST, GL_TRUE);
_mesa_AlphaFunc(GL_NOTEQUAL, UBYTE_TO_FLOAT(bg));
_mesa_meta_setup_drawpix_texture(ctx, tex, newTex, width, height,
GL_ALPHA, GL_UNSIGNED_BYTE, bitmap8);
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
_mesa_set_enable(ctx, tex->Target, GL_FALSE);
free(bitmap8);
}
_mesa_unmap_pbo_source(ctx, &unpackSave);
_mesa_meta_end(ctx);
}
/**
* Compute the texture coordinates for the four vertices of a quad for
* drawing a 2D texture image or slice of a cube/3D texture. The offset
* and width, height specify a sub-region of the 2D image.
*
* \param faceTarget GL_TEXTURE_1D/2D/3D or cube face name
* \param slice slice of a 1D/2D array texture or 3D texture
* \param xoffset X position of sub texture
* \param yoffset Y position of sub texture
* \param width width of the sub texture image
* \param height height of the sub texture image
* \param total_width total width of the texture image
* \param total_height total height of the texture image
* \param total_depth total depth of the texture image
* \param coords0/1/2/3 returns the computed texcoords
*/
void
_mesa_meta_setup_texture_coords(GLenum faceTarget,
GLint slice,
GLint xoffset,
GLint yoffset,
GLint width,
GLint height,
GLint total_width,
GLint total_height,
GLint total_depth,
GLfloat coords0[4],
GLfloat coords1[4],
GLfloat coords2[4],
GLfloat coords3[4])
{
float st[4][2];
GLuint i;
const float s0 = (float) xoffset / (float) total_width;
const float s1 = (float) (xoffset + width) / (float) total_width;
const float t0 = (float) yoffset / (float) total_height;
const float t1 = (float) (yoffset + height) / (float) total_height;
GLfloat r;
/* setup the reference texcoords */
st[0][0] = s0;
st[0][1] = t0;
st[1][0] = s1;
st[1][1] = t0;
st[2][0] = s1;
st[2][1] = t1;
st[3][0] = s0;
st[3][1] = t1;
if (faceTarget == GL_TEXTURE_CUBE_MAP_ARRAY)
faceTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X + slice % 6;
/* Currently all texture targets want the W component to be 1.0.
*/
coords0[3] = 1.0F;
coords1[3] = 1.0F;
coords2[3] = 1.0F;
coords3[3] = 1.0F;
switch (faceTarget) {
case GL_TEXTURE_1D:
case GL_TEXTURE_2D:
case GL_TEXTURE_3D:
case GL_TEXTURE_2D_ARRAY:
if (faceTarget == GL_TEXTURE_3D) {
assert(slice < total_depth);
assert(total_depth >= 1);
r = (slice + 0.5f) / total_depth;
}
else if (faceTarget == GL_TEXTURE_2D_ARRAY)
r = (float) slice;
else
r = 0.0F;
coords0[0] = st[0][0]; /* s */
coords0[1] = st[0][1]; /* t */
coords0[2] = r; /* r */
coords1[0] = st[1][0];
coords1[1] = st[1][1];
coords1[2] = r;
coords2[0] = st[2][0];
coords2[1] = st[2][1];
coords2[2] = r;
coords3[0] = st[3][0];
coords3[1] = st[3][1];
coords3[2] = r;
break;
case GL_TEXTURE_RECTANGLE_ARB:
coords0[0] = (float) xoffset; /* s */
coords0[1] = (float) yoffset; /* t */
coords0[2] = 0.0F; /* r */
coords1[0] = (float) (xoffset + width);
coords1[1] = (float) yoffset;
coords1[2] = 0.0F;
coords2[0] = (float) (xoffset + width);
coords2[1] = (float) (yoffset + height);
coords2[2] = 0.0F;
coords3[0] = (float) xoffset;
coords3[1] = (float) (yoffset + height);
coords3[2] = 0.0F;
break;
case GL_TEXTURE_1D_ARRAY:
coords0[0] = st[0][0]; /* s */
coords0[1] = (float) slice; /* t */
coords0[2] = 0.0F; /* r */
coords1[0] = st[1][0];
coords1[1] = (float) slice;
coords1[2] = 0.0F;
coords2[0] = st[2][0];
coords2[1] = (float) slice;
coords2[2] = 0.0F;
coords3[0] = st[3][0];
coords3[1] = (float) slice;
coords3[2] = 0.0F;
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
/* loop over quad verts */
for (i = 0; i < 4; i++) {
/* Compute sc = +/-scale and tc = +/-scale.
* Not +/-1 to avoid cube face selection ambiguity near the edges,
* though that can still sometimes happen with this scale factor...
*/
const GLfloat scale = 0.9999f;
const GLfloat sc = (2.0f * st[i][0] - 1.0f) * scale;
const GLfloat tc = (2.0f * st[i][1] - 1.0f) * scale;
GLfloat *coord;
switch (i) {
case 0:
coord = coords0;
break;
case 1:
coord = coords1;
break;
case 2:
coord = coords2;
break;
case 3:
coord = coords3;
break;
default:
unreachable("not reached");
}
coord[3] = (float) (slice / 6);
switch (faceTarget) {
case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
coord[0] = 1.0f;
coord[1] = -tc;
coord[2] = -sc;
break;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
coord[0] = -1.0f;
coord[1] = -tc;
coord[2] = sc;
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
coord[0] = sc;
coord[1] = 1.0f;
coord[2] = tc;
break;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
coord[0] = sc;
coord[1] = -1.0f;
coord[2] = -tc;
break;
case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
coord[0] = sc;
coord[1] = -tc;
coord[2] = 1.0f;
break;
case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
coord[0] = -sc;
coord[1] = -tc;
coord[2] = -1.0f;
break;
default:
assert(0);
}
}
break;
default:
assert(!"unexpected target in _mesa_meta_setup_texture_coords()");
}
}
static struct blit_shader *
choose_blit_shader(GLenum target, struct blit_shader_table *table)
{
switch(target) {
case GL_TEXTURE_1D:
table->sampler_1d.type = "sampler1D";
table->sampler_1d.func = "texture1D";
table->sampler_1d.texcoords = "texCoords.x";
return &table->sampler_1d;
case GL_TEXTURE_2D:
table->sampler_2d.type = "sampler2D";
table->sampler_2d.func = "texture2D";
table->sampler_2d.texcoords = "texCoords.xy";
return &table->sampler_2d;
case GL_TEXTURE_RECTANGLE:
table->sampler_rect.type = "sampler2DRect";
table->sampler_rect.func = "texture2DRect";
table->sampler_rect.texcoords = "texCoords.xy";
return &table->sampler_rect;
case GL_TEXTURE_3D:
/* Code for mipmap generation with 3D textures is not used yet.
* It's a sw fallback.
*/
table->sampler_3d.type = "sampler3D";
table->sampler_3d.func = "texture3D";
table->sampler_3d.texcoords = "texCoords.xyz";
return &table->sampler_3d;
case GL_TEXTURE_CUBE_MAP:
table->sampler_cubemap.type = "samplerCube";
table->sampler_cubemap.func = "textureCube";
table->sampler_cubemap.texcoords = "texCoords.xyz";
return &table->sampler_cubemap;
case GL_TEXTURE_1D_ARRAY:
table->sampler_1d_array.type = "sampler1DArray";
table->sampler_1d_array.func = "texture1DArray";
table->sampler_1d_array.texcoords = "texCoords.xy";
return &table->sampler_1d_array;
case GL_TEXTURE_2D_ARRAY:
table->sampler_2d_array.type = "sampler2DArray";
table->sampler_2d_array.func = "texture2DArray";
table->sampler_2d_array.texcoords = "texCoords.xyz";
return &table->sampler_2d_array;
case GL_TEXTURE_CUBE_MAP_ARRAY:
table->sampler_cubemap_array.type = "samplerCubeArray";
table->sampler_cubemap_array.func = "textureCubeArray";
table->sampler_cubemap_array.texcoords = "texCoords.xyzw";
return &table->sampler_cubemap_array;
default:
_mesa_problem(NULL, "Unexpected texture target 0x%x in"
" setup_texture_sampler()\n", target);
return NULL;
}
}
void
_mesa_meta_blit_shader_table_cleanup(struct gl_context *ctx,
struct blit_shader_table *table)
{
_mesa_reference_shader_program(ctx, &table->sampler_1d.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_2d.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_3d.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_rect.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_cubemap.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_1d_array.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_2d_array.shader_prog, NULL);
_mesa_reference_shader_program(ctx, &table->sampler_cubemap_array.shader_prog, NULL);
}
/**
* Determine the GL data type to use for the temporary image read with
* ReadPixels() and passed to Tex[Sub]Image().
*/
static GLenum
get_temp_image_type(struct gl_context *ctx, mesa_format format)
{
const GLenum baseFormat = _mesa_get_format_base_format(format);
const GLenum datatype = _mesa_get_format_datatype(format);
const GLint format_red_bits = _mesa_get_format_bits(format, GL_RED_BITS);
switch (baseFormat) {
case GL_RGBA:
case GL_RGB:
case GL_RG:
case GL_RED:
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
case GL_INTENSITY:
if (datatype == GL_INT || datatype == GL_UNSIGNED_INT) {
return datatype;
} else if (format_red_bits <= 8) {
return GL_UNSIGNED_BYTE;
} else if (format_red_bits <= 16) {
return GL_UNSIGNED_SHORT;
}
return GL_FLOAT;
case GL_DEPTH_COMPONENT:
if (datatype == GL_FLOAT)
return GL_FLOAT;
else
return GL_UNSIGNED_INT;
case GL_DEPTH_STENCIL:
if (datatype == GL_FLOAT)
return GL_FLOAT_32_UNSIGNED_INT_24_8_REV;
else
return GL_UNSIGNED_INT_24_8;
default:
_mesa_problem(ctx, "Unexpected format %d in get_temp_image_type()",
baseFormat);
return 0;
}
}
/**
* Attempts to wrap the destination texture in an FBO and use
* glBlitFramebuffer() to implement glCopyTexSubImage().
*/
static bool
copytexsubimage_using_blit_framebuffer(struct gl_context *ctx, GLuint dims,
struct gl_texture_image *texImage,
GLint xoffset,
GLint yoffset,
GLint zoffset,
struct gl_renderbuffer *rb,
GLint x, GLint y,
GLsizei width, GLsizei height)
{
struct gl_framebuffer *drawFb;
bool success = false;
GLbitfield mask;
GLenum status;
if (!ctx->Extensions.ARB_framebuffer_object)
return false;
drawFb = ctx->Driver.NewFramebuffer(ctx, 0xDEADBEEF);
if (drawFb == NULL)
return false;
_mesa_meta_begin(ctx, MESA_META_ALL & ~MESA_META_DRAW_BUFFERS);
_mesa_bind_framebuffers(ctx, drawFb, ctx->ReadBuffer);
if (rb->_BaseFormat == GL_DEPTH_STENCIL ||
rb->_BaseFormat == GL_DEPTH_COMPONENT) {
_mesa_meta_framebuffer_texture_image(ctx, ctx->DrawBuffer,
GL_DEPTH_ATTACHMENT,
texImage, zoffset);
mask = GL_DEPTH_BUFFER_BIT;
if (rb->_BaseFormat == GL_DEPTH_STENCIL &&
texImage->_BaseFormat == GL_DEPTH_STENCIL) {
_mesa_meta_framebuffer_texture_image(ctx, ctx->DrawBuffer,
GL_STENCIL_ATTACHMENT,
texImage, zoffset);
mask |= GL_STENCIL_BUFFER_BIT;
}
_mesa_DrawBuffer(GL_NONE);
} else {
_mesa_meta_framebuffer_texture_image(ctx, ctx->DrawBuffer,
GL_COLOR_ATTACHMENT0,
texImage, zoffset);
mask = GL_COLOR_BUFFER_BIT;
_mesa_DrawBuffer(GL_COLOR_ATTACHMENT0);
}
status = _mesa_check_framebuffer_status(ctx, ctx->DrawBuffer);
if (status != GL_FRAMEBUFFER_COMPLETE)
goto out;
ctx->Meta->Blit.no_ctsi_fallback = true;
/* Since we've bound a new draw framebuffer, we need to update
* its derived state -- _Xmin, etc -- for BlitFramebuffer's clipping to
* be correct.
*/
_mesa_update_state(ctx);
/* We skip the core BlitFramebuffer checks for format consistency, which
* are too strict for CopyTexImage. We know meta will be fine with format
* changes.
*/
mask = _mesa_meta_BlitFramebuffer(ctx, ctx->ReadBuffer, ctx->DrawBuffer,
x, y,
x + width, y + height,
xoffset, yoffset,
xoffset + width, yoffset + height,
mask, GL_NEAREST);
ctx->Meta->Blit.no_ctsi_fallback = false;
success = mask == 0x0;
out:
_mesa_reference_framebuffer(&drawFb, NULL);
_mesa_meta_end(ctx);
return success;
}
/**
* Helper for _mesa_meta_CopyTexSubImage1/2/3D() functions.
* Have to be careful with locking and meta state for pixel transfer.
*/
void
_mesa_meta_CopyTexSubImage(struct gl_context *ctx, GLuint dims,
struct gl_texture_image *texImage,
GLint xoffset, GLint yoffset, GLint zoffset,
struct gl_renderbuffer *rb,
GLint x, GLint y,
GLsizei width, GLsizei height)
{
GLenum format, type;
GLint bpp;
void *buf;
if (copytexsubimage_using_blit_framebuffer(ctx, dims,
texImage,
xoffset, yoffset, zoffset,
rb,
x, y,
width, height)) {
return;
}
/* Choose format/type for temporary image buffer */
format = _mesa_get_format_base_format(texImage->TexFormat);
if (format == GL_LUMINANCE ||
format == GL_LUMINANCE_ALPHA ||
format == GL_INTENSITY) {
/* We don't want to use GL_LUMINANCE, GL_INTENSITY, etc. for the
* temp image buffer because glReadPixels will do L=R+G+B which is
* not what we want (should be L=R).
*/
format = GL_RGBA;
}
type = get_temp_image_type(ctx, texImage->TexFormat);
if (_mesa_is_format_integer_color(texImage->TexFormat)) {
format = _mesa_base_format_to_integer_format(format);
}
bpp = _mesa_bytes_per_pixel(format, type);
if (bpp <= 0) {
_mesa_problem(ctx, "Bad bpp in _mesa_meta_CopyTexSubImage()");
return;
}
/*
* Alloc image buffer (XXX could use a PBO)
*/
buf = malloc(width * height * bpp);
if (!buf) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyTexSubImage%uD", dims);
return;
}
/*
* Read image from framebuffer (disable pixel transfer ops)
*/
_mesa_meta_begin(ctx, MESA_META_PIXEL_STORE | MESA_META_PIXEL_TRANSFER);
ctx->Driver.ReadPixels(ctx, x, y, width, height,
format, type, &ctx->Pack, buf);
_mesa_meta_end(ctx);
_mesa_update_state(ctx); /* to update pixel transfer state */
/*
* Store texture data (with pixel transfer ops)
*/
_mesa_meta_begin(ctx, MESA_META_PIXEL_STORE);
if (texImage->TexObject->Target == GL_TEXTURE_1D_ARRAY) {
assert(yoffset == 0);
ctx->Driver.TexSubImage(ctx, dims, texImage,
xoffset, zoffset, 0, width, 1, 1,
format, type, buf, &ctx->Unpack);
} else {
ctx->Driver.TexSubImage(ctx, dims, texImage,
xoffset, yoffset, zoffset, width, height, 1,
format, type, buf, &ctx->Unpack);
}
_mesa_meta_end(ctx);
free(buf);
}
static void
meta_decompress_fbo_cleanup(struct decompress_fbo_state *decompress_fbo)
{
if (decompress_fbo->fb != NULL) {
_mesa_reference_framebuffer(&decompress_fbo->fb, NULL);
_mesa_reference_renderbuffer(&decompress_fbo->rb, NULL);
}
memset(decompress_fbo, 0, sizeof(*decompress_fbo));
}
static void
meta_decompress_cleanup(struct gl_context *ctx,
struct decompress_state *decompress)
{
meta_decompress_fbo_cleanup(&decompress->byteFBO);
meta_decompress_fbo_cleanup(&decompress->floatFBO);
if (decompress->VAO != 0) {
_mesa_DeleteVertexArrays(1, &decompress->VAO);
_mesa_reference_buffer_object(ctx, &decompress->buf_obj, NULL);
}
_mesa_reference_sampler_object(ctx, &decompress->samp_obj, NULL);
memset(decompress, 0, sizeof(*decompress));
}
/**
* Decompress a texture image by drawing a quad with the compressed
* texture and reading the pixels out of the color buffer.
* \param slice which slice of a 3D texture or layer of a 1D/2D texture
* \param destFormat format, ala glReadPixels
* \param destType type, ala glReadPixels
* \param dest destination buffer
* \param destRowLength dest image rowLength (ala GL_PACK_ROW_LENGTH)
*/
static bool
decompress_texture_image(struct gl_context *ctx,
struct gl_texture_image *texImage,
GLuint slice,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum destFormat, GLenum destType,
GLvoid *dest)
{
struct decompress_state *decompress = &ctx->Meta->Decompress;
struct decompress_fbo_state *decompress_fbo;
struct gl_texture_object *texObj = texImage->TexObject;
const GLenum target = texObj->Target;
GLenum rbFormat;
GLenum faceTarget;
struct vertex verts[4];
struct gl_sampler_object *samp_obj_save = NULL;
GLenum status;
const bool use_glsl_version = ctx->Extensions.ARB_vertex_shader &&
ctx->Extensions.ARB_fragment_shader;
switch (_mesa_get_format_datatype(texImage->TexFormat)) {
case GL_FLOAT:
decompress_fbo = &decompress->floatFBO;
rbFormat = GL_RGBA32F;
break;
case GL_UNSIGNED_NORMALIZED:
decompress_fbo = &decompress->byteFBO;
rbFormat = GL_RGBA;
break;
default:
return false;
}
if (slice > 0) {
assert(target == GL_TEXTURE_3D ||
target == GL_TEXTURE_2D_ARRAY ||
target == GL_TEXTURE_CUBE_MAP_ARRAY);
}
switch (target) {
case GL_TEXTURE_1D:
case GL_TEXTURE_1D_ARRAY:
assert(!"No compressed 1D textures.");
return false;
case GL_TEXTURE_CUBE_MAP_ARRAY:
faceTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X + (slice % 6);
break;
case GL_TEXTURE_CUBE_MAP:
faceTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X + texImage->Face;
break;
default:
faceTarget = target;
break;
}
_mesa_meta_begin(ctx, MESA_META_ALL & ~(MESA_META_PIXEL_STORE |
MESA_META_DRAW_BUFFERS));
_mesa_ColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
_mesa_reference_sampler_object(ctx, &samp_obj_save,
ctx->Texture.Unit[ctx->Texture.CurrentUnit].Sampler);
/* Create/bind FBO/renderbuffer */
if (decompress_fbo->fb == NULL) {
decompress_fbo->rb = ctx->Driver.NewRenderbuffer(ctx, 0xDEADBEEF);
if (decompress_fbo->rb == NULL) {
_mesa_meta_end(ctx);
return false;
}
decompress_fbo->rb->RefCount = 1;
decompress_fbo->fb = ctx->Driver.NewFramebuffer(ctx, 0xDEADBEEF);
if (decompress_fbo->fb == NULL) {
_mesa_meta_end(ctx);
return false;
}
_mesa_bind_framebuffers(ctx, decompress_fbo->fb, decompress_fbo->fb);
_mesa_framebuffer_renderbuffer(ctx, ctx->DrawBuffer, GL_COLOR_ATTACHMENT0,
decompress_fbo->rb);
}
else {
_mesa_bind_framebuffers(ctx, decompress_fbo->fb, decompress_fbo->fb);
}
/* alloc dest surface */
if (width > decompress_fbo->Width || height > decompress_fbo->Height) {
_mesa_renderbuffer_storage(ctx, decompress_fbo->rb, rbFormat,
width, height, 0);
status = _mesa_check_framebuffer_status(ctx, ctx->DrawBuffer);
if (status != GL_FRAMEBUFFER_COMPLETE) {
/* If the framebuffer isn't complete then we'll leave
* decompress_fbo->Width as zero so that it will fail again next time
* too */
_mesa_meta_end(ctx);
return false;
}
decompress_fbo->Width = width;
decompress_fbo->Height = height;
}
if (use_glsl_version) {
_mesa_meta_setup_vertex_objects(ctx, &decompress->VAO,
&decompress->buf_obj, true,
2, 4, 0);
_mesa_meta_setup_blit_shader(ctx, target, false, &decompress->shaders);
} else {
_mesa_meta_setup_ff_tnl_for_blit(ctx, &decompress->VAO,
&decompress->buf_obj, 3);
}
if (decompress->samp_obj == NULL) {
decompress->samp_obj = ctx->Driver.NewSamplerObject(ctx, 0xDEADBEEF);
if (decompress->samp_obj == NULL) {
_mesa_meta_end(ctx);
/* This is a bit lazy. Flag out of memory, and then don't bother to
* clean up. Once out of memory is flagged, the only realistic next
* move is to destroy the context. That will trigger all the right
* clean up.
*
* Returning true prevents other GetTexImage methods from attempting
* anything since they will likely fail too.
*/
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glGetTexImage");
return true;
}
/* nearest filtering */
_mesa_set_sampler_filters(ctx, decompress->samp_obj, GL_NEAREST, GL_NEAREST);
/* We don't want to encode or decode sRGB values; treat them as linear. */
_mesa_set_sampler_srgb_decode(ctx, decompress->samp_obj, GL_SKIP_DECODE_EXT);
}
_mesa_bind_sampler(ctx, ctx->Texture.CurrentUnit, decompress->samp_obj);
/* Silence valgrind warnings about reading uninitialized stack. */
memset(verts, 0, sizeof(verts));
_mesa_meta_setup_texture_coords(faceTarget, slice,
xoffset, yoffset, width, height,
texImage->Width, texImage->Height,
texImage->Depth,
verts[0].tex,
verts[1].tex,
verts[2].tex,
verts[3].tex);
/* setup vertex positions */
verts[0].x = -1.0F;
verts[0].y = -1.0F;
verts[1].x = 1.0F;
verts[1].y = -1.0F;
verts[2].x = 1.0F;
verts[2].y = 1.0F;
verts[3].x = -1.0F;
verts[3].y = 1.0F;
_mesa_set_viewport(ctx, 0, 0, 0, width, height);
/* upload new vertex data */
_mesa_buffer_sub_data(ctx, decompress->buf_obj, 0, sizeof(verts), verts,
__func__);
/* setup texture state */
_mesa_BindTexture(target, texObj->Name);
if (!use_glsl_version)
_mesa_set_enable(ctx, target, GL_TRUE);
{
/* save texture object state */
const GLint baseLevelSave = texObj->BaseLevel;
const GLint maxLevelSave = texObj->MaxLevel;
/* restrict sampling to the texture level of interest */
if (target != GL_TEXTURE_RECTANGLE_ARB) {
_mesa_texture_parameteriv(ctx, texObj, GL_TEXTURE_BASE_LEVEL,
(GLint *) &texImage->Level, false);
_mesa_texture_parameteriv(ctx, texObj, GL_TEXTURE_MAX_LEVEL,
(GLint *) &texImage->Level, false);
}
/* render quad w/ texture into renderbuffer */
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
/* Restore texture object state, the texture binding will
* be restored by _mesa_meta_end().
*/
if (target != GL_TEXTURE_RECTANGLE_ARB) {
_mesa_texture_parameteriv(ctx, texObj, GL_TEXTURE_BASE_LEVEL,
&baseLevelSave, false);
_mesa_texture_parameteriv(ctx, texObj, GL_TEXTURE_MAX_LEVEL,
&maxLevelSave, false);
}
}
/* read pixels from renderbuffer */
{
GLenum baseTexFormat = texImage->_BaseFormat;
GLenum destBaseFormat = _mesa_unpack_format_to_base_format(destFormat);
/* The pixel transfer state will be set to default values at this point
* (see MESA_META_PIXEL_TRANSFER) so pixel transfer ops are effectively
* turned off (as required by glGetTexImage) but we need to handle some
* special cases. In particular, single-channel texture values are
* returned as red and two-channel texture values are returned as
* red/alpha.
*/
if (_mesa_need_luminance_to_rgb_conversion(baseTexFormat,
destBaseFormat) ||
/* If we're reading back an RGB(A) texture (using glGetTexImage) as
* luminance then we need to return L=tex(R).
*/
_mesa_need_rgb_to_luminance_conversion(baseTexFormat,
destBaseFormat)) {
/* Green and blue must be zero */
_mesa_PixelTransferf(GL_GREEN_SCALE, 0.0f);
_mesa_PixelTransferf(GL_BLUE_SCALE, 0.0f);
}
_mesa_ReadPixels(0, 0, width, height, destFormat, destType, dest);
}
/* disable texture unit */
if (!use_glsl_version)
_mesa_set_enable(ctx, target, GL_FALSE);
_mesa_bind_sampler(ctx, ctx->Texture.CurrentUnit, samp_obj_save);
_mesa_reference_sampler_object(ctx, &samp_obj_save, NULL);
_mesa_meta_end(ctx);
return true;
}
/**
* This is just a wrapper around _mesa_get_tex_image() and
* decompress_texture_image(). Meta functions should not be directly called
* from core Mesa.
*/
void
_mesa_meta_GetTexSubImage(struct gl_context *ctx,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth,
GLenum format, GLenum type, GLvoid *pixels,
struct gl_texture_image *texImage)
{
if (_mesa_is_format_compressed(texImage->TexFormat)) {
GLuint slice;
bool result = true;
for (slice = 0; slice < depth; slice++) {
void *dst;
/* Section 8.11.4 (Texture Image Queries) of the GL 4.5 spec says:
*
* "For three-dimensional, two-dimensional array, cube map array,
* and cube map textures pixel storage operations are applied as
* if the image were two-dimensional, except that the additional
* pixel storage state values PACK_IMAGE_HEIGHT and
* PACK_SKIP_IMAGES are applied. The correspondence of texels to
* memory locations is as defined for TexImage3D in section 8.5."
*/
switch (texImage->TexObject->Target) {
case GL_TEXTURE_3D:
case GL_TEXTURE_2D_ARRAY:
case GL_TEXTURE_CUBE_MAP:
case GL_TEXTURE_CUBE_MAP_ARRAY: {
/* Setup pixel packing. SkipPixels and SkipRows will be applied
* in the decompress_texture_image() function's call to
* glReadPixels but we need to compute the dest slice's address
* here (according to SkipImages and ImageHeight).
*/
struct gl_pixelstore_attrib packing = ctx->Pack;
packing.SkipPixels = 0;
packing.SkipRows = 0;
dst = _mesa_image_address3d(&packing, pixels, width, height,
format, type, slice, 0, 0);
break;
}
default:
dst = pixels;
break;
}
result = decompress_texture_image(ctx, texImage, slice,
xoffset, yoffset, width, height,
format, type, dst);
if (!result)
break;
}
if (result)
return;
}
_mesa_GetTexSubImage_sw(ctx, xoffset, yoffset, zoffset,
width, height, depth, format, type, pixels, texImage);
}
/**
* Meta implementation of ctx->Driver.DrawTex() in terms
* of polygon rendering.
*/
void
_mesa_meta_DrawTex(struct gl_context *ctx, GLfloat x, GLfloat y, GLfloat z,
GLfloat width, GLfloat height)
{
struct drawtex_state *drawtex = &ctx->Meta->DrawTex;
struct vertex {
GLfloat x, y, z, st[MAX_TEXTURE_UNITS][2];
};
struct vertex verts[4];
GLuint i;
_mesa_meta_begin(ctx, (MESA_META_RASTERIZATION |
MESA_META_SHADER |
MESA_META_TRANSFORM |
MESA_META_VERTEX |
MESA_META_VIEWPORT));
if (drawtex->VAO == 0) {
/* one-time setup */
struct gl_vertex_array_object *array_obj;
/* create vertex array object */
_mesa_GenVertexArrays(1, &drawtex->VAO);
_mesa_BindVertexArray(drawtex->VAO);
array_obj = _mesa_lookup_vao(ctx, drawtex->VAO);
assert(array_obj != NULL);
/* create vertex array buffer */
drawtex->buf_obj = ctx->Driver.NewBufferObject(ctx, 0xDEADBEEF);
if (drawtex->buf_obj == NULL)
return;
_mesa_buffer_data(ctx, drawtex->buf_obj, GL_NONE, sizeof(verts), verts,
GL_DYNAMIC_DRAW, __func__);
/* setup vertex arrays */
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_POS,
3, GL_FLOAT, GL_RGBA, GL_FALSE,
GL_FALSE, GL_FALSE,
offsetof(struct vertex, x), true);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_POS,
drawtex->buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj, VERT_ATTRIB_POS);
for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
_mesa_update_array_format(ctx, array_obj, VERT_ATTRIB_TEX(i),
2, GL_FLOAT, GL_RGBA, GL_FALSE,
GL_FALSE, GL_FALSE,
offsetof(struct vertex, st[i]), true);
_mesa_bind_vertex_buffer(ctx, array_obj, VERT_ATTRIB_TEX(i),
drawtex->buf_obj, 0, sizeof(struct vertex));
_mesa_enable_vertex_array_attrib(ctx, array_obj, VERT_ATTRIB_TEX(i));
}
}
else {
_mesa_BindVertexArray(drawtex->VAO);
}
/* vertex positions, texcoords */
{
const GLfloat x1 = x + width;
const GLfloat y1 = y + height;
z = CLAMP(z, 0.0f, 1.0f);
z = invert_z(z);
verts[0].x = x;
verts[0].y = y;
verts[0].z = z;
verts[1].x = x1;
verts[1].y = y;
verts[1].z = z;
verts[2].x = x1;
verts[2].y = y1;
verts[2].z = z;
verts[3].x = x;
verts[3].y = y1;
verts[3].z = z;
for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
const struct gl_texture_object *texObj;
const struct gl_texture_image *texImage;
GLfloat s, t, s1, t1;
GLuint tw, th;
if (!ctx->Texture.Unit[i]._Current) {
GLuint j;
for (j = 0; j < 4; j++) {
verts[j].st[i][0] = 0.0f;
verts[j].st[i][1] = 0.0f;
}
continue;
}
texObj = ctx->Texture.Unit[i]._Current;
texImage = texObj->Image[0][texObj->BaseLevel];
tw = texImage->Width2;
th = texImage->Height2;
s = (GLfloat) texObj->CropRect[0] / tw;
t = (GLfloat) texObj->CropRect[1] / th;
s1 = (GLfloat) (texObj->CropRect[0] + texObj->CropRect[2]) / tw;
t1 = (GLfloat) (texObj->CropRect[1] + texObj->CropRect[3]) / th;
verts[0].st[i][0] = s;
verts[0].st[i][1] = t;
verts[1].st[i][0] = s1;
verts[1].st[i][1] = t;
verts[2].st[i][0] = s1;
verts[2].st[i][1] = t1;
verts[3].st[i][0] = s;
verts[3].st[i][1] = t1;
}
_mesa_buffer_sub_data(ctx, drawtex->buf_obj, 0, sizeof(verts), verts,
__func__);
}
_mesa_DrawArrays(GL_TRIANGLE_FAN, 0, 4);
_mesa_meta_end(ctx);
}
static bool
cleartexsubimage_color(struct gl_context *ctx,
struct gl_texture_image *texImage,
const GLvoid *clearValue,
GLint zoffset)
{
mesa_format format;
union gl_color_union colorValue;
GLenum datatype;
GLenum status;
_mesa_meta_framebuffer_texture_image(ctx, ctx->DrawBuffer,
GL_COLOR_ATTACHMENT0,
texImage, zoffset);
status = _mesa_check_framebuffer_status(ctx, ctx->DrawBuffer);
if (status != GL_FRAMEBUFFER_COMPLETE)
return false;
/* We don't want to apply an sRGB conversion so override the format */
format = _mesa_get_srgb_format_linear(texImage->TexFormat);
datatype = _mesa_get_format_datatype(format);
switch (datatype) {
case GL_UNSIGNED_INT:
case GL_INT:
if (clearValue)
_mesa_unpack_uint_rgba_row(format, 1, clearValue,
(GLuint (*)[4]) colorValue.ui);
else
memset(&colorValue, 0, sizeof colorValue);
if (datatype == GL_INT)
_mesa_ClearBufferiv(GL_COLOR, 0, colorValue.i);
else
_mesa_ClearBufferuiv(GL_COLOR, 0, colorValue.ui);
break;
default:
if (clearValue)
_mesa_unpack_rgba_row(format, 1, clearValue,
(GLfloat (*)[4]) colorValue.f);
else
memset(&colorValue, 0, sizeof colorValue);
_mesa_ClearBufferfv(GL_COLOR, 0, colorValue.f);
break;
}
return true;
}
static bool
cleartexsubimage_depth_stencil(struct gl_context *ctx,
struct gl_texture_image *texImage,
const GLvoid *clearValue,
GLint zoffset)
{
GLint stencilValue;
GLfloat depthValue;
GLenum status;
_mesa_meta_framebuffer_texture_image(ctx, ctx->DrawBuffer,
GL_DEPTH_ATTACHMENT,
texImage, zoffset);
if (texImage->_BaseFormat == GL_DEPTH_STENCIL)
_mesa_meta_framebuffer_texture_image(ctx, ctx->DrawBuffer,
GL_STENCIL_ATTACHMENT,
texImage, zoffset);
status = _mesa_check_framebuffer_status(ctx, ctx->DrawBuffer);
if (status != GL_FRAMEBUFFER_COMPLETE)
return false;
if (clearValue) {
GLuint depthStencilValue[2];
/* Convert the clearValue from whatever format it's in to a floating
* point value for the depth and an integer value for the stencil index
*/
_mesa_unpack_float_32_uint_24_8_depth_stencil_row(texImage->TexFormat,
1, /* n */
clearValue,
depthStencilValue);
/* We need a memcpy here instead of a cast because we need to
* reinterpret the bytes as a float rather than converting it
*/
memcpy(&depthValue, depthStencilValue, sizeof depthValue);
stencilValue = depthStencilValue[1] & 0xff;
} else {
depthValue = 0.0f;
stencilValue = 0;
}
if (texImage->_BaseFormat == GL_DEPTH_STENCIL)
_mesa_ClearBufferfi(GL_DEPTH_STENCIL, 0, depthValue, stencilValue);
else
_mesa_ClearBufferfv(GL_DEPTH, 0, &depthValue);
return true;
}
static bool
cleartexsubimage_for_zoffset(struct gl_context *ctx,
struct gl_texture_image *texImage,
GLint zoffset,
const GLvoid *clearValue)
{
struct gl_framebuffer *drawFb;
bool success;
drawFb = ctx->Driver.NewFramebuffer(ctx, 0xDEADBEEF);
if (drawFb == NULL)
return false;
_mesa_bind_framebuffers(ctx, drawFb, ctx->ReadBuffer);
switch(texImage->_BaseFormat) {
case GL_DEPTH_STENCIL:
case GL_DEPTH_COMPONENT:
success = cleartexsubimage_depth_stencil(ctx, texImage,
clearValue, zoffset);
break;
default:
success = cleartexsubimage_color(ctx, texImage, clearValue, zoffset);
break;
}
_mesa_reference_framebuffer(&drawFb, NULL);
return success;
}
static bool
cleartexsubimage_using_fbo(struct gl_context *ctx,
struct gl_texture_image *texImage,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth,
const GLvoid *clearValue)
{
bool success = true;
GLint z;
_mesa_meta_begin(ctx,
MESA_META_SCISSOR |
MESA_META_COLOR_MASK |
MESA_META_DITHER |
MESA_META_FRAMEBUFFER_SRGB);
_mesa_ColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
_mesa_set_enable(ctx, GL_DITHER, GL_FALSE);
_mesa_set_enable(ctx, GL_SCISSOR_TEST, GL_TRUE);
_mesa_Scissor(xoffset, yoffset, width, height);
for (z = zoffset; z < zoffset + depth; z++) {
if (!cleartexsubimage_for_zoffset(ctx, texImage, z, clearValue)) {
success = false;
break;
}
}
_mesa_meta_end(ctx);
return success;
}
extern void
_mesa_meta_ClearTexSubImage(struct gl_context *ctx,
struct gl_texture_image *texImage,
GLint xoffset, GLint yoffset, GLint zoffset,
GLsizei width, GLsizei height, GLsizei depth,
const GLvoid *clearValue)
{
bool res;
res = cleartexsubimage_using_fbo(ctx, texImage,
xoffset, yoffset, zoffset,
width, height, depth,
clearValue);
if (res)
return;
_mesa_warning(ctx,
"Falling back to mapping the texture in "
"glClearTexSubImage\n");
_mesa_store_cleartexsubimage(ctx, texImage,
xoffset, yoffset, zoffset,
width, height, depth,
clearValue);
}