C++程序  |  477行  |  13.05 KB

/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include "util/mesa-sha1.h"
#include "util/debug.h"
#include "radv_private.h"

#include "ac_nir_to_llvm.h"

struct cache_entry {
	union {
		unsigned char sha1[20];
		uint32_t sha1_dw[5];
	};
	uint32_t code_size;
	struct ac_shader_variant_info variant_info;
	struct ac_shader_config config;
	uint32_t rsrc1, rsrc2;
	struct radv_shader_variant *variant;
	uint32_t code[0];
};

void
radv_pipeline_cache_init(struct radv_pipeline_cache *cache,
			 struct radv_device *device)
{
	cache->device = device;
	pthread_mutex_init(&cache->mutex, NULL);

	cache->modified = false;
	cache->kernel_count = 0;
	cache->total_size = 0;
	cache->table_size = 1024;
	const size_t byte_size = cache->table_size * sizeof(cache->hash_table[0]);
	cache->hash_table = malloc(byte_size);

	/* We don't consider allocation failure fatal, we just start with a 0-sized
	 * cache. */
	if (cache->hash_table == NULL ||
	    (device->debug_flags & RADV_DEBUG_NO_CACHE))
		cache->table_size = 0;
	else
		memset(cache->hash_table, 0, byte_size);
}

void
radv_pipeline_cache_finish(struct radv_pipeline_cache *cache)
{
	for (unsigned i = 0; i < cache->table_size; ++i)
		if (cache->hash_table[i]) {
			if (cache->hash_table[i]->variant)
				radv_shader_variant_destroy(cache->device,
							    cache->hash_table[i]->variant);
			vk_free(&cache->alloc, cache->hash_table[i]);
		}
	pthread_mutex_destroy(&cache->mutex);
	free(cache->hash_table);
}

static uint32_t
entry_size(struct cache_entry *entry)
{
	return sizeof(*entry) + entry->code_size;
}

void
radv_hash_shader(unsigned char *hash, struct radv_shader_module *module,
		 const char *entrypoint,
		 const VkSpecializationInfo *spec_info,
		 const struct radv_pipeline_layout *layout,
		 const union ac_shader_variant_key *key)
{
	struct mesa_sha1 *ctx;

	ctx = _mesa_sha1_init();
	if (key)
		_mesa_sha1_update(ctx, key, sizeof(*key));
	_mesa_sha1_update(ctx, module->sha1, sizeof(module->sha1));
	_mesa_sha1_update(ctx, entrypoint, strlen(entrypoint));
	if (layout)
		_mesa_sha1_update(ctx, layout->sha1, sizeof(layout->sha1));
	if (spec_info) {
		_mesa_sha1_update(ctx, spec_info->pMapEntries,
				  spec_info->mapEntryCount * sizeof spec_info->pMapEntries[0]);
		_mesa_sha1_update(ctx, spec_info->pData, spec_info->dataSize);
	}
	_mesa_sha1_final(ctx, hash);
}


static struct cache_entry *
radv_pipeline_cache_search_unlocked(struct radv_pipeline_cache *cache,
				    const unsigned char *sha1)
{
	const uint32_t mask = cache->table_size - 1;
	const uint32_t start = (*(uint32_t *) sha1);

	for (uint32_t i = 0; i < cache->table_size; i++) {
		const uint32_t index = (start + i) & mask;
		struct cache_entry *entry = cache->hash_table[index];

		if (!entry)
			return NULL;

		if (memcmp(entry->sha1, sha1, sizeof(entry->sha1)) == 0) {
			return entry;
		}
	}

	unreachable("hash table should never be full");
}

static struct cache_entry *
radv_pipeline_cache_search(struct radv_pipeline_cache *cache,
			   const unsigned char *sha1)
{
	struct cache_entry *entry;

	pthread_mutex_lock(&cache->mutex);

	entry = radv_pipeline_cache_search_unlocked(cache, sha1);

	pthread_mutex_unlock(&cache->mutex);

	return entry;
}

struct radv_shader_variant *
radv_create_shader_variant_from_pipeline_cache(struct radv_device *device,
					       struct radv_pipeline_cache *cache,
					       const unsigned char *sha1)
{
	struct cache_entry *entry = radv_pipeline_cache_search(cache, sha1);

	if (!entry)
		return NULL;

	if (!entry->variant) {
		struct radv_shader_variant *variant;

		variant = calloc(1, sizeof(struct radv_shader_variant));
		if (!variant)
			return NULL;

		variant->config = entry->config;
		variant->info = entry->variant_info;
		variant->rsrc1 = entry->rsrc1;
		variant->rsrc2 = entry->rsrc2;
		variant->ref_count = 1;

		variant->bo = device->ws->buffer_create(device->ws, entry->code_size, 256,
						RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS);

		void *ptr = device->ws->buffer_map(variant->bo);
		memcpy(ptr, entry->code, entry->code_size);
		device->ws->buffer_unmap(variant->bo);

		entry->variant = variant;
	}

	__sync_fetch_and_add(&entry->variant->ref_count, 1);
	return entry->variant;
}


static void
radv_pipeline_cache_set_entry(struct radv_pipeline_cache *cache,
			      struct cache_entry *entry)
{
	const uint32_t mask = cache->table_size - 1;
	const uint32_t start = entry->sha1_dw[0];

	/* We'll always be able to insert when we get here. */
	assert(cache->kernel_count < cache->table_size / 2);

	for (uint32_t i = 0; i < cache->table_size; i++) {
		const uint32_t index = (start + i) & mask;
		if (!cache->hash_table[index]) {
			cache->hash_table[index] = entry;
			break;
		}
	}

	cache->total_size += entry_size(entry);
	cache->kernel_count++;
}


static VkResult
radv_pipeline_cache_grow(struct radv_pipeline_cache *cache)
{
	const uint32_t table_size = cache->table_size * 2;
	const uint32_t old_table_size = cache->table_size;
	const size_t byte_size = table_size * sizeof(cache->hash_table[0]);
	struct cache_entry **table;
	struct cache_entry **old_table = cache->hash_table;

	table = malloc(byte_size);
	if (table == NULL)
		return VK_ERROR_OUT_OF_HOST_MEMORY;

	cache->hash_table = table;
	cache->table_size = table_size;
	cache->kernel_count = 0;
	cache->total_size = 0;

	memset(cache->hash_table, 0, byte_size);
	for (uint32_t i = 0; i < old_table_size; i++) {
		struct cache_entry *entry = old_table[i];
		if (!entry)
			continue;

		radv_pipeline_cache_set_entry(cache, entry);
	}

	free(old_table);

	return VK_SUCCESS;
}

static void
radv_pipeline_cache_add_entry(struct radv_pipeline_cache *cache,
			      struct cache_entry *entry)
{
	if (cache->kernel_count == cache->table_size / 2)
		radv_pipeline_cache_grow(cache);

	/* Failing to grow that hash table isn't fatal, but may mean we don't
	 * have enough space to add this new kernel. Only add it if there's room.
	 */
	if (cache->kernel_count < cache->table_size / 2)
		radv_pipeline_cache_set_entry(cache, entry);
}

struct radv_shader_variant *
radv_pipeline_cache_insert_shader(struct radv_pipeline_cache *cache,
				  const unsigned char *sha1,
				  struct radv_shader_variant *variant,
				  const void *code, unsigned code_size)
{
	pthread_mutex_lock(&cache->mutex);
	struct cache_entry *entry = radv_pipeline_cache_search_unlocked(cache, sha1);
	if (entry) {
		if (entry->variant) {
			radv_shader_variant_destroy(cache->device, variant);
			variant = entry->variant;
		} else {
			entry->variant = variant;
		}
		__sync_fetch_and_add(&variant->ref_count, 1);
		pthread_mutex_unlock(&cache->mutex);
		return variant;
	}

	entry = vk_alloc(&cache->alloc, sizeof(*entry) + code_size, 8,
			   VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
	if (!entry) {
		pthread_mutex_unlock(&cache->mutex);
		return variant;
	}

	memcpy(entry->sha1, sha1, 20);
	memcpy(entry->code, code, code_size);
	entry->config = variant->config;
	entry->variant_info = variant->info;
	entry->rsrc1 = variant->rsrc1;
	entry->rsrc2 = variant->rsrc2;
	entry->code_size = code_size;
	entry->variant = variant;
	__sync_fetch_and_add(&variant->ref_count, 1);

	radv_pipeline_cache_add_entry(cache, entry);

	cache->modified = true;
	pthread_mutex_unlock(&cache->mutex);
	return variant;
}

struct cache_header {
	uint32_t header_size;
	uint32_t header_version;
	uint32_t vendor_id;
	uint32_t device_id;
	uint8_t  uuid[VK_UUID_SIZE];
};
void
radv_pipeline_cache_load(struct radv_pipeline_cache *cache,
			 const void *data, size_t size)
{
	struct radv_device *device = cache->device;
	struct cache_header header;

	if (size < sizeof(header))
		return;
	memcpy(&header, data, sizeof(header));
	if (header.header_size < sizeof(header))
		return;
	if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
		return;
	if (header.vendor_id != 0x1002)
		return;
	if (header.device_id != device->physical_device->rad_info.pci_id)
		return;
	if (memcmp(header.uuid, device->physical_device->uuid, VK_UUID_SIZE) != 0)
		return;

	char *end = (void *) data + size;
	char *p = (void *) data + header.header_size;

	while (end - p >= sizeof(struct cache_entry)) {
		struct cache_entry *entry = (struct cache_entry*)p;
		struct cache_entry *dest_entry;
		if(end - p < sizeof(*entry) + entry->code_size)
			break;

		dest_entry = vk_alloc(&cache->alloc, sizeof(*entry) + entry->code_size,
					8, VK_SYSTEM_ALLOCATION_SCOPE_CACHE);
		if (dest_entry) {
			memcpy(dest_entry, entry, sizeof(*entry) + entry->code_size);
			dest_entry->variant = NULL;
			radv_pipeline_cache_add_entry(cache, dest_entry);
		}
		p += sizeof (*entry) + entry->code_size;
	}
}

VkResult radv_CreatePipelineCache(
	VkDevice                                    _device,
	const VkPipelineCacheCreateInfo*            pCreateInfo,
	const VkAllocationCallbacks*                pAllocator,
	VkPipelineCache*                            pPipelineCache)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	struct radv_pipeline_cache *cache;

	assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
	assert(pCreateInfo->flags == 0);

	cache = vk_alloc2(&device->alloc, pAllocator,
			    sizeof(*cache), 8,
			    VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
	if (cache == NULL)
		return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);

	if (pAllocator)
		cache->alloc = *pAllocator;
	else
		cache->alloc = device->alloc;

	radv_pipeline_cache_init(cache, device);

	if (pCreateInfo->initialDataSize > 0) {
		radv_pipeline_cache_load(cache,
					 pCreateInfo->pInitialData,
					 pCreateInfo->initialDataSize);
	}

	*pPipelineCache = radv_pipeline_cache_to_handle(cache);

	return VK_SUCCESS;
}

void radv_DestroyPipelineCache(
	VkDevice                                    _device,
	VkPipelineCache                             _cache,
	const VkAllocationCallbacks*                pAllocator)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);

	if (!cache)
		return;
	radv_pipeline_cache_finish(cache);

	vk_free2(&device->alloc, pAllocator, cache);
}

VkResult radv_GetPipelineCacheData(
	VkDevice                                    _device,
	VkPipelineCache                             _cache,
	size_t*                                     pDataSize,
	void*                                       pData)
{
	RADV_FROM_HANDLE(radv_device, device, _device);
	RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
	struct cache_header *header;
	VkResult result = VK_SUCCESS;
	const size_t size = sizeof(*header) + cache->total_size;
	if (pData == NULL) {
		*pDataSize = size;
		return VK_SUCCESS;
	}
	if (*pDataSize < sizeof(*header)) {
		*pDataSize = 0;
		return VK_INCOMPLETE;
	}
	void *p = pData, *end = pData + *pDataSize;
	header = p;
	header->header_size = sizeof(*header);
	header->header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE;
	header->vendor_id = 0x1002;
	header->device_id = device->physical_device->rad_info.pci_id;
	memcpy(header->uuid, device->physical_device->uuid, VK_UUID_SIZE);
	p += header->header_size;

	struct cache_entry *entry;
	for (uint32_t i = 0; i < cache->table_size; i++) {
		if (!cache->hash_table[i])
			continue;
		entry = cache->hash_table[i];
		const uint32_t size = entry_size(entry);
		if (end < p + size) {
			result = VK_INCOMPLETE;
			break;
		}

		memcpy(p, entry, size);
		((struct cache_entry*)p)->variant = NULL;
		p += size;
	}
	*pDataSize = p - pData;

	return result;
}

static void
radv_pipeline_cache_merge(struct radv_pipeline_cache *dst,
			  struct radv_pipeline_cache *src)
{
	for (uint32_t i = 0; i < src->table_size; i++) {
		struct cache_entry *entry = src->hash_table[i];
		if (!entry || radv_pipeline_cache_search(dst, entry->sha1))
			continue;

		radv_pipeline_cache_add_entry(dst, entry);

		src->hash_table[i] = NULL;
	}
}

VkResult radv_MergePipelineCaches(
	VkDevice                                    _device,
	VkPipelineCache                             destCache,
	uint32_t                                    srcCacheCount,
	const VkPipelineCache*                      pSrcCaches)
{
	RADV_FROM_HANDLE(radv_pipeline_cache, dst, destCache);

	for (uint32_t i = 0; i < srcCacheCount; i++) {
		RADV_FROM_HANDLE(radv_pipeline_cache, src, pSrcCaches[i]);

		radv_pipeline_cache_merge(dst, src);
	}

	return VK_SUCCESS;
}