/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "util/mesa-sha1.h"
#include "radv_private.h"
#include "nir/nir.h"
#include "nir/nir_builder.h"
#include "spirv/nir_spirv.h"
#include <llvm-c/Core.h>
#include <llvm-c/TargetMachine.h>
#include "sid.h"
#include "r600d_common.h"
#include "ac_binary.h"
#include "ac_llvm_util.h"
#include "ac_nir_to_llvm.h"
#include "vk_format.h"
#include "util/debug.h"
void radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant);
static const struct nir_shader_compiler_options nir_options = {
.vertex_id_zero_based = true,
.lower_scmp = true,
.lower_flrp32 = true,
.lower_fsat = true,
.lower_pack_snorm_2x16 = true,
.lower_pack_snorm_4x8 = true,
.lower_pack_unorm_2x16 = true,
.lower_pack_unorm_4x8 = true,
.lower_unpack_snorm_2x16 = true,
.lower_unpack_snorm_4x8 = true,
.lower_unpack_unorm_2x16 = true,
.lower_unpack_unorm_4x8 = true,
.lower_extract_byte = true,
.lower_extract_word = true,
};
VkResult radv_CreateShaderModule(
VkDevice _device,
const VkShaderModuleCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkShaderModule* pShaderModule)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_shader_module *module;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO);
assert(pCreateInfo->flags == 0);
module = vk_alloc2(&device->alloc, pAllocator,
sizeof(*module) + pCreateInfo->codeSize, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (module == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
module->nir = NULL;
module->size = pCreateInfo->codeSize;
memcpy(module->data, pCreateInfo->pCode, module->size);
_mesa_sha1_compute(module->data, module->size, module->sha1);
*pShaderModule = radv_shader_module_to_handle(module);
return VK_SUCCESS;
}
void radv_DestroyShaderModule(
VkDevice _device,
VkShaderModule _module,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_shader_module, module, _module);
if (!module)
return;
vk_free2(&device->alloc, pAllocator, module);
}
void radv_DestroyPipeline(
VkDevice _device,
VkPipeline _pipeline,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline);
if (!_pipeline)
return;
for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i)
if (pipeline->shaders[i])
radv_shader_variant_destroy(device, pipeline->shaders[i]);
vk_free2(&device->alloc, pAllocator, pipeline);
}
static void
radv_optimize_nir(struct nir_shader *shader)
{
bool progress;
do {
progress = false;
NIR_PASS_V(shader, nir_lower_vars_to_ssa);
NIR_PASS_V(shader, nir_lower_alu_to_scalar);
NIR_PASS_V(shader, nir_lower_phis_to_scalar);
NIR_PASS(progress, shader, nir_copy_prop);
NIR_PASS(progress, shader, nir_opt_remove_phis);
NIR_PASS(progress, shader, nir_opt_dce);
NIR_PASS(progress, shader, nir_opt_dead_cf);
NIR_PASS(progress, shader, nir_opt_cse);
NIR_PASS(progress, shader, nir_opt_peephole_select, 8);
NIR_PASS(progress, shader, nir_opt_algebraic);
NIR_PASS(progress, shader, nir_opt_constant_folding);
NIR_PASS(progress, shader, nir_opt_undef);
NIR_PASS(progress, shader, nir_opt_conditional_discard);
} while (progress);
}
static nir_shader *
radv_shader_compile_to_nir(struct radv_device *device,
struct radv_shader_module *module,
const char *entrypoint_name,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
bool dump)
{
if (strcmp(entrypoint_name, "main") != 0) {
radv_finishme("Multiple shaders per module not really supported");
}
nir_shader *nir;
nir_function *entry_point;
if (module->nir) {
/* Some things such as our meta clear/blit code will give us a NIR
* shader directly. In that case, we just ignore the SPIR-V entirely
* and just use the NIR shader */
nir = module->nir;
nir->options = &nir_options;
nir_validate_shader(nir);
assert(exec_list_length(&nir->functions) == 1);
struct exec_node *node = exec_list_get_head(&nir->functions);
entry_point = exec_node_data(nir_function, node, node);
} else {
uint32_t *spirv = (uint32_t *) module->data;
assert(module->size % 4 == 0);
uint32_t num_spec_entries = 0;
struct nir_spirv_specialization *spec_entries = NULL;
if (spec_info && spec_info->mapEntryCount > 0) {
num_spec_entries = spec_info->mapEntryCount;
spec_entries = malloc(num_spec_entries * sizeof(*spec_entries));
for (uint32_t i = 0; i < num_spec_entries; i++) {
VkSpecializationMapEntry entry = spec_info->pMapEntries[i];
const void *data = spec_info->pData + entry.offset;
assert(data + entry.size <= spec_info->pData + spec_info->dataSize);
spec_entries[i].id = spec_info->pMapEntries[i].constantID;
if (spec_info->dataSize == 8)
spec_entries[i].data64 = *(const uint64_t *)data;
else
spec_entries[i].data32 = *(const uint32_t *)data;
}
}
const struct nir_spirv_supported_extensions supported_ext = {
};
entry_point = spirv_to_nir(spirv, module->size / 4,
spec_entries, num_spec_entries,
stage, entrypoint_name, &supported_ext, &nir_options);
nir = entry_point->shader;
assert(nir->stage == stage);
nir_validate_shader(nir);
free(spec_entries);
/* We have to lower away local constant initializers right before we
* inline functions. That way they get properly initialized at the top
* of the function and not at the top of its caller.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_local);
NIR_PASS_V(nir, nir_lower_returns);
NIR_PASS_V(nir, nir_inline_functions);
/* Pick off the single entrypoint that we want */
foreach_list_typed_safe(nir_function, func, node, &nir->functions) {
if (func != entry_point)
exec_node_remove(&func->node);
}
assert(exec_list_length(&nir->functions) == 1);
entry_point->name = ralloc_strdup(entry_point, "main");
NIR_PASS_V(nir, nir_remove_dead_variables,
nir_var_shader_in | nir_var_shader_out | nir_var_system_value);
/* Now that we've deleted all but the main function, we can go ahead and
* lower the rest of the constant initializers.
*/
NIR_PASS_V(nir, nir_lower_constant_initializers, ~0);
NIR_PASS_V(nir, nir_lower_system_values);
}
/* Vulkan uses the separate-shader linking model */
nir->info->separate_shader = true;
// nir = brw_preprocess_nir(compiler, nir);
nir_shader_gather_info(nir, entry_point->impl);
nir_variable_mode indirect_mask = 0;
// if (compiler->glsl_compiler_options[stage].EmitNoIndirectInput)
indirect_mask |= nir_var_shader_in;
// if (compiler->glsl_compiler_options[stage].EmitNoIndirectTemp)
indirect_mask |= nir_var_local;
nir_lower_indirect_derefs(nir, indirect_mask);
static const nir_lower_tex_options tex_options = {
.lower_txp = ~0,
};
nir_lower_tex(nir, &tex_options);
nir_lower_vars_to_ssa(nir);
nir_lower_var_copies(nir);
nir_lower_global_vars_to_local(nir);
nir_remove_dead_variables(nir, nir_var_local);
radv_optimize_nir(nir);
if (dump)
nir_print_shader(nir, stderr);
return nir;
}
static const char *radv_get_shader_name(struct radv_shader_variant *var,
gl_shader_stage stage)
{
switch (stage) {
case MESA_SHADER_VERTEX: return "Vertex Shader as VS";
case MESA_SHADER_FRAGMENT: return "Pixel Shader";
case MESA_SHADER_COMPUTE: return "Compute Shader";
default:
return "Unknown shader";
};
}
static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline)
{
unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256;
struct radv_shader_variant *var;
struct ac_shader_config *conf;
int i;
FILE *file = stderr;
unsigned max_simd_waves = 10;
unsigned lds_per_wave = 0;
for (i = 0; i < MESA_SHADER_STAGES; i++) {
if (!pipeline->shaders[i])
continue;
var = pipeline->shaders[i];
conf = &var->config;
if (i == MESA_SHADER_FRAGMENT) {
lds_per_wave = conf->lds_size * lds_increment +
align(var->info.fs.num_interp * 48, lds_increment);
}
if (conf->num_sgprs) {
if (device->physical_device->rad_info.chip_class >= VI)
max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
else
max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
}
if (conf->num_vgprs)
max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
/* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
* that PS can use.
*/
if (lds_per_wave)
max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
fprintf(file, "\n%s:\n",
radv_get_shader_name(var, i));
if (i == MESA_SHADER_FRAGMENT) {
fprintf(file, "*** SHADER CONFIG ***\n"
"SPI_PS_INPUT_ADDR = 0x%04x\n"
"SPI_PS_INPUT_ENA = 0x%04x\n",
conf->spi_ps_input_addr, conf->spi_ps_input_ena);
}
fprintf(file, "*** SHADER STATS ***\n"
"SGPRS: %d\n"
"VGPRS: %d\n"
"Spilled SGPRs: %d\n"
"Spilled VGPRs: %d\n"
"Code Size: %d bytes\n"
"LDS: %d blocks\n"
"Scratch: %d bytes per wave\n"
"Max Waves: %d\n"
"********************\n\n\n",
conf->num_sgprs, conf->num_vgprs,
conf->spilled_sgprs, conf->spilled_vgprs, var->code_size,
conf->lds_size, conf->scratch_bytes_per_wave,
max_simd_waves);
}
}
void radv_shader_variant_destroy(struct radv_device *device,
struct radv_shader_variant *variant)
{
if (__sync_fetch_and_sub(&variant->ref_count, 1) != 1)
return;
device->ws->buffer_destroy(variant->bo);
free(variant);
}
static void radv_fill_shader_variant(struct radv_device *device,
struct radv_shader_variant *variant,
struct ac_shader_binary *binary,
gl_shader_stage stage)
{
variant->code_size = binary->code_size;
bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0;
unsigned vgpr_comp_cnt = 0;
if (scratch_enabled)
radv_finishme("shader scratch space");
switch (stage) {
case MESA_SHADER_VERTEX:
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B12C_SCRATCH_EN(scratch_enabled);
vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt;
break;
case MESA_SHADER_FRAGMENT:
variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B12C_SCRATCH_EN(scratch_enabled);
break;
case MESA_SHADER_COMPUTE:
variant->rsrc2 = S_00B84C_USER_SGPR(variant->info.num_user_sgprs) |
S_00B84C_SCRATCH_EN(scratch_enabled) |
S_00B84C_TGID_X_EN(1) | S_00B84C_TGID_Y_EN(1) |
S_00B84C_TGID_Z_EN(1) | S_00B84C_TIDIG_COMP_CNT(2) |
S_00B84C_TG_SIZE_EN(1) |
S_00B84C_LDS_SIZE(variant->config.lds_size);
break;
default:
unreachable("unsupported shader type");
break;
}
variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) |
S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) |
S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt) |
S_00B848_DX10_CLAMP(1) |
S_00B848_FLOAT_MODE(variant->config.float_mode);
variant->bo = device->ws->buffer_create(device->ws, binary->code_size, 256,
RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS);
void *ptr = device->ws->buffer_map(variant->bo);
memcpy(ptr, binary->code, binary->code_size);
device->ws->buffer_unmap(variant->bo);
}
static struct radv_shader_variant *radv_shader_variant_create(struct radv_device *device,
struct nir_shader *shader,
struct radv_pipeline_layout *layout,
const union ac_shader_variant_key *key,
void** code_out,
unsigned *code_size_out,
bool dump)
{
struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant));
enum radeon_family chip_family = device->physical_device->rad_info.family;
LLVMTargetMachineRef tm;
if (!variant)
return NULL;
struct ac_nir_compiler_options options = {0};
options.layout = layout;
if (key)
options.key = *key;
struct ac_shader_binary binary;
options.unsafe_math = !!(device->debug_flags & RADV_DEBUG_UNSAFE_MATH);
options.family = chip_family;
options.chip_class = device->physical_device->rad_info.chip_class;
tm = ac_create_target_machine(chip_family);
ac_compile_nir_shader(tm, &binary, &variant->config,
&variant->info, shader, &options, dump);
LLVMDisposeTargetMachine(tm);
radv_fill_shader_variant(device, variant, &binary, shader->stage);
if (code_out) {
*code_out = binary.code;
*code_size_out = binary.code_size;
} else
free(binary.code);
free(binary.config);
free(binary.rodata);
free(binary.global_symbol_offsets);
free(binary.relocs);
free(binary.disasm_string);
variant->ref_count = 1;
return variant;
}
static struct radv_shader_variant *
radv_pipeline_compile(struct radv_pipeline *pipeline,
struct radv_pipeline_cache *cache,
struct radv_shader_module *module,
const char *entrypoint,
gl_shader_stage stage,
const VkSpecializationInfo *spec_info,
struct radv_pipeline_layout *layout,
const union ac_shader_variant_key *key)
{
unsigned char sha1[20];
struct radv_shader_variant *variant;
nir_shader *nir;
void *code = NULL;
unsigned code_size = 0;
bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS);
if (module->nir)
_mesa_sha1_compute(module->nir->info->name,
strlen(module->nir->info->name),
module->sha1);
radv_hash_shader(sha1, module, entrypoint, spec_info, layout, key);
if (cache) {
variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device,
cache,
sha1);
if (variant)
return variant;
}
nir = radv_shader_compile_to_nir(pipeline->device,
module, entrypoint, stage,
spec_info, dump);
if (nir == NULL)
return NULL;
variant = radv_shader_variant_create(pipeline->device, nir, layout, key,
&code, &code_size, dump);
if (!module->nir)
ralloc_free(nir);
if (variant && cache)
variant = radv_pipeline_cache_insert_shader(cache, sha1, variant,
code, code_size);
if (code)
free(code);
return variant;
}
static uint32_t si_translate_blend_function(VkBlendOp op)
{
switch (op) {
case VK_BLEND_OP_ADD:
return V_028780_COMB_DST_PLUS_SRC;
case VK_BLEND_OP_SUBTRACT:
return V_028780_COMB_SRC_MINUS_DST;
case VK_BLEND_OP_REVERSE_SUBTRACT:
return V_028780_COMB_DST_MINUS_SRC;
case VK_BLEND_OP_MIN:
return V_028780_COMB_MIN_DST_SRC;
case VK_BLEND_OP_MAX:
return V_028780_COMB_MAX_DST_SRC;
default:
return 0;
}
}
static uint32_t si_translate_blend_factor(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_ZERO:
return V_028780_BLEND_ZERO;
case VK_BLEND_FACTOR_ONE:
return V_028780_BLEND_ONE;
case VK_BLEND_FACTOR_SRC_COLOR:
return V_028780_BLEND_SRC_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR:
return V_028780_BLEND_ONE_MINUS_SRC_COLOR;
case VK_BLEND_FACTOR_DST_COLOR:
return V_028780_BLEND_DST_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR:
return V_028780_BLEND_ONE_MINUS_DST_COLOR;
case VK_BLEND_FACTOR_SRC_ALPHA:
return V_028780_BLEND_SRC_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA:
return V_028780_BLEND_ONE_MINUS_SRC_ALPHA;
case VK_BLEND_FACTOR_DST_ALPHA:
return V_028780_BLEND_DST_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA:
return V_028780_BLEND_ONE_MINUS_DST_ALPHA;
case VK_BLEND_FACTOR_CONSTANT_COLOR:
return V_028780_BLEND_CONSTANT_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR:
return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR;
case VK_BLEND_FACTOR_CONSTANT_ALPHA:
return V_028780_BLEND_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA:
return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA;
case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE:
return V_028780_BLEND_SRC_ALPHA_SATURATE;
case VK_BLEND_FACTOR_SRC1_COLOR:
return V_028780_BLEND_SRC1_COLOR;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
return V_028780_BLEND_INV_SRC1_COLOR;
case VK_BLEND_FACTOR_SRC1_ALPHA:
return V_028780_BLEND_SRC1_ALPHA;
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return V_028780_BLEND_INV_SRC1_ALPHA;
default:
return 0;
}
}
static bool is_dual_src(VkBlendFactor factor)
{
switch (factor) {
case VK_BLEND_FACTOR_SRC1_COLOR:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR:
case VK_BLEND_FACTOR_SRC1_ALPHA:
case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA:
return true;
default:
return false;
}
}
static unsigned si_choose_spi_color_format(VkFormat vk_format,
bool blend_enable,
bool blend_need_alpha)
{
const struct vk_format_description *desc = vk_format_description(vk_format);
unsigned format, ntype, swap;
/* Alpha is needed for alpha-to-coverage.
* Blending may be with or without alpha.
*/
unsigned normal = 0; /* most optimal, may not support blending or export alpha */
unsigned alpha = 0; /* exports alpha, but may not support blending */
unsigned blend = 0; /* supports blending, but may not export alpha */
unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */
format = radv_translate_colorformat(vk_format);
ntype = radv_translate_color_numformat(vk_format, desc,
vk_format_get_first_non_void_channel(vk_format));
swap = radv_translate_colorswap(vk_format, false);
/* Choose the SPI color formats. These are required values for Stoney/RB+.
* Other chips have multiple choices, though they are not necessarily better.
*/
switch (format) {
case V_028C70_COLOR_5_6_5:
case V_028C70_COLOR_1_5_5_5:
case V_028C70_COLOR_5_5_5_1:
case V_028C70_COLOR_4_4_4_4:
case V_028C70_COLOR_10_11_11:
case V_028C70_COLOR_11_11_10:
case V_028C70_COLOR_8:
case V_028C70_COLOR_8_8:
case V_028C70_COLOR_8_8_8_8:
case V_028C70_COLOR_10_10_10_2:
case V_028C70_COLOR_2_10_10_10:
if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
break;
case V_028C70_COLOR_16:
case V_028C70_COLOR_16_16:
case V_028C70_COLOR_16_16_16_16:
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM) {
/* UNORM16 and SNORM16 don't support blending */
if (ntype == V_028C70_NUMBER_UNORM)
normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR;
else
normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR;
/* Use 32 bits per channel for blending. */
if (format == V_028C70_COLOR_16) {
if (swap == V_028C70_SWAP_STD) { /* R */
blend = V_028714_SPI_SHADER_32_R;
blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else if (format == V_028C70_COLOR_16_16) {
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = V_028714_SPI_SHADER_32_GR;
blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
blend = blend_alpha = V_028714_SPI_SHADER_32_AR;
else
assert(0);
} else /* 16_16_16_16 */
blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (ntype == V_028C70_NUMBER_UINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR;
else if (ntype == V_028C70_NUMBER_SINT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR;
else if (ntype == V_028C70_NUMBER_FLOAT)
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR;
else
assert(0);
break;
case V_028C70_COLOR_32:
if (swap == V_028C70_SWAP_STD) { /* R */
blend = normal = V_028714_SPI_SHADER_32_R;
alpha = blend_alpha = V_028714_SPI_SHADER_32_AR;
} else if (swap == V_028C70_SWAP_ALT_REV) /* A */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32:
if (swap == V_028C70_SWAP_STD) { /* RG */
blend = normal = V_028714_SPI_SHADER_32_GR;
alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR;
} else if (swap == V_028C70_SWAP_ALT) /* RA */
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR;
else
assert(0);
break;
case V_028C70_COLOR_32_32_32_32:
case V_028C70_COLOR_8_24:
case V_028C70_COLOR_24_8:
case V_028C70_COLOR_X24_8_32_FLOAT:
alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR;
break;
default:
unreachable("unhandled blend format");
}
if (blend_enable && blend_need_alpha)
return blend_alpha;
else if(blend_need_alpha)
return alpha;
else if(blend_enable)
return blend;
else
return normal;
}
static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format)
{
unsigned i, cb_shader_mask = 0;
for (i = 0; i < 8; i++) {
switch ((spi_shader_col_format >> (i * 4)) & 0xf) {
case V_028714_SPI_SHADER_ZERO:
break;
case V_028714_SPI_SHADER_32_R:
cb_shader_mask |= 0x1 << (i * 4);
break;
case V_028714_SPI_SHADER_32_GR:
cb_shader_mask |= 0x3 << (i * 4);
break;
case V_028714_SPI_SHADER_32_AR:
cb_shader_mask |= 0x9 << (i * 4);
break;
case V_028714_SPI_SHADER_FP16_ABGR:
case V_028714_SPI_SHADER_UNORM16_ABGR:
case V_028714_SPI_SHADER_SNORM16_ABGR:
case V_028714_SPI_SHADER_UINT16_ABGR:
case V_028714_SPI_SHADER_SINT16_ABGR:
case V_028714_SPI_SHADER_32_ABGR:
cb_shader_mask |= 0xf << (i * 4);
break;
default:
assert(0);
}
}
return cb_shader_mask;
}
static void
radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
uint32_t blend_enable,
uint32_t blend_need_alpha,
bool single_cb_enable,
bool blend_mrt0_is_dual_src)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
struct radv_blend_state *blend = &pipeline->graphics.blend;
unsigned col_format = 0;
for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) {
struct radv_render_pass_attachment *attachment;
unsigned cf;
attachment = pass->attachments + subpass->color_attachments[i].attachment;
cf = si_choose_spi_color_format(attachment->format,
blend_enable & (1 << i),
blend_need_alpha & (1 << i));
col_format |= cf << (4 * i);
}
blend->cb_shader_mask = si_get_cb_shader_mask(col_format);
if (blend_mrt0_is_dual_src)
col_format |= (col_format & 0xf) << 4;
if (!col_format)
col_format |= V_028714_SPI_SHADER_32_R;
blend->spi_shader_col_format = col_format;
}
static bool
format_is_int8(VkFormat format)
{
const struct vk_format_description *desc = vk_format_description(format);
int channel = vk_format_get_first_non_void_channel(format);
return channel >= 0 && desc->channel[channel].pure_integer &&
desc->channel[channel].size == 8;
}
unsigned radv_format_meta_fs_key(VkFormat format)
{
unsigned col_format = si_choose_spi_color_format(format, false, false) - 1;
bool is_int8 = format_is_int8(format);
return col_format + (is_int8 ? 3 : 0);
}
static unsigned
radv_pipeline_compute_is_int8(const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass;
unsigned is_int8 = 0;
for (unsigned i = 0; i < subpass->color_count; ++i) {
struct radv_render_pass_attachment *attachment;
attachment = pass->attachments + subpass->color_attachments[i].attachment;
if (format_is_int8(attachment->format))
is_int8 |= 1 << i;
}
return is_int8;
}
static void
radv_pipeline_init_blend_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState;
struct radv_blend_state *blend = &pipeline->graphics.blend;
unsigned mode = V_028808_CB_NORMAL;
uint32_t blend_enable = 0, blend_need_alpha = 0;
bool blend_mrt0_is_dual_src = false;
int i;
bool single_cb_enable = false;
if (!vkblend)
return;
if (extra && extra->custom_blend_mode) {
single_cb_enable = true;
mode = extra->custom_blend_mode;
}
blend->cb_color_control = 0;
if (vkblend->logicOpEnable)
blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4));
else
blend->cb_color_control |= S_028808_ROP3(0xcc);
blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) |
S_028B70_ALPHA_TO_MASK_OFFSET1(2) |
S_028B70_ALPHA_TO_MASK_OFFSET2(2) |
S_028B70_ALPHA_TO_MASK_OFFSET3(2);
blend->cb_target_mask = 0;
for (i = 0; i < vkblend->attachmentCount; i++) {
const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i];
unsigned blend_cntl = 0;
VkBlendOp eqRGB = att->colorBlendOp;
VkBlendFactor srcRGB = att->srcColorBlendFactor;
VkBlendFactor dstRGB = att->dstColorBlendFactor;
VkBlendOp eqA = att->alphaBlendOp;
VkBlendFactor srcA = att->srcAlphaBlendFactor;
VkBlendFactor dstA = att->dstAlphaBlendFactor;
blend->sx_mrt0_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED);
if (!att->colorWriteMask)
continue;
blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i);
if (!att->blendEnable) {
blend->cb_blend_control[i] = blend_cntl;
continue;
}
if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA))
if (i == 0)
blend_mrt0_is_dual_src = true;
if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) {
srcRGB = VK_BLEND_FACTOR_ONE;
dstRGB = VK_BLEND_FACTOR_ONE;
}
if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) {
srcA = VK_BLEND_FACTOR_ONE;
dstA = VK_BLEND_FACTOR_ONE;
}
blend_cntl |= S_028780_ENABLE(1);
blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB));
blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB));
blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB));
if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1);
blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA));
blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA));
blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA));
}
blend->cb_blend_control[i] = blend_cntl;
blend_enable |= 1 << i;
if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA ||
srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE ||
srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA ||
dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA)
blend_need_alpha |= 1 << i;
}
for (i = vkblend->attachmentCount; i < 8; i++)
blend->cb_blend_control[i] = 0;
if (blend->cb_target_mask)
blend->cb_color_control |= S_028808_MODE(mode);
else
blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE);
radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo,
blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src);
}
static uint32_t si_translate_stencil_op(enum VkStencilOp op)
{
switch (op) {
case VK_STENCIL_OP_KEEP:
return V_02842C_STENCIL_KEEP;
case VK_STENCIL_OP_ZERO:
return V_02842C_STENCIL_ZERO;
case VK_STENCIL_OP_REPLACE:
return V_02842C_STENCIL_REPLACE_TEST;
case VK_STENCIL_OP_INCREMENT_AND_CLAMP:
return V_02842C_STENCIL_ADD_CLAMP;
case VK_STENCIL_OP_DECREMENT_AND_CLAMP:
return V_02842C_STENCIL_SUB_CLAMP;
case VK_STENCIL_OP_INVERT:
return V_02842C_STENCIL_INVERT;
case VK_STENCIL_OP_INCREMENT_AND_WRAP:
return V_02842C_STENCIL_ADD_WRAP;
case VK_STENCIL_OP_DECREMENT_AND_WRAP:
return V_02842C_STENCIL_SUB_WRAP;
default:
return 0;
}
}
static void
radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra)
{
const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState;
struct radv_depth_stencil_state *ds = &pipeline->graphics.ds;
memset(ds, 0, sizeof(*ds));
if (!vkds)
return;
ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) |
S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) |
S_028800_ZFUNC(vkds->depthCompareOp) |
S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0);
if (vkds->stencilTestEnable) {
ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1);
ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp);
ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp));
ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp));
ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp));
ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp);
ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp));
ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp));
ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp));
}
if (extra) {
ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear);
ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear);
ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize);
ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace);
ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace);
ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear);
ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear);
}
}
static uint32_t si_translate_fill(VkPolygonMode func)
{
switch(func) {
case VK_POLYGON_MODE_FILL:
return V_028814_X_DRAW_TRIANGLES;
case VK_POLYGON_MODE_LINE:
return V_028814_X_DRAW_LINES;
case VK_POLYGON_MODE_POINT:
return V_028814_X_DRAW_POINTS;
default:
assert(0);
return V_028814_X_DRAW_POINTS;
}
}
static void
radv_pipeline_init_raster_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState;
struct radv_raster_state *raster = &pipeline->graphics.raster;
memset(raster, 0, sizeof(*raster));
raster->spi_interp_control =
S_0286D4_FLAT_SHADE_ENA(1) |
S_0286D4_PNT_SPRITE_ENA(1) |
S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) |
S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) |
S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) |
S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) |
S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom
raster->pa_cl_vs_out_cntl = S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(1);
raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) |
S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions.
S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) |
S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) |
S_028810_DX_LINEAR_ATTR_CLIP_ENA(1);
raster->pa_su_vtx_cntl =
S_028BE4_PIX_CENTER(1) | // TODO verify
S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) |
S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH);
raster->pa_su_sc_mode_cntl =
S_028814_FACE(vkraster->frontFace) |
S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) |
S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) |
S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) |
S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) |
S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) |
S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) |
S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0);
}
static void
radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState;
struct radv_blend_state *blend = &pipeline->graphics.blend;
struct radv_multisample_state *ms = &pipeline->graphics.ms;
unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes;
int ps_iter_samples = 1;
uint32_t mask = 0xffff;
ms->num_samples = vkms->rasterizationSamples;
if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.force_persample) {
ps_iter_samples = vkms->rasterizationSamples;
}
ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1);
ms->pa_sc_aa_config = 0;
ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) |
S_028804_STATIC_ANCHOR_ASSOCIATIONS(1);
ms->pa_sc_mode_cntl_1 =
S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes
S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) |
/* always 1: */
S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) |
S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) |
S_028A4C_TILE_WALK_ORDER_ENABLE(1) |
S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) |
EG_S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) |
EG_S_028A4C_FORCE_EOV_REZ_ENABLE(1);
if (vkms->rasterizationSamples > 1) {
unsigned log_samples = util_logbase2(vkms->rasterizationSamples);
unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples));
ms->pa_sc_mode_cntl_0 = S_028A48_MSAA_ENABLE(1);
ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */
ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) |
S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) |
S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) |
S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples);
ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) |
S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) |
S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */
ms->pa_sc_mode_cntl_1 |= EG_S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1);
}
if (vkms->alphaToCoverageEnable)
blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1);
if (vkms->pSampleMask) {
mask = vkms->pSampleMask[0] & 0xffff;
}
ms->pa_sc_aa_mask[0] = mask | (mask << 16);
ms->pa_sc_aa_mask[1] = mask | (mask << 16);
}
static uint32_t
si_translate_prim(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
return V_008958_DI_PT_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
return V_008958_DI_PT_LINELIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
return V_008958_DI_PT_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
return V_008958_DI_PT_TRILIST;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
return V_008958_DI_PT_TRISTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
return V_008958_DI_PT_TRIFAN;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_LINELIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_LINESTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
return V_008958_DI_PT_TRILIST_ADJ;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_008958_DI_PT_TRISTRIP_ADJ;
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_008958_DI_PT_PATCH;
default:
assert(0);
return 0;
}
}
static uint32_t
si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology)
{
switch (topology) {
case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST:
return V_028A6C_OUTPRIM_TYPE_POINTLIST;
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
return V_028A6C_OUTPRIM_TYPE_LINESTRIP;
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
return V_028A6C_OUTPRIM_TYPE_TRISTRIP;
default:
assert(0);
return 0;
}
}
static unsigned si_map_swizzle(unsigned swizzle)
{
switch (swizzle) {
case VK_SWIZZLE_Y:
return V_008F0C_SQ_SEL_Y;
case VK_SWIZZLE_Z:
return V_008F0C_SQ_SEL_Z;
case VK_SWIZZLE_W:
return V_008F0C_SQ_SEL_W;
case VK_SWIZZLE_0:
return V_008F0C_SQ_SEL_0;
case VK_SWIZZLE_1:
return V_008F0C_SQ_SEL_1;
default: /* VK_SWIZZLE_X */
return V_008F0C_SQ_SEL_X;
}
}
static void
radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline,
const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL;
RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass);
struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
pipeline->dynamic_state = default_dynamic_state;
if (pCreateInfo->pDynamicState) {
/* Remove all of the states that are marked as dynamic */
uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount;
for (uint32_t s = 0; s < count; s++)
states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]);
}
struct radv_dynamic_state *dynamic = &pipeline->dynamic_state;
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pViewportState is [...] NULL if the pipeline
* has rasterization disabled.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) {
assert(pCreateInfo->pViewportState);
dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount;
if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
typed_memcpy(dynamic->viewport.viewports,
pCreateInfo->pViewportState->pViewports,
pCreateInfo->pViewportState->viewportCount);
}
dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount;
if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
typed_memcpy(dynamic->scissor.scissors,
pCreateInfo->pViewportState->pScissors,
pCreateInfo->pViewportState->scissorCount);
}
}
if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) {
assert(pCreateInfo->pRasterizationState);
dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth;
}
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) {
assert(pCreateInfo->pRasterizationState);
dynamic->depth_bias.bias =
pCreateInfo->pRasterizationState->depthBiasConstantFactor;
dynamic->depth_bias.clamp =
pCreateInfo->pRasterizationState->depthBiasClamp;
dynamic->depth_bias.slope =
pCreateInfo->pRasterizationState->depthBiasSlopeFactor;
}
/* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pColorBlendState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is
* created against does not use any color attachments.
*/
bool uses_color_att = false;
for (unsigned i = 0; i < subpass->color_count; ++i) {
if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) {
uses_color_att = true;
break;
}
}
if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) {
assert(pCreateInfo->pColorBlendState);
typed_memcpy(dynamic->blend_constants,
pCreateInfo->pColorBlendState->blendConstants, 4);
}
/* If there is no depthstencil attachment, then don't read
* pDepthStencilState. The Vulkan spec states that pDepthStencilState may
* be NULL in this case. Even if pDepthStencilState is non-NULL, there is
* no need to override the depthstencil defaults in
* radv_pipeline::dynamic_state when there is no depthstencil attachment.
*
* Section 9.2 of the Vulkan 1.0.15 spec says:
*
* pDepthStencilState is [...] NULL if the pipeline has rasterization
* disabled or if the subpass of the render pass the pipeline is created
* against does not use a depth/stencil attachment.
*/
if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable &&
subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
assert(pCreateInfo->pDepthStencilState);
if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) {
dynamic->depth_bounds.min =
pCreateInfo->pDepthStencilState->minDepthBounds;
dynamic->depth_bounds.max =
pCreateInfo->pDepthStencilState->maxDepthBounds;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) {
dynamic->stencil_compare_mask.front =
pCreateInfo->pDepthStencilState->front.compareMask;
dynamic->stencil_compare_mask.back =
pCreateInfo->pDepthStencilState->back.compareMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) {
dynamic->stencil_write_mask.front =
pCreateInfo->pDepthStencilState->front.writeMask;
dynamic->stencil_write_mask.back =
pCreateInfo->pDepthStencilState->back.writeMask;
}
if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) {
dynamic->stencil_reference.front =
pCreateInfo->pDepthStencilState->front.reference;
dynamic->stencil_reference.back =
pCreateInfo->pDepthStencilState->back.reference;
}
}
pipeline->dynamic_state_mask = states;
}
static union ac_shader_variant_key
radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo)
{
union ac_shader_variant_key key;
const VkPipelineVertexInputStateCreateInfo *input_state =
pCreateInfo->pVertexInputState;
memset(&key, 0, sizeof(key));
key.vs.instance_rate_inputs = 0;
for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) {
unsigned binding;
binding = input_state->pVertexAttributeDescriptions[i].binding;
if (input_state->pVertexBindingDescriptions[binding].inputRate)
key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location;
}
return key;
}
VkResult
radv_pipeline_init(struct radv_pipeline *pipeline,
struct radv_device *device,
struct radv_pipeline_cache *cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *alloc)
{
struct radv_shader_module fs_m = {0};
if (alloc == NULL)
alloc = &device->alloc;
pipeline->device = device;
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
radv_pipeline_init_dynamic_state(pipeline, pCreateInfo);
const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, };
struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, };
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1;
pStages[stage] = &pCreateInfo->pStages[i];
modules[stage] = radv_shader_module_from_handle(pStages[stage]->module);
}
radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra);
/* */
if (modules[MESA_SHADER_VERTEX]) {
union ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo);
pipeline->shaders[MESA_SHADER_VERTEX] =
radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_VERTEX],
pStages[MESA_SHADER_VERTEX]->pName,
MESA_SHADER_VERTEX,
pStages[MESA_SHADER_VERTEX]->pSpecializationInfo,
pipeline->layout, &key);
pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_VERTEX);
}
if (!modules[MESA_SHADER_FRAGMENT]) {
nir_builder fs_b;
nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL);
fs_b.shader->info->name = ralloc_strdup(fs_b.shader, "noop_fs");
fs_m.nir = fs_b.shader;
modules[MESA_SHADER_FRAGMENT] = &fs_m;
}
if (modules[MESA_SHADER_FRAGMENT]) {
union ac_shader_variant_key key;
key.fs.col_format = pipeline->graphics.blend.spi_shader_col_format;
key.fs.is_int8 = radv_pipeline_compute_is_int8(pCreateInfo);
const VkPipelineShaderStageCreateInfo *stage = pStages[MESA_SHADER_FRAGMENT];
pipeline->shaders[MESA_SHADER_FRAGMENT] =
radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_FRAGMENT],
stage ? stage->pName : "main",
MESA_SHADER_FRAGMENT,
stage ? stage->pSpecializationInfo : NULL,
pipeline->layout, &key);
pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_FRAGMENT);
}
if (fs_m.nir)
ralloc_free(fs_m.nir);
radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra);
radv_pipeline_init_raster_state(pipeline, pCreateInfo);
radv_pipeline_init_multisample_state(pipeline, pCreateInfo);
pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology);
pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology);
if (extra && extra->use_rectlist) {
pipeline->graphics.prim = V_008958_DI_PT_RECTLIST;
pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP;
}
pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable;
const VkPipelineVertexInputStateCreateInfo *vi_info =
pCreateInfo->pVertexInputState;
for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) {
const VkVertexInputAttributeDescription *desc =
&vi_info->pVertexAttributeDescriptions[i];
unsigned loc = desc->location;
const struct vk_format_description *format_desc;
int first_non_void;
uint32_t num_format, data_format;
format_desc = vk_format_description(desc->format);
first_non_void = vk_format_get_first_non_void_channel(desc->format);
num_format = radv_translate_buffer_numformat(format_desc, first_non_void);
data_format = radv_translate_buffer_dataformat(format_desc, first_non_void);
pipeline->va_rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) |
S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) |
S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) |
S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) |
S_008F0C_NUM_FORMAT(num_format) |
S_008F0C_DATA_FORMAT(data_format);
pipeline->va_format_size[loc] = format_desc->block.bits / 8;
pipeline->va_offset[loc] = desc->offset;
pipeline->va_binding[loc] = desc->binding;
pipeline->num_vertex_attribs = MAX2(pipeline->num_vertex_attribs, loc + 1);
}
for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) {
const VkVertexInputBindingDescription *desc =
&vi_info->pVertexBindingDescriptions[i];
pipeline->binding_stride[desc->binding] = desc->stride;
}
if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
radv_dump_pipeline_stats(device, pipeline);
}
return VK_SUCCESS;
}
VkResult
radv_graphics_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkGraphicsPipelineCreateInfo *pCreateInfo,
const struct radv_graphics_pipeline_create_info *extra,
const VkAllocationCallbacks *pAllocator,
VkPipeline *pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
struct radv_pipeline *pipeline;
VkResult result;
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(pipeline, 0, sizeof(*pipeline));
result = radv_pipeline_init(pipeline, device, cache,
pCreateInfo, extra, pAllocator);
if (result != VK_SUCCESS) {
vk_free2(&device->alloc, pAllocator, pipeline);
return result;
}
*pPipeline = radv_pipeline_to_handle(pipeline);
return VK_SUCCESS;
}
VkResult radv_CreateGraphicsPipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_graphics_pipeline_create(_device,
pipelineCache,
&pCreateInfos[i],
NULL, pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}
static VkResult radv_compute_pipeline_create(
VkDevice _device,
VkPipelineCache _cache,
const VkComputePipelineCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipeline)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache);
RADV_FROM_HANDLE(radv_shader_module, module, pCreateInfo->stage.module);
struct radv_pipeline *pipeline;
pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (pipeline == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(pipeline, 0, sizeof(*pipeline));
pipeline->device = device;
pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout);
pipeline->shaders[MESA_SHADER_COMPUTE] =
radv_pipeline_compile(pipeline, cache, module,
pCreateInfo->stage.pName,
MESA_SHADER_COMPUTE,
pCreateInfo->stage.pSpecializationInfo,
pipeline->layout, NULL);
*pPipeline = radv_pipeline_to_handle(pipeline);
if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) {
radv_dump_pipeline_stats(device, pipeline);
}
return VK_SUCCESS;
}
VkResult radv_CreateComputePipelines(
VkDevice _device,
VkPipelineCache pipelineCache,
uint32_t count,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkPipeline* pPipelines)
{
VkResult result = VK_SUCCESS;
unsigned i = 0;
for (; i < count; i++) {
VkResult r;
r = radv_compute_pipeline_create(_device, pipelineCache,
&pCreateInfos[i],
pAllocator, &pPipelines[i]);
if (r != VK_SUCCESS) {
result = r;
pPipelines[i] = VK_NULL_HANDLE;
}
}
return result;
}