#define TST_NO_DEFAULT_MAIN
#include "config.h"
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/param.h>
#include <errno.h>
#include <fcntl.h>
#if HAVE_NUMA_H
#include <numa.h>
#endif
#if HAVE_NUMAIF_H
#include <numaif.h>
#endif
#include <pthread.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include "mem.h"
#include "numa_helper.h"
/* OOM */
static int alloc_mem(long int length, int testcase)
{
char *s;
long i, pagesz = getpagesize();
int loop = 10;
tst_res(TINFO, "thread (%lx), allocating %ld bytes.",
(unsigned long) pthread_self(), length);
s = mmap(NULL, length, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (s == MAP_FAILED)
return errno;
if (testcase == MLOCK) {
while (mlock(s, length) == -1 && loop > 0) {
if (EAGAIN != errno)
return errno;
usleep(300000);
loop--;
}
}
#ifdef HAVE_MADV_MERGEABLE
if (testcase == KSM && madvise(s, length, MADV_MERGEABLE) == -1)
return errno;
#endif
for (i = 0; i < length; i += pagesz)
s[i] = '\a';
return 0;
}
static void *child_alloc_thread(void *args)
{
int ret = 0;
/* keep allocating until there's an error */
while (!ret)
ret = alloc_mem(LENGTH, (long)args);
exit(ret);
}
static void child_alloc(int testcase, int lite, int threads)
{
int i;
pthread_t *th;
if (lite) {
int ret = alloc_mem(TESTMEM + MB, testcase);
exit(ret);
}
th = malloc(sizeof(pthread_t) * threads);
if (!th) {
tst_res(TINFO | TERRNO, "malloc");
goto out;
}
for (i = 0; i < threads; i++) {
TEST(pthread_create(&th[i], NULL, child_alloc_thread,
(void *)((long)testcase)));
if (TEST_RETURN) {
tst_res(TINFO | TRERRNO, "pthread_create");
/*
* Keep going if thread other than first fails to
* spawn due to lack of resources.
*/
if (i == 0 || TEST_RETURN != EAGAIN)
goto out;
}
}
/* wait for one of threads to exit whole process */
while (1)
sleep(1);
out:
exit(1);
}
/*
* oom - allocates memory according to specified testcase and checks
* desired outcome (e.g. child killed, operation failed with ENOMEM)
* @testcase: selects how child allocates memory
* valid choices are: NORMAL, MLOCK and KSM
* @lite: if non-zero, child makes only single TESTMEM+MB allocation
* if zero, child keeps allocating memory until it gets killed
* or some operation fails
* @retcode: expected return code of child process
* if matches child ret code, this function reports PASS,
* otherwise it reports FAIL
* @allow_sigkill: if zero and child is killed, this function reports FAIL
* if non-zero, then if child is killed by SIGKILL
* it is considered as PASS
*/
void oom(int testcase, int lite, int retcode, int allow_sigkill)
{
pid_t pid;
int status, threads;
switch (pid = SAFE_FORK()) {
case 0:
threads = MAX(1, tst_ncpus() - 1);
child_alloc(testcase, lite, threads);
default:
break;
}
tst_res(TINFO, "expected victim is %d.", pid);
SAFE_WAITPID(-1, &status, 0);
if (WIFSIGNALED(status)) {
if (allow_sigkill && WTERMSIG(status) == SIGKILL) {
tst_res(TPASS, "victim signalled: (%d) %s",
SIGKILL,
tst_strsig(SIGKILL));
} else {
tst_res(TFAIL, "victim signalled: (%d) %s",
WTERMSIG(status),
tst_strsig(WTERMSIG(status)));
}
} else if (WIFEXITED(status)) {
if (WEXITSTATUS(status) == retcode) {
tst_res(TPASS, "victim retcode: (%d) %s",
retcode, strerror(retcode));
} else {
tst_res(TFAIL, "victim unexpectedly ended with "
"retcode: %d, expected: %d",
WEXITSTATUS(status), retcode);
}
} else {
tst_res(TFAIL, "victim unexpectedly ended");
}
}
#ifdef HAVE_NUMA_V2
static void set_global_mempolicy(int mempolicy)
{
unsigned long nmask[MAXNODES / BITS_PER_LONG] = { 0 };
int num_nodes, *nodes;
int ret;
if (mempolicy) {
ret = get_allowed_nodes_arr(NH_MEMS|NH_CPUS, &num_nodes, &nodes);
if (ret != 0)
tst_brk(TBROK|TERRNO, "get_allowed_nodes_arr");
if (num_nodes < 2) {
tst_res(TINFO, "mempolicy need NUMA system support");
free(nodes);
return;
}
switch(mempolicy) {
case MPOL_BIND:
/* bind the second node */
set_node(nmask, nodes[1]);
break;
case MPOL_INTERLEAVE:
case MPOL_PREFERRED:
if (num_nodes == 2) {
tst_res(TINFO, "The mempolicy need "
"more than 2 numa nodes");
free(nodes);
return;
} else {
/* Using the 2nd,3rd node */
set_node(nmask, nodes[1]);
set_node(nmask, nodes[2]);
}
break;
default:
tst_brk(TBROK|TERRNO, "Bad mempolicy mode");
}
if (set_mempolicy(mempolicy, nmask, MAXNODES) == -1)
tst_brk(TBROK|TERRNO, "set_mempolicy");
}
}
#else
static void set_global_mempolicy(int mempolicy LTP_ATTRIBUTE_UNUSED) { }
#endif
void testoom(int mempolicy, int lite, int retcode, int allow_sigkill)
{
int ksm_run_orig;
set_global_mempolicy(mempolicy);
tst_res(TINFO, "start normal OOM testing.");
oom(NORMAL, lite, retcode, allow_sigkill);
tst_res(TINFO, "start OOM testing for mlocked pages.");
oom(MLOCK, lite, retcode, allow_sigkill);
/*
* Skip oom(KSM) if lite == 1, since limit_in_bytes may vary from
* run to run, which isn't reliable for oom03 cgroup test.
*/
if (access(PATH_KSM, F_OK) == -1 || lite == 1) {
tst_res(TINFO, "KSM is not configed or lite == 1, "
"skip OOM test for KSM pags");
} else {
tst_res(TINFO, "start OOM testing for KSM pages.");
SAFE_FILE_SCANF(PATH_KSM "run", "%d", &ksm_run_orig);
SAFE_FILE_PRINTF(PATH_KSM "run", "1");
oom(KSM, lite, retcode, allow_sigkill);
SAFE_FILE_PRINTF(PATH_KSM "run", "%d", ksm_run_orig);
}
}
/* KSM */
static int max_page_sharing;
void save_max_page_sharing(void)
{
if (access(PATH_KSM "max_page_sharing", F_OK) == 0)
SAFE_FILE_SCANF(PATH_KSM "max_page_sharing",
"%d", &max_page_sharing);
}
void restore_max_page_sharing(void)
{
if (access(PATH_KSM "max_page_sharing", F_OK) == 0)
FILE_PRINTF(PATH_KSM "max_page_sharing",
"%d", max_page_sharing);
}
static void check(char *path, long int value)
{
char fullpath[BUFSIZ];
long actual_val;
snprintf(fullpath, BUFSIZ, PATH_KSM "%s", path);
SAFE_FILE_SCANF(fullpath, "%ld", &actual_val);
if (actual_val != value)
tst_res(TFAIL, "%s is not %ld but %ld.", path, value,
actual_val);
else
tst_res(TPASS, "%s is %ld.", path, actual_val);
}
static void wait_ksmd_full_scan(void)
{
unsigned long full_scans, at_least_one_full_scan;
int count = 0;
SAFE_FILE_SCANF(PATH_KSM "full_scans", "%lu", &full_scans);
/*
* The current scan is already in progress so we can't guarantee that
* the get_user_pages() is called on every existing rmap_item if we
* only waited for the remaining part of the scan.
*
* The actual merging happens after the unstable tree has been built so
* we need to wait at least two full scans to guarantee merging, hence
* wait full_scans to increment by 3 so that at least two full scans
* will run.
*/
at_least_one_full_scan = full_scans + 3;
while (full_scans < at_least_one_full_scan) {
sleep(1);
count++;
SAFE_FILE_SCANF(PATH_KSM "full_scans", "%lu", &full_scans);
}
tst_res(TINFO, "ksm daemon takes %ds to run two full scans",
count);
}
static void final_group_check(int run, int pages_shared, int pages_sharing,
int pages_volatile, int pages_unshared,
int sleep_millisecs, int pages_to_scan)
{
tst_res(TINFO, "check!");
check("run", run);
check("pages_shared", pages_shared);
check("pages_sharing", pages_sharing);
check("pages_volatile", pages_volatile);
check("pages_unshared", pages_unshared);
check("sleep_millisecs", sleep_millisecs);
check("pages_to_scan", pages_to_scan);
}
static void group_check(int run, int pages_shared, int pages_sharing,
int pages_volatile, int pages_unshared,
int sleep_millisecs, int pages_to_scan)
{
if (run != 1) {
tst_res(TFAIL, "group_check run is not 1, %d.", run);
} else {
/* wait for ksm daemon to scan all mergeable pages. */
wait_ksmd_full_scan();
}
final_group_check(run, pages_shared, pages_sharing,
pages_volatile, pages_unshared,
sleep_millisecs, pages_to_scan);
}
static void verify(char **memory, char value, int proc,
int start, int end, int start2, int end2)
{
int i, j;
void *s = NULL;
s = SAFE_MALLOC((end - start) * (end2 - start2));
tst_res(TINFO, "child %d verifies memory content.", proc);
memset(s, value, (end - start) * (end2 - start2));
if (memcmp(memory[start], s, (end - start) * (end2 - start2))
!= 0)
for (j = start; j < end; j++)
for (i = start2; i < end2; i++)
if (memory[j][i] != value)
tst_res(TFAIL, "child %d has %c at "
"%d,%d,%d.",
proc, memory[j][i], proc,
j, i);
free(s);
}
void check_hugepage(void)
{
if (access(PATH_HUGEPAGES, F_OK))
tst_brk(TCONF, "Huge page is not supported.");
}
void write_memcg(void)
{
SAFE_FILE_PRINTF(MEMCG_LIMIT, "%ld", TESTMEM);
SAFE_FILE_PRINTF(MEMCG_PATH_NEW "/tasks", "%d", getpid());
}
struct ksm_merge_data {
char data;
unsigned int mergeable_size;
};
static void ksm_child_memset(int child_num, int size, int total_unit,
struct ksm_merge_data ksm_merge_data, char **memory)
{
int i = 0, j;
int unit = size / total_unit;
tst_res(TINFO, "child %d continues...", child_num);
if (ksm_merge_data.mergeable_size == size * MB) {
tst_res(TINFO, "child %d allocates %d MB filled with '%c'",
child_num, size, ksm_merge_data.data);
} else {
tst_res(TINFO, "child %d allocates %d MB filled with '%c'"
" except one page with 'e'",
child_num, size, ksm_merge_data.data);
}
for (j = 0; j < total_unit; j++) {
for (i = 0; (unsigned int)i < unit * MB; i++)
memory[j][i] = ksm_merge_data.data;
}
/* if it contains unshared page, then set 'e' char
* at the end of the last page
*/
if (ksm_merge_data.mergeable_size < size * MB)
memory[j-1][i-1] = 'e';
}
static void create_ksm_child(int child_num, int size, int unit,
struct ksm_merge_data *ksm_merge_data)
{
int j, total_unit;
char **memory;
/* The total units in all */
total_unit = size / unit;
/* Apply for the space for memory */
memory = SAFE_MALLOC(total_unit * sizeof(char *));
for (j = 0; j < total_unit; j++) {
memory[j] = SAFE_MMAP(NULL, unit * MB, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
#ifdef HAVE_MADV_MERGEABLE
if (madvise(memory[j], unit * MB, MADV_MERGEABLE) == -1)
tst_brk(TBROK|TERRNO, "madvise");
#endif
}
tst_res(TINFO, "child %d stops.", child_num);
if (raise(SIGSTOP) == -1)
tst_brk(TBROK|TERRNO, "kill");
fflush(stdout);
for (j = 0; j < 4; j++) {
ksm_child_memset(child_num, size, total_unit,
ksm_merge_data[j], memory);
fflush(stdout);
tst_res(TINFO, "child %d stops.", child_num);
if (raise(SIGSTOP) == -1)
tst_brk(TBROK|TERRNO, "kill");
if (ksm_merge_data[j].mergeable_size < size * MB) {
verify(memory, 'e', child_num, total_unit - 1,
total_unit, unit * MB - 1, unit * MB);
verify(memory, ksm_merge_data[j].data, child_num,
0, total_unit, 0, unit * MB - 1);
} else {
verify(memory, ksm_merge_data[j].data, child_num,
0, total_unit, 0, unit * MB);
}
}
tst_res(TINFO, "child %d finished.", child_num);
}
static void stop_ksm_children(int *child, int num)
{
int k, status;
tst_res(TINFO, "wait for all children to stop.");
for (k = 0; k < num; k++) {
SAFE_WAITPID(child[k], &status, WUNTRACED);
if (!WIFSTOPPED(status))
tst_brk(TBROK, "child %d was not stopped", k);
}
}
static void resume_ksm_children(int *child, int num)
{
int k;
tst_res(TINFO, "resume all children.");
for (k = 0; k < num; k++)
SAFE_KILL(child[k], SIGCONT);
fflush(stdout);
}
void create_same_memory(int size, int num, int unit)
{
int i, j, status, *child;
unsigned long ps, pages;
struct ksm_merge_data **ksm_data;
struct ksm_merge_data ksm_data0[] = {
{'c', size*MB}, {'c', size*MB}, {'d', size*MB}, {'d', size*MB},
};
struct ksm_merge_data ksm_data1[] = {
{'a', size*MB}, {'b', size*MB}, {'d', size*MB}, {'d', size*MB-1},
};
struct ksm_merge_data ksm_data2[] = {
{'a', size*MB}, {'a', size*MB}, {'d', size*MB}, {'d', size*MB},
};
ps = sysconf(_SC_PAGE_SIZE);
pages = MB / ps;
ksm_data = malloc((num - 3) * sizeof(struct ksm_merge_data *));
/* Since from third child, the data is same with the first child's */
for (i = 0; i < num - 3; i++) {
ksm_data[i] = malloc(4 * sizeof(struct ksm_merge_data));
for (j = 0; j < 4; j++) {
ksm_data[i][j].data = ksm_data0[j].data;
ksm_data[i][j].mergeable_size =
ksm_data0[j].mergeable_size;
}
}
child = SAFE_MALLOC(num * sizeof(int));
for (i = 0; i < num; i++) {
fflush(stdout);
switch (child[i] = SAFE_FORK()) {
case 0:
if (i == 0) {
create_ksm_child(i, size, unit, ksm_data0);
exit(0);
} else if (i == 1) {
create_ksm_child(i, size, unit, ksm_data1);
exit(0);
} else if (i == 2) {
create_ksm_child(i, size, unit, ksm_data2);
exit(0);
} else {
create_ksm_child(i, size, unit, ksm_data[i-3]);
exit(0);
}
}
}
stop_ksm_children(child, num);
tst_res(TINFO, "KSM merging...");
if (access(PATH_KSM "max_page_sharing", F_OK) == 0)
SAFE_FILE_PRINTF(PATH_KSM "max_page_sharing", "%ld", size * pages * num);
SAFE_FILE_PRINTF(PATH_KSM "run", "1");
SAFE_FILE_PRINTF(PATH_KSM "pages_to_scan", "%ld", size * pages * num);
SAFE_FILE_PRINTF(PATH_KSM "sleep_millisecs", "0");
resume_ksm_children(child, num);
stop_ksm_children(child, num);
group_check(1, 2, size * num * pages - 2, 0, 0, 0, size * pages * num);
resume_ksm_children(child, num);
stop_ksm_children(child, num);
group_check(1, 3, size * num * pages - 3, 0, 0, 0, size * pages * num);
resume_ksm_children(child, num);
stop_ksm_children(child, num);
group_check(1, 1, size * num * pages - 1, 0, 0, 0, size * pages * num);
resume_ksm_children(child, num);
stop_ksm_children(child, num);
group_check(1, 1, size * num * pages - 2, 0, 1, 0, size * pages * num);
tst_res(TINFO, "KSM unmerging...");
SAFE_FILE_PRINTF(PATH_KSM "run", "2");
resume_ksm_children(child, num);
final_group_check(2, 0, 0, 0, 0, 0, size * pages * num);
tst_res(TINFO, "stop KSM.");
SAFE_FILE_PRINTF(PATH_KSM "run", "0");
final_group_check(0, 0, 0, 0, 0, 0, size * pages * num);
while (waitpid(-1, &status, 0) > 0)
if (WEXITSTATUS(status) != 0)
tst_res(TFAIL, "child exit status is %d",
WEXITSTATUS(status));
}
void test_ksm_merge_across_nodes(unsigned long nr_pages)
{
char **memory;
int i, ret;
int num_nodes, *nodes;
unsigned long length;
unsigned long pagesize;
#ifdef HAVE_NUMA_V2
unsigned long nmask[MAXNODES / BITS_PER_LONG] = { 0 };
#endif
ret = get_allowed_nodes_arr(NH_MEMS|NH_CPUS, &num_nodes, &nodes);
if (ret != 0)
tst_brk(TBROK|TERRNO, "get_allowed_nodes_arr");
if (num_nodes < 2) {
tst_res(TINFO, "need NUMA system support");
free(nodes);
return;
}
pagesize = sysconf(_SC_PAGE_SIZE);
length = nr_pages * pagesize;
memory = SAFE_MALLOC(num_nodes * sizeof(char *));
for (i = 0; i < num_nodes; i++) {
memory[i] = SAFE_MMAP(NULL, length, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
#ifdef HAVE_MADV_MERGEABLE
if (madvise(memory[i], length, MADV_MERGEABLE) == -1)
tst_brk(TBROK|TERRNO, "madvise");
#endif
#ifdef HAVE_NUMA_V2
clean_node(nmask);
set_node(nmask, nodes[i]);
/*
* Use mbind() to make sure each node contains
* length size memory.
*/
ret = mbind(memory[i], length, MPOL_BIND, nmask, MAXNODES, 0);
if (ret == -1)
tst_brk(TBROK|TERRNO, "mbind");
#endif
memset(memory[i], 10, length);
}
SAFE_FILE_PRINTF(PATH_KSM "sleep_millisecs", "0");
SAFE_FILE_PRINTF(PATH_KSM "pages_to_scan", "%ld",
nr_pages * num_nodes);
if (access(PATH_KSM "max_page_sharing", F_OK) == 0)
SAFE_FILE_PRINTF(PATH_KSM "max_page_sharing",
"%ld", nr_pages * num_nodes);
/*
* merge_across_nodes setting can be changed only when there
* are no ksm shared pages in system, so set run 2 to unmerge
* pages first, then to 1 after changing merge_across_nodes,
* to remerge according to the new setting.
*/
SAFE_FILE_PRINTF(PATH_KSM "run", "2");
tst_res(TINFO, "Start to test KSM with merge_across_nodes=1");
SAFE_FILE_PRINTF(PATH_KSM "merge_across_nodes", "1");
SAFE_FILE_PRINTF(PATH_KSM "run", "1");
group_check(1, 1, nr_pages * num_nodes - 1, 0, 0, 0,
nr_pages * num_nodes);
SAFE_FILE_PRINTF(PATH_KSM "run", "2");
tst_res(TINFO, "Start to test KSM with merge_across_nodes=0");
SAFE_FILE_PRINTF(PATH_KSM "merge_across_nodes", "0");
SAFE_FILE_PRINTF(PATH_KSM "run", "1");
group_check(1, num_nodes, nr_pages * num_nodes - num_nodes,
0, 0, 0, nr_pages * num_nodes);
SAFE_FILE_PRINTF(PATH_KSM "run", "2");
}
/* THP */
/* cpuset/memcg */
static void gather_node_cpus(char *cpus, long nd)
{
int ncpus = 0;
int i;
long online;
char buf[BUFSIZ];
char path[BUFSIZ], path1[BUFSIZ];
while (path_exist(PATH_SYS_SYSTEM "/cpu/cpu%d", ncpus))
ncpus++;
for (i = 0; i < ncpus; i++) {
snprintf(path, BUFSIZ,
PATH_SYS_SYSTEM "/node/node%ld/cpu%d", nd, i);
if (path_exist(path)) {
snprintf(path1, BUFSIZ, "%s/online", path);
/*
* if there is no online knob, then the cpu cannot
* be taken offline
*/
if (path_exist(path1)) {
SAFE_FILE_SCANF(path1, "%ld", &online);
if (online == 0)
continue;
}
sprintf(buf, "%d,", i);
strcat(cpus, buf);
}
}
/* Remove the trailing comma. */
cpus[strlen(cpus) - 1] = '\0';
}
void read_cpuset_files(char *prefix, char *filename, char *retbuf)
{
int fd;
char path[BUFSIZ];
/*
* try either '/dev/cpuset/XXXX' or '/dev/cpuset/cpuset.XXXX'
* please see Documentation/cgroups/cpusets.txt from kernel src
* for details
*/
snprintf(path, BUFSIZ, "%s/%s", prefix, filename);
fd = open(path, O_RDONLY);
if (fd == -1) {
if (errno == ENOENT) {
snprintf(path, BUFSIZ, "%s/cpuset.%s",
prefix, filename);
fd = SAFE_OPEN(path, O_RDONLY);
} else
tst_brk(TBROK | TERRNO, "open %s", path);
}
if (read(fd, retbuf, BUFSIZ) < 0)
tst_brk(TBROK | TERRNO, "read %s", path);
close(fd);
}
void write_cpuset_files(char *prefix, char *filename, char *buf)
{
int fd;
char path[BUFSIZ];
/*
* try either '/dev/cpuset/XXXX' or '/dev/cpuset/cpuset.XXXX'
* please see Documentation/cgroups/cpusets.txt from kernel src
* for details
*/
snprintf(path, BUFSIZ, "%s/%s", prefix, filename);
fd = open(path, O_WRONLY);
if (fd == -1) {
if (errno == ENOENT) {
snprintf(path, BUFSIZ, "%s/cpuset.%s",
prefix, filename);
fd = SAFE_OPEN(path, O_WRONLY);
} else
tst_brk(TBROK | TERRNO, "open %s", path);
}
SAFE_WRITE(1, fd, buf, strlen(buf));
close(fd);
}
void write_cpusets(long nd)
{
char buf[BUFSIZ];
char cpus[BUFSIZ] = "";
snprintf(buf, BUFSIZ, "%ld", nd);
write_cpuset_files(CPATH_NEW, "mems", buf);
gather_node_cpus(cpus, nd);
/*
* If the 'nd' node doesn't contain any CPUs,
* the first ID of CPU '0' will be used as
* the value of cpuset.cpus.
*/
if (strlen(cpus) != 0) {
write_cpuset_files(CPATH_NEW, "cpus", cpus);
} else {
tst_res(TINFO, "No CPUs in the node%ld; "
"using only CPU0", nd);
write_cpuset_files(CPATH_NEW, "cpus", "0");
}
SAFE_FILE_PRINTF(CPATH_NEW "/tasks", "%d", getpid());
}
void umount_mem(char *path, char *path_new)
{
FILE *fp;
int fd;
char s_new[BUFSIZ], s[BUFSIZ], value[BUFSIZ];
/* Move all processes in task to its parent node. */
sprintf(s, "%s/tasks", path);
fd = open(s, O_WRONLY);
if (fd == -1)
tst_res(TWARN | TERRNO, "open %s", s);
snprintf(s_new, BUFSIZ, "%s/tasks", path_new);
fp = fopen(s_new, "r");
if (fp == NULL)
tst_res(TWARN | TERRNO, "fopen %s", s_new);
if ((fd != -1) && (fp != NULL)) {
while (fgets(value, BUFSIZ, fp) != NULL)
if (write(fd, value, strlen(value) - 1)
!= (ssize_t)strlen(value) - 1)
tst_res(TWARN | TERRNO, "write %s", s);
}
if (fd != -1)
close(fd);
if (fp != NULL)
fclose(fp);
if (rmdir(path_new) == -1)
tst_res(TWARN | TERRNO, "rmdir %s", path_new);
if (umount(path) == -1)
tst_res(TWARN | TERRNO, "umount %s", path);
if (rmdir(path) == -1)
tst_res(TWARN | TERRNO, "rmdir %s", path);
}
void mount_mem(char *name, char *fs, char *options, char *path, char *path_new)
{
SAFE_MKDIR(path, 0777);
if (mount(name, path, fs, 0, options) == -1) {
if (errno == ENODEV) {
if (rmdir(path) == -1)
tst_res(TWARN | TERRNO, "rmdir %s failed",
path);
tst_brk(TCONF,
"file system %s is not configured in kernel",
fs);
}
tst_brk(TBROK | TERRNO, "mount %s", path);
}
SAFE_MKDIR(path_new, 0777);
}
/* shared */
/* Warning: *DO NOT* use this function in child */
unsigned int get_a_numa_node(void)
{
unsigned int nd1, nd2;
int ret;
ret = get_allowed_nodes(0, 2, &nd1, &nd2);
switch (ret) {
case 0:
break;
case -3:
tst_brk(TCONF, "requires a NUMA system.");
default:
tst_brk(TBROK | TERRNO, "1st get_allowed_nodes");
}
ret = get_allowed_nodes(NH_MEMS | NH_CPUS, 1, &nd1);
switch (ret) {
case 0:
tst_res(TINFO, "get node%u.", nd1);
return nd1;
case -3:
tst_brk(TCONF, "requires a NUMA system that has "
"at least one node with both memory and CPU "
"available.");
default:
tst_brk(TBROK | TERRNO, "2nd get_allowed_nodes");
}
/* not reached */
abort();
}
int path_exist(const char *path, ...)
{
va_list ap;
char pathbuf[PATH_MAX];
va_start(ap, path);
vsnprintf(pathbuf, sizeof(pathbuf), path, ap);
va_end(ap);
return access(pathbuf, F_OK) == 0;
}
void set_sys_tune(char *sys_file, long tune, int check)
{
long val;
char path[BUFSIZ];
tst_res(TINFO, "set %s to %ld", sys_file, tune);
snprintf(path, BUFSIZ, PATH_SYSVM "%s", sys_file);
SAFE_FILE_PRINTF(path, "%ld", tune);
if (check) {
val = get_sys_tune(sys_file);
if (val != tune)
tst_brk(TBROK, "%s = %ld, but expect %ld",
sys_file, val, tune);
}
}
long get_sys_tune(char *sys_file)
{
char path[BUFSIZ];
long tune;
snprintf(path, BUFSIZ, PATH_SYSVM "%s", sys_file);
SAFE_FILE_SCANF(path, "%ld", &tune);
return tune;
}
void update_shm_size(size_t * shm_size)
{
size_t shmmax;
SAFE_FILE_SCANF(PATH_SHMMAX, "%zu", &shmmax);
if (*shm_size > shmmax) {
tst_res(TINFO, "Set shm_size to shmmax: %zu", shmmax);
*shm_size = shmmax;
}
}
int range_is_mapped(unsigned long low, unsigned long high)
{
FILE *fp;
fp = fopen("/proc/self/maps", "r");
if (fp == NULL)
tst_brk(TBROK | TERRNO, "Failed to open /proc/self/maps.");
while (!feof(fp)) {
unsigned long start, end;
int ret;
ret = fscanf(fp, "%lx-%lx %*[^\n]\n", &start, &end);
if (ret != 2) {
fclose(fp);
tst_brk(TBROK | TERRNO, "Couldn't parse /proc/self/maps line.");
}
if ((start >= low) && (start < high)) {
fclose(fp);
return 1;
}
if ((end >= low) && (end < high)) {
fclose(fp);
return 1;
}
}
fclose(fp);
return 0;
}