//===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
//
// Software pipelining (SWP) is an instruction scheduling technique for loops
// that overlap loop iterations and explioits ILP via a compiler transformation.
//
// Swing Modulo Scheduling is an implementation of software pipelining
// that generates schedules that are near optimal in terms of initiation
// interval, register requirements, and stage count. See the papers:
//
// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
// Conference on Parallel Architectures and Compilation Techiniques.
//
// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
// Transactions on Computers, Vol. 50, No. 3, 2001.
//
// "An Implementation of Swing Modulo Scheduling With Extensions for
// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
// Urbana-Chambpain, 2005.
//
//
// The SMS algorithm consists of three main steps after computing the minimal
// initiation interval (MII).
// 1) Analyze the dependence graph and compute information about each
// instruction in the graph.
// 2) Order the nodes (instructions) by priority based upon the heuristics
// described in the algorithm.
// 3) Attempt to schedule the nodes in the specified order using the MII.
//
// This SMS implementation is a target-independent back-end pass. When enabled,
// the pass runs just prior to the register allocation pass, while the machine
// IR is in SSA form. If software pipelining is successful, then the original
// loop is replaced by the optimized loop. The optimized loop contains one or
// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
// the instructions cannot be scheduled in a given MII, we increase the MII by
// one and try again.
//
// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
// represent loop carried dependences in the DAG as order edges to the Phi
// nodes. We also perform several passes over the DAG to eliminate unnecessary
// edges that inhibit the ability to pipeline. The implementation uses the
// DFAPacketizer class to compute the minimum initiation interval and the check
// where an instruction may be inserted in the pipelined schedule.
//
// In order for the SMS pass to work, several target specific hooks need to be
// implemented to get information about the loop structure and to rewrite
// instructions.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PriorityQueue.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <climits>
#include <deque>
#include <map>
using namespace llvm;
#define DEBUG_TYPE "pipeliner"
STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
STATISTIC(NumPipelined, "Number of loops software pipelined");
/// A command line option to turn software pipelining on or off.
cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
cl::ZeroOrMore, cl::desc("Enable Software Pipelining"));
/// A command line option to enable SWP at -Os.
static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
cl::desc("Enable SWP at Os."), cl::Hidden,
cl::init(false));
/// A command line argument to limit minimum initial interval for pipelining.
static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
cl::desc("Size limit for the the MII."),
cl::Hidden, cl::init(27));
/// A command line argument to limit the number of stages in the pipeline.
static cl::opt<int>
SwpMaxStages("pipeliner-max-stages",
cl::desc("Maximum stages allowed in the generated scheduled."),
cl::Hidden, cl::init(3));
/// A command line option to disable the pruning of chain dependences due to
/// an unrelated Phi.
static cl::opt<bool>
SwpPruneDeps("pipeliner-prune-deps",
cl::desc("Prune dependences between unrelated Phi nodes."),
cl::Hidden, cl::init(true));
/// A command line option to disable the pruning of loop carried order
/// dependences.
static cl::opt<bool>
SwpPruneLoopCarried("pipeliner-prune-loop-carried",
cl::desc("Prune loop carried order dependences."),
cl::Hidden, cl::init(true));
#ifndef NDEBUG
static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
#endif
static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
cl::ReallyHidden, cl::init(false),
cl::ZeroOrMore, cl::desc("Ignore RecMII"));
namespace {
class NodeSet;
class SMSchedule;
class SwingSchedulerDAG;
/// The main class in the implementation of the target independent
/// software pipeliner pass.
class MachinePipeliner : public MachineFunctionPass {
public:
MachineFunction *MF = nullptr;
const MachineLoopInfo *MLI = nullptr;
const MachineDominatorTree *MDT = nullptr;
const InstrItineraryData *InstrItins;
const TargetInstrInfo *TII = nullptr;
RegisterClassInfo RegClassInfo;
#ifndef NDEBUG
static int NumTries;
#endif
/// Cache the target analysis information about the loop.
struct LoopInfo {
MachineBasicBlock *TBB = nullptr;
MachineBasicBlock *FBB = nullptr;
SmallVector<MachineOperand, 4> BrCond;
MachineInstr *LoopInductionVar = nullptr;
MachineInstr *LoopCompare = nullptr;
};
LoopInfo LI;
static char ID;
MachinePipeliner() : MachineFunctionPass(ID) {
initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
bool canPipelineLoop(MachineLoop &L);
bool scheduleLoop(MachineLoop &L);
bool swingModuloScheduler(MachineLoop &L);
};
/// This class builds the dependence graph for the instructions in a loop,
/// and attempts to schedule the instructions using the SMS algorithm.
class SwingSchedulerDAG : public ScheduleDAGInstrs {
MachinePipeliner &Pass;
/// The minimum initiation interval between iterations for this schedule.
unsigned MII;
/// Set to true if a valid pipelined schedule is found for the loop.
bool Scheduled;
MachineLoop &Loop;
LiveIntervals &LIS;
const RegisterClassInfo &RegClassInfo;
/// A toplogical ordering of the SUnits, which is needed for changing
/// dependences and iterating over the SUnits.
ScheduleDAGTopologicalSort Topo;
struct NodeInfo {
int ASAP;
int ALAP;
NodeInfo() : ASAP(0), ALAP(0) {}
};
/// Computed properties for each node in the graph.
std::vector<NodeInfo> ScheduleInfo;
enum OrderKind { BottomUp = 0, TopDown = 1 };
/// Computed node ordering for scheduling.
SetVector<SUnit *> NodeOrder;
typedef SmallVector<NodeSet, 8> NodeSetType;
typedef DenseMap<unsigned, unsigned> ValueMapTy;
typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
/// Instructions to change when emitting the final schedule.
DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
/// We may create a new instruction, so remember it because it
/// must be deleted when the pass is finished.
SmallPtrSet<MachineInstr *, 4> NewMIs;
/// Helper class to implement Johnson's circuit finding algorithm.
class Circuits {
std::vector<SUnit> &SUnits;
SetVector<SUnit *> Stack;
BitVector Blocked;
SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
SmallVector<SmallVector<int, 4>, 16> AdjK;
unsigned NumPaths;
static unsigned MaxPaths;
public:
Circuits(std::vector<SUnit> &SUs)
: SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
AdjK(SUs.size()) {}
/// Reset the data structures used in the circuit algorithm.
void reset() {
Stack.clear();
Blocked.reset();
B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
NumPaths = 0;
}
void createAdjacencyStructure(SwingSchedulerDAG *DAG);
bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
void unblock(int U);
};
public:
SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
const RegisterClassInfo &rci)
: ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
Topo(SUnits, &ExitSU) {}
void schedule();
void finishBlock();
/// Return true if the loop kernel has been scheduled.
bool hasNewSchedule() { return Scheduled; }
/// Return the earliest time an instruction may be scheduled.
int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
/// Return the latest time an instruction my be scheduled.
int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
/// The mobility function, which the the number of slots in which
/// an instruction may be scheduled.
int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
/// The depth, in the dependence graph, for a node.
int getDepth(SUnit *Node) { return Node->getDepth(); }
/// The height, in the dependence graph, for a node.
int getHeight(SUnit *Node) { return Node->getHeight(); }
/// Return true if the dependence is a back-edge in the data dependence graph.
/// Since the DAG doesn't contain cycles, we represent a cycle in the graph
/// using an anti dependence from a Phi to an instruction.
bool isBackedge(SUnit *Source, const SDep &Dep) {
if (Dep.getKind() != SDep::Anti)
return false;
return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
}
/// Return true if the dependence is an order dependence between non-Phis.
static bool isOrder(SUnit *Source, const SDep &Dep) {
if (Dep.getKind() != SDep::Order)
return false;
return (!Source->getInstr()->isPHI() &&
!Dep.getSUnit()->getInstr()->isPHI());
}
bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
/// The latency of the dependence.
unsigned getLatency(SUnit *Source, const SDep &Dep) {
// Anti dependences represent recurrences, so use the latency of the
// instruction on the back-edge.
if (Dep.getKind() == SDep::Anti) {
if (Source->getInstr()->isPHI())
return Dep.getSUnit()->Latency;
if (Dep.getSUnit()->getInstr()->isPHI())
return Source->Latency;
return Dep.getLatency();
}
return Dep.getLatency();
}
/// The distance function, which indicates that operation V of iteration I
/// depends on operations U of iteration I-distance.
unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
// Instructions that feed a Phi have a distance of 1. Computing larger
// values for arrays requires data dependence information.
if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
return 1;
return 0;
}
/// Set the Minimum Initiation Interval for this schedule attempt.
void setMII(unsigned mii) { MII = mii; }
MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
bool UpdateDAG = false);
/// Return the new base register that was stored away for the changed
/// instruction.
unsigned getInstrBaseReg(SUnit *SU) {
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
InstrChanges.find(SU);
if (It != InstrChanges.end())
return It->second.first;
return 0;
}
private:
void addLoopCarriedDependences(AliasAnalysis *AA);
void updatePhiDependences();
void changeDependences();
unsigned calculateResMII();
unsigned calculateRecMII(NodeSetType &RecNodeSets);
void findCircuits(NodeSetType &NodeSets);
void fuseRecs(NodeSetType &NodeSets);
void removeDuplicateNodes(NodeSetType &NodeSets);
void computeNodeFunctions(NodeSetType &NodeSets);
void registerPressureFilter(NodeSetType &NodeSets);
void colocateNodeSets(NodeSetType &NodeSets);
void checkNodeSets(NodeSetType &NodeSets);
void groupRemainingNodes(NodeSetType &NodeSets);
void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
SetVector<SUnit *> &NodesAdded);
void computeNodeOrder(NodeSetType &NodeSets);
bool schedulePipeline(SMSchedule &Schedule);
void generatePipelinedLoop(SMSchedule &Schedule);
void generateProlog(SMSchedule &Schedule, unsigned LastStage,
MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
MBBVectorTy &PrologBBs);
void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
SMSchedule &Schedule, ValueMapTy *VRMap,
InstrMapTy &InstrMap, unsigned LastStageNum,
unsigned CurStageNum, bool IsLast);
void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
SMSchedule &Schedule, ValueMapTy *VRMap,
InstrMapTy &InstrMap, unsigned LastStageNum,
unsigned CurStageNum, bool IsLast);
void removeDeadInstructions(MachineBasicBlock *KernelBB,
MBBVectorTy &EpilogBBs);
void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
SMSchedule &Schedule);
void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
ValueMapTy *VRMap);
bool computeDelta(MachineInstr &MI, unsigned &Delta);
void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
unsigned Num);
MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
unsigned InstStageNum);
MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
unsigned InstStageNum,
SMSchedule &Schedule);
void updateInstruction(MachineInstr *NewMI, bool LastDef,
unsigned CurStageNum, unsigned InstStageNum,
SMSchedule &Schedule, ValueMapTy *VRMap);
MachineInstr *findDefInLoop(unsigned Reg);
unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
unsigned LoopStage, ValueMapTy *VRMap,
MachineBasicBlock *BB);
void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
SMSchedule &Schedule, ValueMapTy *VRMap,
InstrMapTy &InstrMap);
void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
InstrMapTy &InstrMap, unsigned CurStageNum,
unsigned PhiNum, MachineInstr *Phi,
unsigned OldReg, unsigned NewReg,
unsigned PrevReg = 0);
bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
unsigned &OffsetPos, unsigned &NewBase,
int64_t &NewOffset);
};
/// A NodeSet contains a set of SUnit DAG nodes with additional information
/// that assigns a priority to the set.
class NodeSet {
SetVector<SUnit *> Nodes;
bool HasRecurrence;
unsigned RecMII = 0;
int MaxMOV = 0;
int MaxDepth = 0;
unsigned Colocate = 0;
SUnit *ExceedPressure = nullptr;
public:
typedef SetVector<SUnit *>::const_iterator iterator;
NodeSet() : Nodes(), HasRecurrence(false) {}
NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
bool insert(SUnit *SU) { return Nodes.insert(SU); }
void insert(iterator S, iterator E) { Nodes.insert(S, E); }
template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
return Nodes.remove_if(P);
}
unsigned count(SUnit *SU) const { return Nodes.count(SU); }
bool hasRecurrence() { return HasRecurrence; };
unsigned size() const { return Nodes.size(); }
bool empty() const { return Nodes.empty(); }
SUnit *getNode(unsigned i) const { return Nodes[i]; };
void setRecMII(unsigned mii) { RecMII = mii; };
void setColocate(unsigned c) { Colocate = c; };
void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
int getRecMII() { return RecMII; }
/// Summarize node functions for the entire node set.
void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
for (SUnit *SU : *this) {
MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
}
}
void clear() {
Nodes.clear();
RecMII = 0;
HasRecurrence = false;
MaxMOV = 0;
MaxDepth = 0;
Colocate = 0;
ExceedPressure = nullptr;
}
operator SetVector<SUnit *> &() { return Nodes; }
/// Sort the node sets by importance. First, rank them by recurrence MII,
/// then by mobility (least mobile done first), and finally by depth.
/// Each node set may contain a colocate value which is used as the first
/// tie breaker, if it's set.
bool operator>(const NodeSet &RHS) const {
if (RecMII == RHS.RecMII) {
if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
return Colocate < RHS.Colocate;
if (MaxMOV == RHS.MaxMOV)
return MaxDepth > RHS.MaxDepth;
return MaxMOV < RHS.MaxMOV;
}
return RecMII > RHS.RecMII;
}
bool operator==(const NodeSet &RHS) const {
return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
MaxDepth == RHS.MaxDepth;
}
bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
iterator begin() { return Nodes.begin(); }
iterator end() { return Nodes.end(); }
void print(raw_ostream &os) const {
os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
<< " depth " << MaxDepth << " col " << Colocate << "\n";
for (const auto &I : Nodes)
os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
os << "\n";
}
void dump() const { print(dbgs()); }
};
/// This class repesents the scheduled code. The main data structure is a
/// map from scheduled cycle to instructions. During scheduling, the
/// data structure explicitly represents all stages/iterations. When
/// the algorithm finshes, the schedule is collapsed into a single stage,
/// which represents instructions from different loop iterations.
///
/// The SMS algorithm allows negative values for cycles, so the first cycle
/// in the schedule is the smallest cycle value.
class SMSchedule {
private:
/// Map from execution cycle to instructions.
DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
/// Map from instruction to execution cycle.
std::map<SUnit *, int> InstrToCycle;
/// Map for each register and the max difference between its uses and def.
/// The first element in the pair is the max difference in stages. The
/// second is true if the register defines a Phi value and loop value is
/// scheduled before the Phi.
std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
/// Keep track of the first cycle value in the schedule. It starts
/// as zero, but the algorithm allows negative values.
int FirstCycle;
/// Keep track of the last cycle value in the schedule.
int LastCycle;
/// The initiation interval (II) for the schedule.
int InitiationInterval;
/// Target machine information.
const TargetSubtargetInfo &ST;
/// Virtual register information.
MachineRegisterInfo &MRI;
DFAPacketizer *Resources;
public:
SMSchedule(MachineFunction *mf)
: ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
FirstCycle = 0;
LastCycle = 0;
InitiationInterval = 0;
}
~SMSchedule() {
ScheduledInstrs.clear();
InstrToCycle.clear();
RegToStageDiff.clear();
delete Resources;
}
void reset() {
ScheduledInstrs.clear();
InstrToCycle.clear();
RegToStageDiff.clear();
FirstCycle = 0;
LastCycle = 0;
InitiationInterval = 0;
}
/// Set the initiation interval for this schedule.
void setInitiationInterval(int ii) { InitiationInterval = ii; }
/// Return the first cycle in the completed schedule. This
/// can be a negative value.
int getFirstCycle() const { return FirstCycle; }
/// Return the last cycle in the finalized schedule.
int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
/// Return the cycle of the earliest scheduled instruction in the dependence
/// chain.
int earliestCycleInChain(const SDep &Dep);
/// Return the cycle of the latest scheduled instruction in the dependence
/// chain.
int latestCycleInChain(const SDep &Dep);
void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
/// Iterators for the cycle to instruction map.
typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
const_sched_iterator;
/// Return true if the instruction is scheduled at the specified stage.
bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
return (stageScheduled(SU) == (int)StageNum);
}
/// Return the stage for a scheduled instruction. Return -1 if
/// the instruction has not been scheduled.
int stageScheduled(SUnit *SU) const {
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
if (it == InstrToCycle.end())
return -1;
return (it->second - FirstCycle) / InitiationInterval;
}
/// Return the cycle for a scheduled instruction. This function normalizes
/// the first cycle to be 0.
unsigned cycleScheduled(SUnit *SU) const {
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
return (it->second - FirstCycle) % InitiationInterval;
}
/// Return the maximum stage count needed for this schedule.
unsigned getMaxStageCount() {
return (LastCycle - FirstCycle) / InitiationInterval;
}
/// Return the max. number of stages/iterations that can occur between a
/// register definition and its uses.
unsigned getStagesForReg(int Reg, unsigned CurStage) {
std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
return 1;
return Stages.first;
}
/// The number of stages for a Phi is a little different than other
/// instructions. The minimum value computed in RegToStageDiff is 1
/// because we assume the Phi is needed for at least 1 iteration.
/// This is not the case if the loop value is scheduled prior to the
/// Phi in the same stage. This function returns the number of stages
/// or iterations needed between the Phi definition and any uses.
unsigned getStagesForPhi(int Reg) {
std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
if (Stages.second)
return Stages.first;
return Stages.first - 1;
}
/// Return the instructions that are scheduled at the specified cycle.
std::deque<SUnit *> &getInstructions(int cycle) {
return ScheduledInstrs[cycle];
}
bool isValidSchedule(SwingSchedulerDAG *SSD);
void finalizeSchedule(SwingSchedulerDAG *SSD);
bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
std::deque<SUnit *> &Insts);
bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
MachineOperand &MO);
void print(raw_ostream &os) const;
void dump() const;
};
} // end anonymous namespace
unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
char MachinePipeliner::ID = 0;
#ifndef NDEBUG
int MachinePipeliner::NumTries = 0;
#endif
char &llvm::MachinePipelinerID = MachinePipeliner::ID;
INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
"Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
"Modulo Software Pipelining", false, false)
/// The "main" function for implementing Swing Modulo Scheduling.
bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
if (skipFunction(*mf.getFunction()))
return false;
if (!EnableSWP)
return false;
if (mf.getFunction()->getAttributes().hasAttribute(
AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
!EnableSWPOptSize.getPosition())
return false;
MF = &mf;
MLI = &getAnalysis<MachineLoopInfo>();
MDT = &getAnalysis<MachineDominatorTree>();
TII = MF->getSubtarget().getInstrInfo();
RegClassInfo.runOnMachineFunction(*MF);
for (auto &L : *MLI)
scheduleLoop(*L);
return false;
}
/// Attempt to perform the SMS algorithm on the specified loop. This function is
/// the main entry point for the algorithm. The function identifies candidate
/// loops, calculates the minimum initiation interval, and attempts to schedule
/// the loop.
bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
bool Changed = false;
for (auto &InnerLoop : L)
Changed |= scheduleLoop(*InnerLoop);
#ifndef NDEBUG
// Stop trying after reaching the limit (if any).
int Limit = SwpLoopLimit;
if (Limit >= 0) {
if (NumTries >= SwpLoopLimit)
return Changed;
NumTries++;
}
#endif
if (!canPipelineLoop(L))
return Changed;
++NumTrytoPipeline;
Changed = swingModuloScheduler(L);
return Changed;
}
/// Return true if the loop can be software pipelined. The algorithm is
/// restricted to loops with a single basic block. Make sure that the
/// branch in the loop can be analyzed.
bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
if (L.getNumBlocks() != 1)
return false;
// Check if the branch can't be understood because we can't do pipelining
// if that's the case.
LI.TBB = nullptr;
LI.FBB = nullptr;
LI.BrCond.clear();
if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
return false;
LI.LoopInductionVar = nullptr;
LI.LoopCompare = nullptr;
if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
return false;
if (!L.getLoopPreheader())
return false;
// If any of the Phis contain subregs, then we can't pipeline
// because we don't know how to maintain subreg information in the
// VMap structure.
MachineBasicBlock *MBB = L.getHeader();
for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
BBE = MBB->getFirstNonPHI();
BBI != BBE; ++BBI)
for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
if (BBI->getOperand(i).getSubReg() != 0)
return false;
return true;
}
/// The SMS algorithm consists of the following main steps:
/// 1. Computation and analysis of the dependence graph.
/// 2. Ordering of the nodes (instructions).
/// 3. Attempt to Schedule the loop.
bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
MachineBasicBlock *MBB = L.getHeader();
// The kernel should not include any terminator instructions. These
// will be added back later.
SMS.startBlock(MBB);
// Compute the number of 'real' instructions in the basic block by
// ignoring terminators.
unsigned size = MBB->size();
for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
E = MBB->instr_end();
I != E; ++I, --size)
;
SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
SMS.schedule();
SMS.exitRegion();
SMS.finishBlock();
return SMS.hasNewSchedule();
}
/// We override the schedule function in ScheduleDAGInstrs to implement the
/// scheduling part of the Swing Modulo Scheduling algorithm.
void SwingSchedulerDAG::schedule() {
AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
buildSchedGraph(AA);
addLoopCarriedDependences(AA);
updatePhiDependences();
Topo.InitDAGTopologicalSorting();
changeDependences();
DEBUG({
for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this);
});
NodeSetType NodeSets;
findCircuits(NodeSets);
// Calculate the MII.
unsigned ResMII = calculateResMII();
unsigned RecMII = calculateRecMII(NodeSets);
fuseRecs(NodeSets);
// This flag is used for testing and can cause correctness problems.
if (SwpIgnoreRecMII)
RecMII = 0;
MII = std::max(ResMII, RecMII);
DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
<< ")\n");
// Can't schedule a loop without a valid MII.
if (MII == 0)
return;
// Don't pipeline large loops.
if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
return;
computeNodeFunctions(NodeSets);
registerPressureFilter(NodeSets);
colocateNodeSets(NodeSets);
checkNodeSets(NodeSets);
DEBUG({
for (auto &I : NodeSets) {
dbgs() << " Rec NodeSet ";
I.dump();
}
});
std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
groupRemainingNodes(NodeSets);
removeDuplicateNodes(NodeSets);
DEBUG({
for (auto &I : NodeSets) {
dbgs() << " NodeSet ";
I.dump();
}
});
computeNodeOrder(NodeSets);
SMSchedule Schedule(Pass.MF);
Scheduled = schedulePipeline(Schedule);
if (!Scheduled)
return;
unsigned numStages = Schedule.getMaxStageCount();
// No need to generate pipeline if there are no overlapped iterations.
if (numStages == 0)
return;
// Check that the maximum stage count is less than user-defined limit.
if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
return;
generatePipelinedLoop(Schedule);
++NumPipelined;
}
/// Clean up after the software pipeliner runs.
void SwingSchedulerDAG::finishBlock() {
for (MachineInstr *I : NewMIs)
MF.DeleteMachineInstr(I);
NewMIs.clear();
// Call the superclass.
ScheduleDAGInstrs::finishBlock();
}
/// Return the register values for the operands of a Phi instruction.
/// This function assume the instruction is a Phi.
static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
unsigned &InitVal, unsigned &LoopVal) {
assert(Phi.isPHI() && "Expecting a Phi.");
InitVal = 0;
LoopVal = 0;
for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
if (Phi.getOperand(i + 1).getMBB() != Loop)
InitVal = Phi.getOperand(i).getReg();
else if (Phi.getOperand(i + 1).getMBB() == Loop)
LoopVal = Phi.getOperand(i).getReg();
assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
}
/// Return the Phi register value that comes from the incoming block.
static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
if (Phi.getOperand(i + 1).getMBB() != LoopBB)
return Phi.getOperand(i).getReg();
return 0;
}
/// Return the Phi register value that comes the the loop block.
static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
if (Phi.getOperand(i + 1).getMBB() == LoopBB)
return Phi.getOperand(i).getReg();
return 0;
}
/// Return true if SUb can be reached from SUa following the chain edges.
static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
SmallPtrSet<SUnit *, 8> Visited;
SmallVector<SUnit *, 8> Worklist;
Worklist.push_back(SUa);
while (!Worklist.empty()) {
const SUnit *SU = Worklist.pop_back_val();
for (auto &SI : SU->Succs) {
SUnit *SuccSU = SI.getSUnit();
if (SI.getKind() == SDep::Order) {
if (Visited.count(SuccSU))
continue;
if (SuccSU == SUb)
return true;
Worklist.push_back(SuccSU);
Visited.insert(SuccSU);
}
}
}
return false;
}
/// Return true if the instruction causes a chain between memory
/// references before and after it.
static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
return MI.isCall() || MI.hasUnmodeledSideEffects() ||
(MI.hasOrderedMemoryRef() &&
(!MI.mayLoad() || !MI.isInvariantLoad(AA)));
}
/// Return the underlying objects for the memory references of an instruction.
/// This function calls the code in ValueTracking, but first checks that the
/// instruction has a memory operand.
static void getUnderlyingObjects(MachineInstr *MI,
SmallVectorImpl<Value *> &Objs,
const DataLayout &DL) {
if (!MI->hasOneMemOperand())
return;
MachineMemOperand *MM = *MI->memoperands_begin();
if (!MM->getValue())
return;
GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
}
/// Add a chain edge between a load and store if the store can be an
/// alias of the load on a subsequent iteration, i.e., a loop carried
/// dependence. This code is very similar to the code in ScheduleDAGInstrs
/// but that code doesn't create loop carried dependences.
void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
for (auto &SU : SUnits) {
MachineInstr &MI = *SU.getInstr();
if (isDependenceBarrier(MI, AA))
PendingLoads.clear();
else if (MI.mayLoad()) {
SmallVector<Value *, 4> Objs;
getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
for (auto V : Objs) {
SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
SUs.push_back(&SU);
}
} else if (MI.mayStore()) {
SmallVector<Value *, 4> Objs;
getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
for (auto V : Objs) {
MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
PendingLoads.find(V);
if (I == PendingLoads.end())
continue;
for (auto Load : I->second) {
if (isSuccOrder(Load, &SU))
continue;
MachineInstr &LdMI = *Load->getInstr();
// First, perform the cheaper check that compares the base register.
// If they are the same and the load offset is less than the store
// offset, then mark the dependence as loop carried potentially.
unsigned BaseReg1, BaseReg2;
int64_t Offset1, Offset2;
if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
!TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
SU.addPred(SDep(Load, SDep::Barrier));
continue;
}
if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
"What happened to the chain edge?");
SU.addPred(SDep(Load, SDep::Barrier));
continue;
}
// Second, the more expensive check that uses alias analysis on the
// base registers. If they alias, and the load offset is less than
// the store offset, the mark the dependence as loop carried.
if (!AA) {
SU.addPred(SDep(Load, SDep::Barrier));
continue;
}
MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
MachineMemOperand *MMO2 = *MI.memoperands_begin();
if (!MMO1->getValue() || !MMO2->getValue()) {
SU.addPred(SDep(Load, SDep::Barrier));
continue;
}
if (MMO1->getValue() == MMO2->getValue() &&
MMO1->getOffset() <= MMO2->getOffset()) {
SU.addPred(SDep(Load, SDep::Barrier));
continue;
}
AliasResult AAResult = AA->alias(
MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
MMO1->getAAInfo()),
MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
MMO2->getAAInfo()));
if (AAResult != NoAlias)
SU.addPred(SDep(Load, SDep::Barrier));
}
}
}
}
}
/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
/// processes dependences for PHIs. This function adds true dependences
/// from a PHI to a use, and a loop carried dependence from the use to the
/// PHI. The loop carried dependence is represented as an anti dependence
/// edge. This function also removes chain dependences between unrelated
/// PHIs.
void SwingSchedulerDAG::updatePhiDependences() {
SmallVector<SDep, 4> RemoveDeps;
const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
// Iterate over each DAG node.
for (SUnit &I : SUnits) {
RemoveDeps.clear();
// Set to true if the instruction has an operand defined by a Phi.
unsigned HasPhiUse = 0;
unsigned HasPhiDef = 0;
MachineInstr *MI = I.getInstr();
// Iterate over each operand, and we process the definitions.
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end();
MOI != MOE; ++MOI) {
if (!MOI->isReg())
continue;
unsigned Reg = MOI->getReg();
if (MOI->isDef()) {
// If the register is used by a Phi, then create an anti dependence.
for (MachineRegisterInfo::use_instr_iterator
UI = MRI.use_instr_begin(Reg),
UE = MRI.use_instr_end();
UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
SUnit *SU = getSUnit(UseMI);
if (SU != 0 && UseMI->isPHI()) {
if (!MI->isPHI()) {
SDep Dep(SU, SDep::Anti, Reg);
I.addPred(Dep);
} else {
HasPhiDef = Reg;
// Add a chain edge to a dependent Phi that isn't an existing
// predecessor.
if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
I.addPred(SDep(SU, SDep::Barrier));
}
}
}
} else if (MOI->isUse()) {
// If the register is defined by a Phi, then create a true dependence.
MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
if (DefMI == 0)
continue;
SUnit *SU = getSUnit(DefMI);
if (SU != 0 && DefMI->isPHI()) {
if (!MI->isPHI()) {
SDep Dep(SU, SDep::Data, Reg);
Dep.setLatency(0);
ST.adjustSchedDependency(SU, &I, Dep);
I.addPred(Dep);
} else {
HasPhiUse = Reg;
// Add a chain edge to a dependent Phi that isn't an existing
// predecessor.
if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
I.addPred(SDep(SU, SDep::Barrier));
}
}
}
}
// Remove order dependences from an unrelated Phi.
if (!SwpPruneDeps)
continue;
for (auto &PI : I.Preds) {
MachineInstr *PMI = PI.getSUnit()->getInstr();
if (PMI->isPHI() && PI.getKind() == SDep::Order) {
if (I.getInstr()->isPHI()) {
if (PMI->getOperand(0).getReg() == HasPhiUse)
continue;
if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
continue;
}
RemoveDeps.push_back(PI);
}
}
for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
I.removePred(RemoveDeps[i]);
}
}
/// Iterate over each DAG node and see if we can change any dependences
/// in order to reduce the recurrence MII.
void SwingSchedulerDAG::changeDependences() {
// See if an instruction can use a value from the previous iteration.
// If so, we update the base and offset of the instruction and change
// the dependences.
for (SUnit &I : SUnits) {
unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
int64_t NewOffset = 0;
if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
NewOffset))
continue;
// Get the MI and SUnit for the instruction that defines the original base.
unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
if (!DefMI)
continue;
SUnit *DefSU = getSUnit(DefMI);
if (!DefSU)
continue;
// Get the MI and SUnit for the instruction that defins the new base.
MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
if (!LastMI)
continue;
SUnit *LastSU = getSUnit(LastMI);
if (!LastSU)
continue;
if (Topo.IsReachable(&I, LastSU))
continue;
// Remove the dependence. The value now depends on a prior iteration.
SmallVector<SDep, 4> Deps;
for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
++P)
if (P->getSUnit() == DefSU)
Deps.push_back(*P);
for (int i = 0, e = Deps.size(); i != e; i++) {
Topo.RemovePred(&I, Deps[i].getSUnit());
I.removePred(Deps[i]);
}
// Remove the chain dependence between the instructions.
Deps.clear();
for (auto &P : LastSU->Preds)
if (P.getSUnit() == &I && P.getKind() == SDep::Order)
Deps.push_back(P);
for (int i = 0, e = Deps.size(); i != e; i++) {
Topo.RemovePred(LastSU, Deps[i].getSUnit());
LastSU->removePred(Deps[i]);
}
// Add a dependence between the new instruction and the instruction
// that defines the new base.
SDep Dep(&I, SDep::Anti, NewBase);
LastSU->addPred(Dep);
// Remember the base and offset information so that we can update the
// instruction during code generation.
InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
}
}
namespace {
// FuncUnitSorter - Comparison operator used to sort instructions by
// the number of functional unit choices.
struct FuncUnitSorter {
const InstrItineraryData *InstrItins;
DenseMap<unsigned, unsigned> Resources;
// Compute the number of functional unit alternatives needed
// at each stage, and take the minimum value. We prioritize the
// instructions by the least number of choices first.
unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
unsigned schedClass = Inst->getDesc().getSchedClass();
unsigned min = UINT_MAX;
for (const InstrStage *IS = InstrItins->beginStage(schedClass),
*IE = InstrItins->endStage(schedClass);
IS != IE; ++IS) {
unsigned funcUnits = IS->getUnits();
unsigned numAlternatives = countPopulation(funcUnits);
if (numAlternatives < min) {
min = numAlternatives;
F = funcUnits;
}
}
return min;
}
// Compute the critical resources needed by the instruction. This
// function records the functional units needed by instructions that
// must use only one functional unit. We use this as a tie breaker
// for computing the resource MII. The instrutions that require
// the same, highly used, functional unit have high priority.
void calcCriticalResources(MachineInstr &MI) {
unsigned SchedClass = MI.getDesc().getSchedClass();
for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
*IE = InstrItins->endStage(SchedClass);
IS != IE; ++IS) {
unsigned FuncUnits = IS->getUnits();
if (countPopulation(FuncUnits) == 1)
Resources[FuncUnits]++;
}
}
FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
/// Return true if IS1 has less priority than IS2.
bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
unsigned F1 = 0, F2 = 0;
unsigned MFUs1 = minFuncUnits(IS1, F1);
unsigned MFUs2 = minFuncUnits(IS2, F2);
if (MFUs1 == 1 && MFUs2 == 1)
return Resources.lookup(F1) < Resources.lookup(F2);
return MFUs1 > MFUs2;
}
};
}
/// Calculate the resource constrained minimum initiation interval for the
/// specified loop. We use the DFA to model the resources needed for
/// each instruction, and we ignore dependences. A different DFA is created
/// for each cycle that is required. When adding a new instruction, we attempt
/// to add it to each existing DFA, until a legal space is found. If the
/// instruction cannot be reserved in an existing DFA, we create a new one.
unsigned SwingSchedulerDAG::calculateResMII() {
SmallVector<DFAPacketizer *, 8> Resources;
MachineBasicBlock *MBB = Loop.getHeader();
Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
// Sort the instructions by the number of available choices for scheduling,
// least to most. Use the number of critical resources as the tie breaker.
FuncUnitSorter FUS =
FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
E = MBB->getFirstTerminator();
I != E; ++I)
FUS.calcCriticalResources(*I);
PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
FuncUnitOrder(FUS);
for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
E = MBB->getFirstTerminator();
I != E; ++I)
FuncUnitOrder.push(&*I);
while (!FuncUnitOrder.empty()) {
MachineInstr *MI = FuncUnitOrder.top();
FuncUnitOrder.pop();
if (TII->isZeroCost(MI->getOpcode()))
continue;
// Attempt to reserve the instruction in an existing DFA. At least one
// DFA is needed for each cycle.
unsigned NumCycles = getSUnit(MI)->Latency;
unsigned ReservedCycles = 0;
SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
for (unsigned C = 0; C < NumCycles; ++C)
while (RI != RE) {
if ((*RI++)->canReserveResources(*MI)) {
++ReservedCycles;
break;
}
}
// Start reserving resources using existing DFAs.
for (unsigned C = 0; C < ReservedCycles; ++C) {
--RI;
(*RI)->reserveResources(*MI);
}
// Add new DFAs, if needed, to reserve resources.
for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
DFAPacketizer *NewResource =
TII->CreateTargetScheduleState(MF.getSubtarget());
assert(NewResource->canReserveResources(*MI) && "Reserve error.");
NewResource->reserveResources(*MI);
Resources.push_back(NewResource);
}
}
int Resmii = Resources.size();
// Delete the memory for each of the DFAs that were created earlier.
for (DFAPacketizer *RI : Resources) {
DFAPacketizer *D = RI;
delete D;
}
Resources.clear();
return Resmii;
}
/// Calculate the recurrence-constrainted minimum initiation interval.
/// Iterate over each circuit. Compute the delay(c) and distance(c)
/// for each circuit. The II needs to satisfy the inequality
/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
/// II that satistifies the inequality, and the RecMII is the maximum
/// of those values.
unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
unsigned RecMII = 0;
for (NodeSet &Nodes : NodeSets) {
if (Nodes.size() == 0)
continue;
unsigned Delay = Nodes.size() - 1;
unsigned Distance = 1;
// ii = ceil(delay / distance)
unsigned CurMII = (Delay + Distance - 1) / Distance;
Nodes.setRecMII(CurMII);
if (CurMII > RecMII)
RecMII = CurMII;
}
return RecMII;
}
/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
/// but we do this to find the circuits, and then change them back.
static void swapAntiDependences(std::vector<SUnit> &SUnits) {
SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
SUnit *SU = &SUnits[i];
for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
IP != EP; ++IP) {
if (IP->getKind() != SDep::Anti)
continue;
DepsAdded.push_back(std::make_pair(SU, *IP));
}
}
for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
E = DepsAdded.end();
I != E; ++I) {
// Remove this anti dependency and add one in the reverse direction.
SUnit *SU = I->first;
SDep &D = I->second;
SUnit *TargetSU = D.getSUnit();
unsigned Reg = D.getReg();
unsigned Lat = D.getLatency();
SU->removePred(D);
SDep Dep(SU, SDep::Anti, Reg);
Dep.setLatency(Lat);
TargetSU->addPred(Dep);
}
}
/// Create the adjacency structure of the nodes in the graph.
void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
SwingSchedulerDAG *DAG) {
BitVector Added(SUnits.size());
for (int i = 0, e = SUnits.size(); i != e; ++i) {
Added.reset();
// Add any successor to the adjacency matrix and exclude duplicates.
for (auto &SI : SUnits[i].Succs) {
// Do not process a boundary node and a back-edge is processed only
// if it goes to a Phi.
if (SI.getSUnit()->isBoundaryNode() ||
(SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
continue;
int N = SI.getSUnit()->NodeNum;
if (!Added.test(N)) {
AdjK[i].push_back(N);
Added.set(N);
}
}
// A chain edge between a store and a load is treated as a back-edge in the
// adjacency matrix.
for (auto &PI : SUnits[i].Preds) {
if (!SUnits[i].getInstr()->mayStore() ||
!DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
continue;
if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
int N = PI.getSUnit()->NodeNum;
if (!Added.test(N)) {
AdjK[i].push_back(N);
Added.set(N);
}
}
}
}
}
/// Identify an elementary circuit in the dependence graph starting at the
/// specified node.
bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
bool HasBackedge) {
SUnit *SV = &SUnits[V];
bool F = false;
Stack.insert(SV);
Blocked.set(V);
for (auto W : AdjK[V]) {
if (NumPaths > MaxPaths)
break;
if (W < S)
continue;
if (W == S) {
if (!HasBackedge)
NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
F = true;
++NumPaths;
break;
} else if (!Blocked.test(W)) {
if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
F = true;
}
}
if (F)
unblock(V);
else {
for (auto W : AdjK[V]) {
if (W < S)
continue;
if (B[W].count(SV) == 0)
B[W].insert(SV);
}
}
Stack.pop_back();
return F;
}
/// Unblock a node in the circuit finding algorithm.
void SwingSchedulerDAG::Circuits::unblock(int U) {
Blocked.reset(U);
SmallPtrSet<SUnit *, 4> &BU = B[U];
while (!BU.empty()) {
SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
assert(SI != BU.end() && "Invalid B set.");
SUnit *W = *SI;
BU.erase(W);
if (Blocked.test(W->NodeNum))
unblock(W->NodeNum);
}
}
/// Identify all the elementary circuits in the dependence graph using
/// Johnson's circuit algorithm.
void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
// but we do this to find the circuits, and then change them back.
swapAntiDependences(SUnits);
Circuits Cir(SUnits);
// Create the adjacency structure.
Cir.createAdjacencyStructure(this);
for (int i = 0, e = SUnits.size(); i != e; ++i) {
Cir.reset();
Cir.circuit(i, i, NodeSets);
}
// Change the dependences back so that we've created a DAG again.
swapAntiDependences(SUnits);
}
/// Return true for DAG nodes that we ignore when computing the cost functions.
/// We ignore the back-edge recurrence in order to avoid unbounded recurison
/// in the calculation of the ASAP, ALAP, etc functions.
static bool ignoreDependence(const SDep &D, bool isPred) {
if (D.isArtificial())
return true;
return D.getKind() == SDep::Anti && isPred;
}
/// Compute several functions need to order the nodes for scheduling.
/// ASAP - Earliest time to schedule a node.
/// ALAP - Latest time to schedule a node.
/// MOV - Mobility function, difference between ALAP and ASAP.
/// D - Depth of each node.
/// H - Height of each node.
void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
ScheduleInfo.resize(SUnits.size());
DEBUG({
for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
E = Topo.end();
I != E; ++I) {
SUnit *SU = &SUnits[*I];
SU->dump(this);
}
});
int maxASAP = 0;
// Compute ASAP.
for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
E = Topo.end();
I != E; ++I) {
int asap = 0;
SUnit *SU = &SUnits[*I];
for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
EP = SU->Preds.end();
IP != EP; ++IP) {
if (ignoreDependence(*IP, true))
continue;
SUnit *pred = IP->getSUnit();
asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
getDistance(pred, SU, *IP) * MII));
}
maxASAP = std::max(maxASAP, asap);
ScheduleInfo[*I].ASAP = asap;
}
// Compute ALAP and MOV.
for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
E = Topo.rend();
I != E; ++I) {
int alap = maxASAP;
SUnit *SU = &SUnits[*I];
for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
ES = SU->Succs.end();
IS != ES; ++IS) {
if (ignoreDependence(*IS, true))
continue;
SUnit *succ = IS->getSUnit();
alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
getDistance(SU, succ, *IS) * MII));
}
ScheduleInfo[*I].ALAP = alap;
}
// After computing the node functions, compute the summary for each node set.
for (NodeSet &I : NodeSets)
I.computeNodeSetInfo(this);
DEBUG({
for (unsigned i = 0; i < SUnits.size(); i++) {
dbgs() << "\tNode " << i << ":\n";
dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
}
});
}
/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
/// as the predecessors of the elements of NodeOrder that are not also in
/// NodeOrder.
static bool pred_L(SetVector<SUnit *> &NodeOrder,
SmallSetVector<SUnit *, 8> &Preds,
const NodeSet *S = nullptr) {
Preds.clear();
for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
I != E; ++I) {
for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
PI != PE; ++PI) {
if (S && S->count(PI->getSUnit()) == 0)
continue;
if (ignoreDependence(*PI, true))
continue;
if (NodeOrder.count(PI->getSUnit()) == 0)
Preds.insert(PI->getSUnit());
}
// Back-edges are predecessors with an anti-dependence.
for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
ES = (*I)->Succs.end();
IS != ES; ++IS) {
if (IS->getKind() != SDep::Anti)
continue;
if (S && S->count(IS->getSUnit()) == 0)
continue;
if (NodeOrder.count(IS->getSUnit()) == 0)
Preds.insert(IS->getSUnit());
}
}
return Preds.size() > 0;
}
/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
/// as the successors of the elements of NodeOrder that are not also in
/// NodeOrder.
static bool succ_L(SetVector<SUnit *> &NodeOrder,
SmallSetVector<SUnit *, 8> &Succs,
const NodeSet *S = nullptr) {
Succs.clear();
for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
I != E; ++I) {
for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
SI != SE; ++SI) {
if (S && S->count(SI->getSUnit()) == 0)
continue;
if (ignoreDependence(*SI, false))
continue;
if (NodeOrder.count(SI->getSUnit()) == 0)
Succs.insert(SI->getSUnit());
}
for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
PE = (*I)->Preds.end();
PI != PE; ++PI) {
if (PI->getKind() != SDep::Anti)
continue;
if (S && S->count(PI->getSUnit()) == 0)
continue;
if (NodeOrder.count(PI->getSUnit()) == 0)
Succs.insert(PI->getSUnit());
}
}
return Succs.size() > 0;
}
/// Return true if there is a path from the specified node to any of the nodes
/// in DestNodes. Keep track and return the nodes in any path.
static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
SetVector<SUnit *> &DestNodes,
SetVector<SUnit *> &Exclude,
SmallPtrSet<SUnit *, 8> &Visited) {
if (Cur->isBoundaryNode())
return false;
if (Exclude.count(Cur) != 0)
return false;
if (DestNodes.count(Cur) != 0)
return true;
if (!Visited.insert(Cur).second)
return Path.count(Cur) != 0;
bool FoundPath = false;
for (auto &SI : Cur->Succs)
FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
for (auto &PI : Cur->Preds)
if (PI.getKind() == SDep::Anti)
FoundPath |=
computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
if (FoundPath)
Path.insert(Cur);
return FoundPath;
}
/// Return true if Set1 is a subset of Set2.
template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
if (Set2.count(*I) == 0)
return false;
return true;
}
/// Compute the live-out registers for the instructions in a node-set.
/// The live-out registers are those that are defined in the node-set,
/// but not used. Except for use operands of Phis.
static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
NodeSet &NS) {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<RegisterMaskPair, 8> LiveOutRegs;
SmallSet<unsigned, 4> Uses;
for (SUnit *SU : NS) {
const MachineInstr *MI = SU->getInstr();
if (MI->isPHI())
continue;
for (ConstMIOperands MO(*MI); MO.isValid(); ++MO)
if (MO->isReg() && MO->isUse()) {
unsigned Reg = MO->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg))
Uses.insert(Reg);
else if (MRI.isAllocatable(Reg))
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
Uses.insert(*Units);
}
}
for (SUnit *SU : NS)
for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO)
if (MO->isReg() && MO->isDef() && !MO->isDead()) {
unsigned Reg = MO->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
if (!Uses.count(Reg))
LiveOutRegs.push_back(RegisterMaskPair(Reg, 0));
} else if (MRI.isAllocatable(Reg)) {
for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
if (!Uses.count(*Units))
LiveOutRegs.push_back(RegisterMaskPair(*Units, 0));
}
}
RPTracker.addLiveRegs(LiveOutRegs);
}
/// A heuristic to filter nodes in recurrent node-sets if the register
/// pressure of a set is too high.
void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
for (auto &NS : NodeSets) {
// Skip small node-sets since they won't cause register pressure problems.
if (NS.size() <= 2)
continue;
IntervalPressure RecRegPressure;
RegPressureTracker RecRPTracker(RecRegPressure);
RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
computeLiveOuts(MF, RecRPTracker, NS);
RecRPTracker.closeBottom();
std::vector<SUnit *> SUnits(NS.begin(), NS.end());
std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
return A->NodeNum > B->NodeNum;
});
for (auto &SU : SUnits) {
// Since we're computing the register pressure for a subset of the
// instructions in a block, we need to set the tracker for each
// instruction in the node-set. The tracker is set to the instruction
// just after the one we're interested in.
MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
RecRPTracker.setPos(std::next(CurInstI));
RegPressureDelta RPDelta;
ArrayRef<PressureChange> CriticalPSets;
RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
CriticalPSets,
RecRegPressure.MaxSetPressure);
if (RPDelta.Excess.isValid()) {
DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
<< TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
<< ":" << RPDelta.Excess.getUnitInc());
NS.setExceedPressure(SU);
break;
}
RecRPTracker.recede();
}
}
}
/// A heuristic to colocate node sets that have the same set of
/// successors.
void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
unsigned Colocate = 0;
for (int i = 0, e = NodeSets.size(); i < e; ++i) {
NodeSet &N1 = NodeSets[i];
SmallSetVector<SUnit *, 8> S1;
if (N1.empty() || !succ_L(N1, S1))
continue;
for (int j = i + 1; j < e; ++j) {
NodeSet &N2 = NodeSets[j];
if (N1.compareRecMII(N2) != 0)
continue;
SmallSetVector<SUnit *, 8> S2;
if (N2.empty() || !succ_L(N2, S2))
continue;
if (isSubset(S1, S2) && S1.size() == S2.size()) {
N1.setColocate(++Colocate);
N2.setColocate(Colocate);
break;
}
}
}
}
/// Check if the existing node-sets are profitable. If not, then ignore the
/// recurrent node-sets, and attempt to schedule all nodes together. This is
/// a heuristic. If the MII is large and there is a non-recurrent node with
/// a large depth compared to the MII, then it's best to try and schedule
/// all instruction together instead of starting with the recurrent node-sets.
void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
// Look for loops with a large MII.
if (MII <= 20)
return;
// Check if the node-set contains only a simple add recurrence.
for (auto &NS : NodeSets)
if (NS.size() > 2)
return;
// If the depth of any instruction is significantly larger than the MII, then
// ignore the recurrent node-sets and treat all instructions equally.
for (auto &SU : SUnits)
if (SU.getDepth() > MII * 1.5) {
NodeSets.clear();
DEBUG(dbgs() << "Clear recurrence node-sets\n");
return;
}
}
/// Add the nodes that do not belong to a recurrence set into groups
/// based upon connected componenets.
void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
SetVector<SUnit *> NodesAdded;
SmallPtrSet<SUnit *, 8> Visited;
// Add the nodes that are on a path between the previous node sets and
// the current node set.
for (NodeSet &I : NodeSets) {
SmallSetVector<SUnit *, 8> N;
// Add the nodes from the current node set to the previous node set.
if (succ_L(I, N)) {
SetVector<SUnit *> Path;
for (SUnit *NI : N) {
Visited.clear();
computePath(NI, Path, NodesAdded, I, Visited);
}
if (Path.size() > 0)
I.insert(Path.begin(), Path.end());
}
// Add the nodes from the previous node set to the current node set.
N.clear();
if (succ_L(NodesAdded, N)) {
SetVector<SUnit *> Path;
for (SUnit *NI : N) {
Visited.clear();
computePath(NI, Path, I, NodesAdded, Visited);
}
if (Path.size() > 0)
I.insert(Path.begin(), Path.end());
}
NodesAdded.insert(I.begin(), I.end());
}
// Create a new node set with the connected nodes of any successor of a node
// in a recurrent set.
NodeSet NewSet;
SmallSetVector<SUnit *, 8> N;
if (succ_L(NodesAdded, N))
for (SUnit *I : N)
addConnectedNodes(I, NewSet, NodesAdded);
if (NewSet.size() > 0)
NodeSets.push_back(NewSet);
// Create a new node set with the connected nodes of any predecessor of a node
// in a recurrent set.
NewSet.clear();
if (pred_L(NodesAdded, N))
for (SUnit *I : N)
addConnectedNodes(I, NewSet, NodesAdded);
if (NewSet.size() > 0)
NodeSets.push_back(NewSet);
// Create new nodes sets with the connected nodes any any remaining node that
// has no predecessor.
for (unsigned i = 0; i < SUnits.size(); ++i) {
SUnit *SU = &SUnits[i];
if (NodesAdded.count(SU) == 0) {
NewSet.clear();
addConnectedNodes(SU, NewSet, NodesAdded);
if (NewSet.size() > 0)
NodeSets.push_back(NewSet);
}
}
}
/// Add the node to the set, and add all is its connected nodes to the set.
void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
SetVector<SUnit *> &NodesAdded) {
NewSet.insert(SU);
NodesAdded.insert(SU);
for (auto &SI : SU->Succs) {
SUnit *Successor = SI.getSUnit();
if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
addConnectedNodes(Successor, NewSet, NodesAdded);
}
for (auto &PI : SU->Preds) {
SUnit *Predecessor = PI.getSUnit();
if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
addConnectedNodes(Predecessor, NewSet, NodesAdded);
}
}
/// Return true if Set1 contains elements in Set2. The elements in common
/// are returned in a different container.
static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
SmallSetVector<SUnit *, 8> &Result) {
Result.clear();
for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
SUnit *SU = Set1[i];
if (Set2.count(SU) != 0)
Result.insert(SU);
}
return !Result.empty();
}
/// Merge the recurrence node sets that have the same initial node.
void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
++I) {
NodeSet &NI = *I;
for (NodeSetType::iterator J = I + 1; J != E;) {
NodeSet &NJ = *J;
if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
if (NJ.compareRecMII(NI) > 0)
NI.setRecMII(NJ.getRecMII());
for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
++NII)
I->insert(*NII);
NodeSets.erase(J);
E = NodeSets.end();
} else {
++J;
}
}
}
}
/// Remove nodes that have been scheduled in previous NodeSets.
void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
++I)
for (NodeSetType::iterator J = I + 1; J != E;) {
J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
if (J->size() == 0) {
NodeSets.erase(J);
E = NodeSets.end();
} else {
++J;
}
}
}
/// Return true if Inst1 defines a value that is used in Inst2.
static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
for (auto &SI : Inst1->Succs)
if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
return true;
return false;
}
/// Compute an ordered list of the dependence graph nodes, which
/// indicates the order that the nodes will be scheduled. This is a
/// two-level algorithm. First, a partial order is created, which
/// consists of a list of sets ordered from highest to lowest priority.
void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
SmallSetVector<SUnit *, 8> R;
NodeOrder.clear();
for (auto &Nodes : NodeSets) {
DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
OrderKind Order;
SmallSetVector<SUnit *, 8> N;
if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
R.insert(N.begin(), N.end());
Order = BottomUp;
DEBUG(dbgs() << " Bottom up (preds) ");
} else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
R.insert(N.begin(), N.end());
Order = TopDown;
DEBUG(dbgs() << " Top down (succs) ");
} else if (isIntersect(N, Nodes, R)) {
// If some of the successors are in the existing node-set, then use the
// top-down ordering.
Order = TopDown;
DEBUG(dbgs() << " Top down (intersect) ");
} else if (NodeSets.size() == 1) {
for (auto &N : Nodes)
if (N->Succs.size() == 0)
R.insert(N);
Order = BottomUp;
DEBUG(dbgs() << " Bottom up (all) ");
} else {
// Find the node with the highest ASAP.
SUnit *maxASAP = nullptr;
for (SUnit *SU : Nodes) {
if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
maxASAP = SU;
}
R.insert(maxASAP);
Order = BottomUp;
DEBUG(dbgs() << " Bottom up (default) ");
}
while (!R.empty()) {
if (Order == TopDown) {
// Choose the node with the maximum height. If more than one, choose
// the node with the lowest MOV. If still more than one, check if there
// is a dependence between the instructions.
while (!R.empty()) {
SUnit *maxHeight = nullptr;
for (SUnit *I : R) {
if (maxHeight == 0 || getHeight(I) > getHeight(maxHeight))
maxHeight = I;
else if (getHeight(I) == getHeight(maxHeight) &&
getMOV(I) < getMOV(maxHeight) &&
!hasDataDependence(maxHeight, I))
maxHeight = I;
else if (hasDataDependence(I, maxHeight))
maxHeight = I;
}
NodeOrder.insert(maxHeight);
DEBUG(dbgs() << maxHeight->NodeNum << " ");
R.remove(maxHeight);
for (const auto &I : maxHeight->Succs) {
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.count(I.getSUnit()) != 0)
continue;
if (ignoreDependence(I, false))
continue;
R.insert(I.getSUnit());
}
// Back-edges are predecessors with an anti-dependence.
for (const auto &I : maxHeight->Preds) {
if (I.getKind() != SDep::Anti)
continue;
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.count(I.getSUnit()) != 0)
continue;
R.insert(I.getSUnit());
}
}
Order = BottomUp;
DEBUG(dbgs() << "\n Switching order to bottom up ");
SmallSetVector<SUnit *, 8> N;
if (pred_L(NodeOrder, N, &Nodes))
R.insert(N.begin(), N.end());
} else {
// Choose the node with the maximum depth. If more than one, choose
// the node with the lowest MOV. If there is still more than one, check
// for a dependence between the instructions.
while (!R.empty()) {
SUnit *maxDepth = nullptr;
for (SUnit *I : R) {
if (maxDepth == 0 || getDepth(I) > getDepth(maxDepth))
maxDepth = I;
else if (getDepth(I) == getDepth(maxDepth) &&
getMOV(I) < getMOV(maxDepth) &&
!hasDataDependence(I, maxDepth))
maxDepth = I;
else if (hasDataDependence(maxDepth, I))
maxDepth = I;
}
NodeOrder.insert(maxDepth);
DEBUG(dbgs() << maxDepth->NodeNum << " ");
R.remove(maxDepth);
if (Nodes.isExceedSU(maxDepth)) {
Order = TopDown;
R.clear();
R.insert(Nodes.getNode(0));
break;
}
for (const auto &I : maxDepth->Preds) {
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.count(I.getSUnit()) != 0)
continue;
if (I.getKind() == SDep::Anti)
continue;
R.insert(I.getSUnit());
}
// Back-edges are predecessors with an anti-dependence.
for (const auto &I : maxDepth->Succs) {
if (I.getKind() != SDep::Anti)
continue;
if (Nodes.count(I.getSUnit()) == 0)
continue;
if (NodeOrder.count(I.getSUnit()) != 0)
continue;
R.insert(I.getSUnit());
}
}
Order = TopDown;
DEBUG(dbgs() << "\n Switching order to top down ");
SmallSetVector<SUnit *, 8> N;
if (succ_L(NodeOrder, N, &Nodes))
R.insert(N.begin(), N.end());
}
}
DEBUG(dbgs() << "\nDone with Nodeset\n");
}
DEBUG({
dbgs() << "Node order: ";
for (SUnit *I : NodeOrder)
dbgs() << " " << I->NodeNum << " ";
dbgs() << "\n";
});
}
/// Process the nodes in the computed order and create the pipelined schedule
/// of the instructions, if possible. Return true if a schedule is found.
bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
if (NodeOrder.size() == 0)
return false;
bool scheduleFound = false;
// Keep increasing II until a valid schedule is found.
for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
Schedule.reset();
Schedule.setInitiationInterval(II);
DEBUG(dbgs() << "Try to schedule with " << II << "\n");
SetVector<SUnit *>::iterator NI = NodeOrder.begin();
SetVector<SUnit *>::iterator NE = NodeOrder.end();
do {
SUnit *SU = *NI;
// Compute the schedule time for the instruction, which is based
// upon the scheduled time for any predecessors/successors.
int EarlyStart = INT_MIN;
int LateStart = INT_MAX;
// These values are set when the size of the schedule window is limited
// due to chain dependences.
int SchedEnd = INT_MAX;
int SchedStart = INT_MIN;
Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
II, this);
DEBUG({
dbgs() << "Inst (" << SU->NodeNum << ") ";
SU->getInstr()->dump();
dbgs() << "\n";
});
DEBUG({
dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
<< " me: " << SchedEnd << " ms: " << SchedStart << "\n";
});
if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
SchedStart > LateStart)
scheduleFound = false;
else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
} else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
} else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
SchedEnd =
std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
// When scheduling a Phi it is better to start at the late cycle and go
// backwards. The default order may insert the Phi too far away from
// its first dependence.
if (SU->getInstr()->isPHI())
scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
else
scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
} else {
int FirstCycle = Schedule.getFirstCycle();
scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
FirstCycle + getASAP(SU) + II - 1, II);
}
// Even if we find a schedule, make sure the schedule doesn't exceed the
// allowable number of stages. We keep trying if this happens.
if (scheduleFound)
if (SwpMaxStages > -1 &&
Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
scheduleFound = false;
DEBUG({
if (!scheduleFound)
dbgs() << "\tCan't schedule\n";
});
} while (++NI != NE && scheduleFound);
// If a schedule is found, check if it is a valid schedule too.
if (scheduleFound)
scheduleFound = Schedule.isValidSchedule(this);
}
DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
if (scheduleFound)
Schedule.finalizeSchedule(this);
else
Schedule.reset();
return scheduleFound && Schedule.getMaxStageCount() > 0;
}
/// Given a schedule for the loop, generate a new version of the loop,
/// and replace the old version. This function generates a prolog
/// that contains the initial iterations in the pipeline, and kernel
/// loop, and the epilogue that contains the code for the final
/// iterations.
void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
// Create a new basic block for the kernel and add it to the CFG.
MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
unsigned MaxStageCount = Schedule.getMaxStageCount();
// Remember the registers that are used in different stages. The index is
// the iteration, or stage, that the instruction is scheduled in. This is
// a map between register names in the orignal block and the names created
// in each stage of the pipelined loop.
ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
InstrMapTy InstrMap;
SmallVector<MachineBasicBlock *, 4> PrologBBs;
// Generate the prolog instructions that set up the pipeline.
generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
MF.insert(BB->getIterator(), KernelBB);
// Rearrange the instructions to generate the new, pipelined loop,
// and update register names as needed.
for (int Cycle = Schedule.getFirstCycle(),
LastCycle = Schedule.getFinalCycle();
Cycle <= LastCycle; ++Cycle) {
std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
// This inner loop schedules each instruction in the cycle.
for (SUnit *CI : CycleInstrs) {
if (CI->getInstr()->isPHI())
continue;
unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
KernelBB->push_back(NewMI);
InstrMap[NewMI] = CI->getInstr();
}
}
// Copy any terminator instructions to the new kernel, and update
// names as needed.
for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
E = BB->instr_end();
I != E; ++I) {
MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
KernelBB->push_back(NewMI);
InstrMap[NewMI] = &*I;
}
KernelBB->transferSuccessors(BB);
KernelBB->replaceSuccessor(BB, KernelBB);
generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
InstrMap, MaxStageCount, MaxStageCount, false);
DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
SmallVector<MachineBasicBlock *, 4> EpilogBBs;
// Generate the epilog instructions to complete the pipeline.
generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
PrologBBs);
// We need this step because the register allocation doesn't handle some
// situations well, so we insert copies to help out.
splitLifetimes(KernelBB, EpilogBBs, Schedule);
// Remove dead instructions due to loop induction variables.
removeDeadInstructions(KernelBB, EpilogBBs);
// Add branches between prolog and epilog blocks.
addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
// Remove the original loop since it's no longer referenced.
BB->clear();
BB->eraseFromParent();
delete[] VRMap;
}
/// Generate the pipeline prolog code.
void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
MachineBasicBlock *KernelBB,
ValueMapTy *VRMap,
MBBVectorTy &PrologBBs) {
MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
assert(PreheaderBB != NULL &&
"Need to add code to handle loops w/o preheader");
MachineBasicBlock *PredBB = PreheaderBB;
InstrMapTy InstrMap;
// Generate a basic block for each stage, not including the last stage,
// which will be generated in the kernel. Each basic block may contain
// instructions from multiple stages/iterations.
for (unsigned i = 0; i < LastStage; ++i) {
// Create and insert the prolog basic block prior to the original loop
// basic block. The original loop is removed later.
MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
PrologBBs.push_back(NewBB);
MF.insert(BB->getIterator(), NewBB);
NewBB->transferSuccessors(PredBB);
PredBB->addSuccessor(NewBB);
PredBB = NewBB;
// Generate instructions for each appropriate stage. Process instructions
// in original program order.
for (int StageNum = i; StageNum >= 0; --StageNum) {
for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
BBE = BB->getFirstTerminator();
BBI != BBE; ++BBI) {
if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
if (BBI->isPHI())
continue;
MachineInstr *NewMI =
cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
VRMap);
NewBB->push_back(NewMI);
InstrMap[NewMI] = &*BBI;
}
}
}
rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
DEBUG({
dbgs() << "prolog:\n";
NewBB->dump();
});
}
PredBB->replaceSuccessor(BB, KernelBB);
// Check if we need to remove the branch from the preheader to the original
// loop, and replace it with a branch to the new loop.
unsigned numBranches = TII->RemoveBranch(*PreheaderBB);
if (numBranches) {
SmallVector<MachineOperand, 0> Cond;
TII->InsertBranch(*PreheaderBB, PrologBBs[0], 0, Cond, DebugLoc());
}
}
/// Generate the pipeline epilog code. The epilog code finishes the iterations
/// that were started in either the prolog or the kernel. We create a basic
/// block for each stage that needs to complete.
void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
MachineBasicBlock *KernelBB,
ValueMapTy *VRMap,
MBBVectorTy &EpilogBBs,
MBBVectorTy &PrologBBs) {
// We need to change the branch from the kernel to the first epilog block, so
// this call to analyze branch uses the kernel rather than the original BB.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
assert(!checkBranch && "generateEpilog must be able to analyze the branch");
if (checkBranch)
return;
MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
if (*LoopExitI == KernelBB)
++LoopExitI;
assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
MachineBasicBlock *LoopExitBB = *LoopExitI;
MachineBasicBlock *PredBB = KernelBB;
MachineBasicBlock *EpilogStart = LoopExitBB;
InstrMapTy InstrMap;
// Generate a basic block for each stage, not including the last stage,
// which was generated for the kernel. Each basic block may contain
// instructions from multiple stages/iterations.
int EpilogStage = LastStage + 1;
for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
EpilogBBs.push_back(NewBB);
MF.insert(BB->getIterator(), NewBB);
PredBB->replaceSuccessor(LoopExitBB, NewBB);
NewBB->addSuccessor(LoopExitBB);
if (EpilogStart == LoopExitBB)
EpilogStart = NewBB;
// Add instructions to the epilog depending on the current block.
// Process instructions in original program order.
for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
for (auto &BBI : *BB) {
if (BBI.isPHI())
continue;
MachineInstr *In = &BBI;
if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
NewBB->push_back(NewMI);
InstrMap[NewMI] = In;
}
}
}
generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
VRMap, InstrMap, LastStage, EpilogStage, i == 1);
generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
InstrMap, LastStage, EpilogStage, i == 1);
PredBB = NewBB;
DEBUG({
dbgs() << "epilog:\n";
NewBB->dump();
});
}
// Fix any Phi nodes in the loop exit block.
for (MachineInstr &MI : *LoopExitBB) {
if (!MI.isPHI())
break;
for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
MachineOperand &MO = MI.getOperand(i);
if (MO.getMBB() == BB)
MO.setMBB(PredBB);
}
}
// Create a branch to the new epilog from the kernel.
// Remove the original branch and add a new branch to the epilog.
TII->RemoveBranch(*KernelBB);
TII->InsertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
// Add a branch to the loop exit.
if (EpilogBBs.size() > 0) {
MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
SmallVector<MachineOperand, 4> Cond1;
TII->InsertBranch(*LastEpilogBB, LoopExitBB, 0, Cond1, DebugLoc());
}
}
/// Replace all uses of FromReg that appear outside the specified
/// basic block with ToReg.
static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
MachineBasicBlock *MBB,
MachineRegisterInfo &MRI,
LiveIntervals &LIS) {
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
E = MRI.use_end();
I != E;) {
MachineOperand &O = *I;
++I;
if (O.getParent()->getParent() != MBB)
O.setReg(ToReg);
}
if (!LIS.hasInterval(ToReg))
LIS.createEmptyInterval(ToReg);
}
/// Return true if the register has a use that occurs outside the
/// specified loop.
static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
MachineRegisterInfo &MRI) {
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
E = MRI.use_end();
I != E; ++I)
if (I->getParent()->getParent() != BB)
return true;
return false;
}
/// Generate Phis for the specific block in the generated pipelined code.
/// This function looks at the Phis from the original code to guide the
/// creation of new Phis.
void SwingSchedulerDAG::generateExistingPhis(
MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
bool IsLast) {
// Compute the stage number for the inital value of the Phi, which
// comes from the prolog. The prolog to use depends on to which kernel/
// epilog that we're adding the Phi.
unsigned PrologStage = 0;
unsigned PrevStage = 0;
bool InKernel = (LastStageNum == CurStageNum);
if (InKernel) {
PrologStage = LastStageNum - 1;
PrevStage = CurStageNum;
} else {
PrologStage = LastStageNum - (CurStageNum - LastStageNum);
PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
}
for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
BBE = BB->getFirstNonPHI();
BBI != BBE; ++BBI) {
unsigned Def = BBI->getOperand(0).getReg();
unsigned InitVal = 0;
unsigned LoopVal = 0;
getPhiRegs(*BBI, BB, InitVal, LoopVal);
unsigned PhiOp1 = 0;
// The Phi value from the loop body typically is defined in the loop, but
// not always. So, we need to check if the value is defined in the loop.
unsigned PhiOp2 = LoopVal;
if (VRMap[LastStageNum].count(LoopVal))
PhiOp2 = VRMap[LastStageNum][LoopVal];
int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
int LoopValStage =
Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
if (NumStages == 0) {
// We don't need to generate a Phi anymore, but we need to rename any uses
// of the Phi value.
unsigned NewReg = VRMap[PrevStage][LoopVal];
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
Def, NewReg);
if (VRMap[CurStageNum].count(LoopVal))
VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
}
// Adjust the number of Phis needed depending on the number of prologs left,
// and the distance from where the Phi is first scheduled.
unsigned NumPhis = NumStages;
if (!InKernel && (int)PrologStage < LoopValStage)
// The NumPhis is the maximum number of new Phis needed during the steady
// state. If the Phi has not been scheduled in current prolog, then we
// need to generate less Phis.
NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
// The number of Phis cannot exceed the number of prolog stages. Each
// stage can potentially define two values.
NumPhis = std::min(NumPhis, PrologStage + 2);
unsigned NewReg = 0;
unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
// In the epilog, we may need to look back one stage to get the correct
// Phi name because the epilog and prolog blocks execute the same stage.
// The correct name is from the previous block only when the Phi has
// been completely scheduled prior to the epilog, and Phi value is not
// needed in multiple stages.
int StageDiff = 0;
if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
NumPhis == 1)
StageDiff = 1;
// Adjust the computations below when the phi and the loop definition
// are scheduled in different stages.
if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
StageDiff = StageScheduled - LoopValStage;
for (unsigned np = 0; np < NumPhis; ++np) {
// If the Phi hasn't been scheduled, then use the initial Phi operand
// value. Otherwise, use the scheduled version of the instruction. This
// is a little complicated when a Phi references another Phi.
if (np > PrologStage || StageScheduled >= (int)LastStageNum)
PhiOp1 = InitVal;
// Check if the Phi has already been scheduled in a prolog stage.
else if (PrologStage >= AccessStage + StageDiff + np &&
VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
// Check if the Phi has already been scheduled, but the loop intruction
// is either another Phi, or doesn't occur in the loop.
else if (PrologStage >= AccessStage + StageDiff + np) {
// If the Phi references another Phi, we need to examine the other
// Phi to get the correct value.
PhiOp1 = LoopVal;
MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
int Indirects = 1;
while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
PhiOp1 = getInitPhiReg(*InstOp1, BB);
else
PhiOp1 = getLoopPhiReg(*InstOp1, BB);
InstOp1 = MRI.getVRegDef(PhiOp1);
int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
break;
}
++Indirects;
}
} else
PhiOp1 = InitVal;
// If this references a generated Phi in the kernel, get the Phi operand
// from the incoming block.
if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
// In the epilog, a map lookup is needed to get the value from the kernel,
// or previous epilog block. How is does this depends on if the
// instruction is scheduled in the previous block.
if (!InKernel) {
int StageDiffAdj = 0;
if (LoopValStage != -1 && StageScheduled > LoopValStage)
StageDiffAdj = StageScheduled - LoopValStage;
// Use the loop value defined in the kernel, unless the kernel
// contains the last definition of the Phi.
if (np == 0 && PrevStage == LastStageNum &&
(StageScheduled != 0 || LoopValStage != 0) &&
VRMap[PrevStage - StageDiffAdj].count(LoopVal))
PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
// Use the value defined by the Phi. We add one because we switch
// from looking at the loop value to the Phi definition.
else if (np > 0 && PrevStage == LastStageNum &&
VRMap[PrevStage - np + 1].count(Def))
PhiOp2 = VRMap[PrevStage - np + 1][Def];
// Use the loop value defined in the kernel.
else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
// Use the value defined by the Phi, unless we're generating the first
// epilog and the Phi refers to a Phi in a different stage.
else if (VRMap[PrevStage - np].count(Def) &&
(!LoopDefIsPhi || PrevStage != LastStageNum))
PhiOp2 = VRMap[PrevStage - np][Def];
}
// Check if we can reuse an existing Phi. This occurs when a Phi
// references another Phi, and the other Phi is scheduled in an
// earlier stage. We can try to reuse an existing Phi up until the last
// stage of the current Phi.
if (LoopDefIsPhi && VRMap[CurStageNum].count(LoopVal) &&
LoopValStage >= (int)(CurStageNum - LastStageNum)) {
int LVNumStages = Schedule.getStagesForPhi(LoopVal);
int StageDiff = (StageScheduled - LoopValStage);
LVNumStages -= StageDiff;
if (LVNumStages > (int)np) {
NewReg = PhiOp2;
unsigned ReuseStage = CurStageNum;
if (Schedule.isLoopCarried(this, *PhiInst))
ReuseStage -= LVNumStages;
// Check if the Phi to reuse has been generated yet. If not, then
// there is nothing to reuse.
if (VRMap[ReuseStage].count(LoopVal)) {
NewReg = VRMap[ReuseStage][LoopVal];
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
&*BBI, Def, NewReg);
// Update the map with the new Phi name.
VRMap[CurStageNum - np][Def] = NewReg;
PhiOp2 = NewReg;
if (VRMap[LastStageNum - np - 1].count(LoopVal))
PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
if (IsLast && np == NumPhis - 1)
replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
continue;
}
} else if (StageDiff > 0 &&
VRMap[CurStageNum - StageDiff - np].count(LoopVal))
PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
}
const TargetRegisterClass *RC = MRI.getRegClass(Def);
NewReg = MRI.createVirtualRegister(RC);
MachineInstrBuilder NewPhi =
BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
TII->get(TargetOpcode::PHI), NewReg);
NewPhi.addReg(PhiOp1).addMBB(BB1);
NewPhi.addReg(PhiOp2).addMBB(BB2);
if (np == 0)
InstrMap[NewPhi] = &*BBI;
// We define the Phis after creating the new pipelined code, so
// we need to rename the Phi values in scheduled instructions.
unsigned PrevReg = 0;
if (InKernel && VRMap[PrevStage - np].count(LoopVal))
PrevReg = VRMap[PrevStage - np][LoopVal];
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
Def, NewReg, PrevReg);
// If the Phi has been scheduled, use the new name for rewriting.
if (VRMap[CurStageNum - np].count(Def)) {
unsigned R = VRMap[CurStageNum - np][Def];
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
R, NewReg);
}
// Check if we need to rename any uses that occurs after the loop. The
// register to replace depends on whether the Phi is scheduled in the
// epilog.
if (IsLast && np == NumPhis - 1)
replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
// In the kernel, a dependent Phi uses the value from this Phi.
if (InKernel)
PhiOp2 = NewReg;
// Update the map with the new Phi name.
VRMap[CurStageNum - np][Def] = NewReg;
}
while (NumPhis++ < NumStages) {
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
&*BBI, Def, NewReg, 0);
}
// Check if we need to rename a Phi that has been eliminated due to
// scheduling.
if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
}
}
/// Generate Phis for the specified block in the generated pipelined code.
/// These are new Phis needed because the definition is scheduled after the
/// use in the pipelened sequence.
void SwingSchedulerDAG::generatePhis(
MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
bool IsLast) {
// Compute the stage number that contains the initial Phi value, and
// the Phi from the previous stage.
unsigned PrologStage = 0;
unsigned PrevStage = 0;
unsigned StageDiff = CurStageNum - LastStageNum;
bool InKernel = (StageDiff == 0);
if (InKernel) {
PrologStage = LastStageNum - 1;
PrevStage = CurStageNum;
} else {
PrologStage = LastStageNum - StageDiff;
PrevStage = LastStageNum + StageDiff - 1;
}
for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
BBE = BB->instr_end();
BBI != BBE; ++BBI) {
for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = BBI->getOperand(i);
if (!MO.isReg() || !MO.isDef() ||
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
assert(StageScheduled != -1 && "Expecting scheduled instruction.");
unsigned Def = MO.getReg();
unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
// An instruction scheduled in stage 0 and is used after the loop
// requires a phi in the epilog for the last definition from either
// the kernel or prolog.
if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
hasUseAfterLoop(Def, BB, MRI))
NumPhis = 1;
if (!InKernel && (unsigned)StageScheduled > PrologStage)
continue;
unsigned PhiOp2 = VRMap[PrevStage][Def];
if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
// The number of Phis can't exceed the number of prolog stages. The
// prolog stage number is zero based.
if (NumPhis > PrologStage + 1 - StageScheduled)
NumPhis = PrologStage + 1 - StageScheduled;
for (unsigned np = 0; np < NumPhis; ++np) {
unsigned PhiOp1 = VRMap[PrologStage][Def];
if (np <= PrologStage)
PhiOp1 = VRMap[PrologStage - np][Def];
if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
}
if (!InKernel)
PhiOp2 = VRMap[PrevStage - np][Def];
const TargetRegisterClass *RC = MRI.getRegClass(Def);
unsigned NewReg = MRI.createVirtualRegister(RC);
MachineInstrBuilder NewPhi =
BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
TII->get(TargetOpcode::PHI), NewReg);
NewPhi.addReg(PhiOp1).addMBB(BB1);
NewPhi.addReg(PhiOp2).addMBB(BB2);
if (np == 0)
InstrMap[NewPhi] = &*BBI;
// Rewrite uses and update the map. The actions depend upon whether
// we generating code for the kernel or epilog blocks.
if (InKernel) {
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
&*BBI, PhiOp1, NewReg);
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
&*BBI, PhiOp2, NewReg);
PhiOp2 = NewReg;
VRMap[PrevStage - np - 1][Def] = NewReg;
} else {
VRMap[CurStageNum - np][Def] = NewReg;
if (np == NumPhis - 1)
rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
&*BBI, Def, NewReg);
}
if (IsLast && np == NumPhis - 1)
replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
}
}
}
}
/// Remove instructions that generate values with no uses.
/// Typically, these are induction variable operations that generate values
/// used in the loop itself. A dead instruction has a definition with
/// no uses, or uses that occur in the original loop only.
void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
MBBVectorTy &EpilogBBs) {
// For each epilog block, check that the value defined by each instruction
// is used. If not, delete it.
for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
MBE = EpilogBBs.rend();
MBB != MBE; ++MBB)
for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
ME = (*MBB)->instr_rend();
MI != ME;) {
// From DeadMachineInstructionElem. Don't delete inline assembly.
if (MI->isInlineAsm()) {
++MI;
continue;
}
bool SawStore = false;
// Check if it's safe to remove the instruction due to side effects.
// We can, and want to, remove Phis here.
if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
++MI;
continue;
}
bool used = true;
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end();
MOI != MOE; ++MOI) {
if (!MOI->isReg() || !MOI->isDef())
continue;
unsigned reg = MOI->getReg();
unsigned realUses = 0;
for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
EI = MRI.use_end();
UI != EI; ++UI) {
// Check if there are any uses that occur only in the original
// loop. If so, that's not a real use.
if (UI->getParent()->getParent() != BB) {
realUses++;
used = true;
break;
}
}
if (realUses > 0)
break;
used = false;
}
if (!used) {
MI->eraseFromParent();
ME = (*MBB)->instr_rend();
continue;
}
++MI;
}
// In the kernel block, check if we can remove a Phi that generates a value
// used in an instruction removed in the epilog block.
for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
BBE = KernelBB->getFirstNonPHI();
BBI != BBE;) {
MachineInstr *MI = &*BBI;
++BBI;
unsigned reg = MI->getOperand(0).getReg();
if (MRI.use_begin(reg) == MRI.use_end()) {
MI->eraseFromParent();
}
}
}
/// For loop carried definitions, we split the lifetime of a virtual register
/// that has uses past the definition in the next iteration. A copy with a new
/// virtual register is inserted before the definition, which helps with
/// generating a better register assignment.
///
/// v1 = phi(a, v2) v1 = phi(a, v2)
/// v2 = phi(b, v3) v2 = phi(b, v3)
/// v3 = .. v4 = copy v1
/// .. = V1 v3 = ..
/// .. = v4
void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
MBBVectorTy &EpilogBBs,
SMSchedule &Schedule) {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
BBF = KernelBB->getFirstNonPHI();
BBI != BBF; ++BBI) {
unsigned Def = BBI->getOperand(0).getReg();
// Check for any Phi definition that used as an operand of another Phi
// in the same block.
for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
E = MRI.use_instr_end();
I != E; ++I) {
if (I->isPHI() && I->getParent() == KernelBB) {
// Get the loop carried definition.
unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
if (!LCDef)
continue;
MachineInstr *MI = MRI.getVRegDef(LCDef);
if (!MI || MI->getParent() != KernelBB || MI->isPHI())
continue;
// Search through the rest of the block looking for uses of the Phi
// definition. If one occurs, then split the lifetime.
unsigned SplitReg = 0;
for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
KernelBB->instr_end()))
if (BBJ.readsRegister(Def)) {
// We split the lifetime when we find the first use.
if (SplitReg == 0) {
SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
BuildMI(*KernelBB, MI, MI->getDebugLoc(),
TII->get(TargetOpcode::COPY), SplitReg)
.addReg(Def);
}
BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
}
if (!SplitReg)
continue;
// Search through each of the epilog blocks for any uses to be renamed.
for (auto &Epilog : EpilogBBs)
for (auto &I : *Epilog)
if (I.readsRegister(Def))
I.substituteRegister(Def, SplitReg, 0, *TRI);
break;
}
}
}
}
/// Remove the incoming block from the Phis in a basic block.
static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
for (MachineInstr &MI : *BB) {
if (!MI.isPHI())
break;
for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
if (MI.getOperand(i + 1).getMBB() == Incoming) {
MI.RemoveOperand(i + 1);
MI.RemoveOperand(i);
break;
}
}
}
/// Create branches from each prolog basic block to the appropriate epilog
/// block. These edges are needed if the loop ends before reaching the
/// kernel.
void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
MachineBasicBlock *KernelBB,
MBBVectorTy &EpilogBBs,
SMSchedule &Schedule, ValueMapTy *VRMap) {
assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
MachineInstr *IndVar = Pass.LI.LoopInductionVar;
MachineInstr *Cmp = Pass.LI.LoopCompare;
MachineBasicBlock *LastPro = KernelBB;
MachineBasicBlock *LastEpi = KernelBB;
// Start from the blocks connected to the kernel and work "out"
// to the first prolog and the last epilog blocks.
SmallVector<MachineInstr *, 4> PrevInsts;
unsigned MaxIter = PrologBBs.size() - 1;
unsigned LC = UINT_MAX;
unsigned LCMin = UINT_MAX;
for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
// Add branches to the prolog that go to the corresponding
// epilog, and the fall-thru prolog/kernel block.
MachineBasicBlock *Prolog = PrologBBs[j];
MachineBasicBlock *Epilog = EpilogBBs[i];
// We've executed one iteration, so decrement the loop count and check for
// the loop end.
SmallVector<MachineOperand, 4> Cond;
// Check if the LOOP0 has already been removed. If so, then there is no need
// to reduce the trip count.
if (LC != 0)
LC = TII->reduceLoopCount(*Prolog, IndVar, Cmp, Cond, PrevInsts, j,
MaxIter);
// Record the value of the first trip count, which is used to determine if
// branches and blocks can be removed for constant trip counts.
if (LCMin == UINT_MAX)
LCMin = LC;
unsigned numAdded = 0;
if (TargetRegisterInfo::isVirtualRegister(LC)) {
Prolog->addSuccessor(Epilog);
numAdded = TII->InsertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
} else if (j >= LCMin) {
Prolog->addSuccessor(Epilog);
Prolog->removeSuccessor(LastPro);
LastEpi->removeSuccessor(Epilog);
numAdded = TII->InsertBranch(*Prolog, Epilog, 0, Cond, DebugLoc());
removePhis(Epilog, LastEpi);
// Remove the blocks that are no longer referenced.
if (LastPro != LastEpi) {
LastEpi->clear();
LastEpi->eraseFromParent();
}
LastPro->clear();
LastPro->eraseFromParent();
} else {
numAdded = TII->InsertBranch(*Prolog, LastPro, 0, Cond, DebugLoc());
removePhis(Epilog, Prolog);
}
LastPro = Prolog;
LastEpi = Epilog;
for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
E = Prolog->instr_rend();
I != E && numAdded > 0; ++I, --numAdded)
updateInstruction(&*I, false, j, 0, Schedule, VRMap);
}
}
/// Return true if we can compute the amount the instruction changes
/// during each iteration. Set Delta to the amount of the change.
bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
unsigned BaseReg;
int64_t Offset;
if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
return false;
MachineRegisterInfo &MRI = MF.getRegInfo();
// Check if there is a Phi. If so, get the definition in the loop.
MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
if (BaseDef && BaseDef->isPHI()) {
BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
BaseDef = MRI.getVRegDef(BaseReg);
}
if (!BaseDef)
return false;
int D = 0;
if (!TII->getIncrementValue(BaseDef, D) && D >= 0)
return false;
Delta = D;
return true;
}
/// Update the memory operand with a new offset when the pipeliner
/// generate a new copy of the instruction that refers to a
/// different memory location.
void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
MachineInstr &OldMI, unsigned Num) {
if (Num == 0)
return;
// If the instruction has memory operands, then adjust the offset
// when the instruction appears in different stages.
unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
if (NumRefs == 0)
return;
MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
unsigned Refs = 0;
for (MachineInstr::mmo_iterator I = NewMI.memoperands_begin(),
E = NewMI.memoperands_end();
I != E; ++I) {
if ((*I)->isVolatile() || (*I)->isInvariant() || (!(*I)->getValue())) {
NewMemRefs[Refs++] = *I;
continue;
}
unsigned Delta;
if (computeDelta(OldMI, Delta)) {
int64_t AdjOffset = Delta * Num;
NewMemRefs[Refs++] =
MF.getMachineMemOperand(*I, AdjOffset, (*I)->getSize());
} else
NewMemRefs[Refs++] = MF.getMachineMemOperand(*I, 0, UINT64_MAX);
}
NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
}
/// Clone the instruction for the new pipelined loop and update the
/// memory operands, if needed.
MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
unsigned CurStageNum,
unsigned InstStageNum) {
MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
// Check for tied operands in inline asm instructions. This should be handled
// elsewhere, but I'm not sure of the best solution.
if (OldMI->isInlineAsm())
for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
const auto &MO = OldMI->getOperand(i);
if (MO.isReg() && MO.isUse())
break;
unsigned UseIdx;
if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
NewMI->tieOperands(i, UseIdx);
}
updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
return NewMI;
}
/// Clone the instruction for the new pipelined loop. If needed, this
/// function updates the instruction using the values saved in the
/// InstrChanges structure.
MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
unsigned CurStageNum,
unsigned InstStageNum,
SMSchedule &Schedule) {
MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
InstrChanges.find(getSUnit(OldMI));
if (It != InstrChanges.end()) {
std::pair<unsigned, int64_t> RegAndOffset = It->second;
unsigned BasePos, OffsetPos;
if (!TII->getBaseAndOffsetPosition(OldMI, BasePos, OffsetPos))
return nullptr;
int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
NewMI->getOperand(OffsetPos).setImm(NewOffset);
}
updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
return NewMI;
}
/// Update the machine instruction with new virtual registers. This
/// function may change the defintions and/or uses.
void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
unsigned CurStageNum,
unsigned InstrStageNum,
SMSchedule &Schedule,
ValueMapTy *VRMap) {
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = NewMI->getOperand(i);
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
unsigned reg = MO.getReg();
if (MO.isDef()) {
// Create a new virtual register for the definition.
const TargetRegisterClass *RC = MRI.getRegClass(reg);
unsigned NewReg = MRI.createVirtualRegister(RC);
MO.setReg(NewReg);
VRMap[CurStageNum][reg] = NewReg;
if (LastDef)
replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
} else if (MO.isUse()) {
MachineInstr *Def = MRI.getVRegDef(reg);
// Compute the stage that contains the last definition for instruction.
int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
unsigned StageNum = CurStageNum;
if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
// Compute the difference in stages between the defintion and the use.
unsigned StageDiff = (InstrStageNum - DefStageNum);
// Make an adjustment to get the last definition.
StageNum -= StageDiff;
}
if (VRMap[StageNum].count(reg))
MO.setReg(VRMap[StageNum][reg]);
}
}
}
/// Return the instruction in the loop that defines the register.
/// If the definition is a Phi, then follow the Phi operand to
/// the instruction in the loop.
MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
SmallPtrSet<MachineInstr *, 8> Visited;
MachineInstr *Def = MRI.getVRegDef(Reg);
while (Def->isPHI()) {
if (!Visited.insert(Def).second)
break;
for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
if (Def->getOperand(i + 1).getMBB() == BB) {
Def = MRI.getVRegDef(Def->getOperand(i).getReg());
break;
}
}
return Def;
}
/// Return the new name for the value from the previous stage.
unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
unsigned LoopVal, unsigned LoopStage,
ValueMapTy *VRMap,
MachineBasicBlock *BB) {
unsigned PrevVal = 0;
if (StageNum > PhiStage) {
MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
// The name is defined in the previous stage.
PrevVal = VRMap[StageNum - 1][LoopVal];
else if (VRMap[StageNum].count(LoopVal))
// The previous name is defined in the current stage when the instruction
// order is swapped.
PrevVal = VRMap[StageNum][LoopVal];
else if (!LoopInst->isPHI())
// The loop value hasn't yet been scheduled.
PrevVal = LoopVal;
else if (StageNum == PhiStage + 1)
// The loop value is another phi, which has not been scheduled.
PrevVal = getInitPhiReg(*LoopInst, BB);
else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
// The loop value is another phi, which has been scheduled.
PrevVal =
getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
LoopStage, VRMap, BB);
}
return PrevVal;
}
/// Rewrite the Phi values in the specified block to use the mappings
/// from the initial operand. Once the Phi is scheduled, we switch
/// to using the loop value instead of the Phi value, so those names
/// do not need to be rewritten.
void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
unsigned StageNum,
SMSchedule &Schedule,
ValueMapTy *VRMap,
InstrMapTy &InstrMap) {
for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
BBE = BB->getFirstNonPHI();
BBI != BBE; ++BBI) {
unsigned InitVal = 0;
unsigned LoopVal = 0;
getPhiRegs(*BBI, BB, InitVal, LoopVal);
unsigned PhiDef = BBI->getOperand(0).getReg();
unsigned PhiStage =
(unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
unsigned LoopStage =
(unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
if (NumPhis > StageNum)
NumPhis = StageNum;
for (unsigned np = 0; np <= NumPhis; ++np) {
unsigned NewVal =
getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
if (!NewVal)
NewVal = InitVal;
rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
PhiDef, NewVal);
}
}
}
/// Rewrite a previously scheduled instruction to use the register value
/// from the new instruction. Make sure the instruction occurs in the
/// basic block, and we don't change the uses in the new instruction.
void SwingSchedulerDAG::rewriteScheduledInstr(
MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
unsigned NewReg, unsigned PrevReg) {
bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
// Rewrite uses that have been scheduled already to use the new
// Phi register.
for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
EI = MRI.use_end();
UI != EI;) {
MachineOperand &UseOp = *UI;
MachineInstr *UseMI = UseOp.getParent();
++UI;
if (UseMI->getParent() != BB)
continue;
if (UseMI->isPHI()) {
if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
continue;
if (getLoopPhiReg(*UseMI, BB) != OldReg)
continue;
}
InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
SUnit *OrigMISU = getSUnit(OrigInstr->second);
int StageSched = Schedule.stageScheduled(OrigMISU);
int CycleSched = Schedule.cycleScheduled(OrigMISU);
unsigned ReplaceReg = 0;
// This is the stage for the scheduled instruction.
if (StagePhi == StageSched && Phi->isPHI()) {
int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
if (PrevReg && InProlog)
ReplaceReg = PrevReg;
else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
(CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
ReplaceReg = PrevReg;
else
ReplaceReg = NewReg;
}
// The scheduled instruction occurs before the scheduled Phi, and the
// Phi is not loop carried.
if (!InProlog && StagePhi + 1 == StageSched &&
!Schedule.isLoopCarried(this, *Phi))
ReplaceReg = NewReg;
if (StagePhi > StageSched && Phi->isPHI())
ReplaceReg = NewReg;
if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
ReplaceReg = NewReg;
if (ReplaceReg) {
MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
UseOp.setReg(ReplaceReg);
}
}
}
/// Check if we can change the instruction to use an offset value from the
/// previous iteration. If so, return true and set the base and offset values
/// so that we can rewrite the load, if necessary.
/// v1 = Phi(v0, v3)
/// v2 = load v1, 0
/// v3 = post_store v1, 4, x
/// This function enables the load to be rewritten as v2 = load v3, 4.
bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
unsigned &BasePos,
unsigned &OffsetPos,
unsigned &NewBase,
int64_t &Offset) {
// Get the load instruction.
if (TII->isPostIncrement(MI))
return false;
unsigned BasePosLd, OffsetPosLd;
if (!TII->getBaseAndOffsetPosition(MI, BasePosLd, OffsetPosLd))
return false;
unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
// Look for the Phi instruction.
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
MachineInstr *Phi = MRI.getVRegDef(BaseReg);
if (!Phi || !Phi->isPHI())
return false;
// Get the register defined in the loop block.
unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
if (!PrevReg)
return false;
// Check for the post-increment load/store instruction.
MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
if (!PrevDef || PrevDef == MI)
return false;
if (!TII->isPostIncrement(PrevDef))
return false;
unsigned BasePos1 = 0, OffsetPos1 = 0;
if (!TII->getBaseAndOffsetPosition(PrevDef, BasePos1, OffsetPos1))
return false;
// Make sure offset values are both positive or both negative.
int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
if ((LoadOffset >= 0) != (StoreOffset >= 0))
return false;
// Set the return value once we determine that we return true.
BasePos = BasePosLd;
OffsetPos = OffsetPosLd;
NewBase = PrevReg;
Offset = StoreOffset;
return true;
}
/// Apply changes to the instruction if needed. The changes are need
/// to improve the scheduling and depend up on the final schedule.
MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
SMSchedule &Schedule,
bool UpdateDAG) {
SUnit *SU = getSUnit(MI);
DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
InstrChanges.find(SU);
if (It != InstrChanges.end()) {
std::pair<unsigned, int64_t> RegAndOffset = It->second;
unsigned BasePos, OffsetPos;
if (!TII->getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
return nullptr;
unsigned BaseReg = MI->getOperand(BasePos).getReg();
MachineInstr *LoopDef = findDefInLoop(BaseReg);
int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
int BaseStageNum = Schedule.stageScheduled(SU);
int BaseCycleNum = Schedule.cycleScheduled(SU);
if (BaseStageNum < DefStageNum) {
MachineInstr *NewMI = MF.CloneMachineInstr(MI);
int OffsetDiff = DefStageNum - BaseStageNum;
if (DefCycleNum < BaseCycleNum) {
NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
if (OffsetDiff > 0)
--OffsetDiff;
}
int64_t NewOffset =
MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
NewMI->getOperand(OffsetPos).setImm(NewOffset);
if (UpdateDAG) {
SU->setInstr(NewMI);
MISUnitMap[NewMI] = SU;
}
NewMIs.insert(NewMI);
return NewMI;
}
}
return nullptr;
}
/// Return true for an order dependence that is loop carried potentially.
/// An order dependence is loop carried if the destination defines a value
/// that may be used by the source in a subsequent iteration.
bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
bool isSucc) {
if (!isOrder(Source, Dep) || Dep.isArtificial())
return false;
if (!SwpPruneLoopCarried)
return true;
MachineInstr *SI = Source->getInstr();
MachineInstr *DI = Dep.getSUnit()->getInstr();
if (!isSucc)
std::swap(SI, DI);
assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
// Assume ordered loads and stores may have a loop carried dependence.
if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
return true;
// Only chain dependences between a load and store can be loop carried.
if (!DI->mayStore() || !SI->mayLoad())
return false;
unsigned DeltaS, DeltaD;
if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
return true;
unsigned BaseRegS, BaseRegD;
int64_t OffsetS, OffsetD;
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
!TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
return true;
if (BaseRegS != BaseRegD)
return true;
uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
// This is the main test, which checks the offset values and the loop
// increment value to determine if the accesses may be loop carried.
if (OffsetS >= OffsetD)
return OffsetS + AccessSizeS > DeltaS;
else if (OffsetS < OffsetD)
return OffsetD + AccessSizeD > DeltaD;
return true;
}
/// Try to schedule the node at the specified StartCycle and continue
/// until the node is schedule or the EndCycle is reached. This function
/// returns true if the node is scheduled. This routine may search either
/// forward or backward for a place to insert the instruction based upon
/// the relative values of StartCycle and EndCycle.
bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
bool forward = true;
if (StartCycle > EndCycle)
forward = false;
// The terminating condition depends on the direction.
int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
for (int curCycle = StartCycle; curCycle != termCycle;
forward ? ++curCycle : --curCycle) {
// Add the already scheduled instructions at the specified cycle to the DFA.
Resources->clearResources();
for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
checkCycle <= LastCycle; checkCycle += II) {
std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
E = cycleInstrs.end();
I != E; ++I) {
if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
continue;
assert(Resources->canReserveResources(*(*I)->getInstr()) &&
"These instructions have already been scheduled.");
Resources->reserveResources(*(*I)->getInstr());
}
}
if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
Resources->canReserveResources(*SU->getInstr())) {
DEBUG({
dbgs() << "\tinsert at cycle " << curCycle << " ";
SU->getInstr()->dump();
});
ScheduledInstrs[curCycle].push_back(SU);
InstrToCycle.insert(std::make_pair(SU, curCycle));
if (curCycle > LastCycle)
LastCycle = curCycle;
if (curCycle < FirstCycle)
FirstCycle = curCycle;
return true;
}
DEBUG({
dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
SU->getInstr()->dump();
});
}
return false;
}
// Return the cycle of the earliest scheduled instruction in the chain.
int SMSchedule::earliestCycleInChain(const SDep &Dep) {
SmallPtrSet<SUnit *, 8> Visited;
SmallVector<SDep, 8> Worklist;
Worklist.push_back(Dep);
int EarlyCycle = INT_MAX;
while (!Worklist.empty()) {
const SDep &Cur = Worklist.pop_back_val();
SUnit *PrevSU = Cur.getSUnit();
if (Visited.count(PrevSU))
continue;
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
if (it == InstrToCycle.end())
continue;
EarlyCycle = std::min(EarlyCycle, it->second);
for (const auto &PI : PrevSU->Preds)
if (SwingSchedulerDAG::isOrder(PrevSU, PI))
Worklist.push_back(PI);
Visited.insert(PrevSU);
}
return EarlyCycle;
}
// Return the cycle of the latest scheduled instruction in the chain.
int SMSchedule::latestCycleInChain(const SDep &Dep) {
SmallPtrSet<SUnit *, 8> Visited;
SmallVector<SDep, 8> Worklist;
Worklist.push_back(Dep);
int LateCycle = INT_MIN;
while (!Worklist.empty()) {
const SDep &Cur = Worklist.pop_back_val();
SUnit *SuccSU = Cur.getSUnit();
if (Visited.count(SuccSU))
continue;
std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
if (it == InstrToCycle.end())
continue;
LateCycle = std::max(LateCycle, it->second);
for (const auto &SI : SuccSU->Succs)
if (SwingSchedulerDAG::isOrder(SuccSU, SI))
Worklist.push_back(SI);
Visited.insert(SuccSU);
}
return LateCycle;
}
/// If an instruction has a use that spans multiple iterations, then
/// return true. These instructions are characterized by having a back-ege
/// to a Phi, which contains a reference to another Phi.
static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
for (auto &P : SU->Preds)
if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
for (auto &S : P.getSUnit()->Succs)
if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
return P.getSUnit();
return nullptr;
}
/// Compute the scheduling start slot for the instruction. The start slot
/// depends on any predecessor or successor nodes scheduled already.
void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
int *MinEnd, int *MaxStart, int II,
SwingSchedulerDAG *DAG) {
// Iterate over each instruction that has been scheduled already. The start
// slot computuation depends on whether the previously scheduled instruction
// is a predecessor or successor of the specified instruction.
for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
// Iterate over each instruction in the current cycle.
for (SUnit *I : getInstructions(cycle)) {
// Because we're processing a DAG for the dependences, we recognize
// the back-edge in recurrences by anti dependences.
for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
const SDep &Dep = SU->Preds[i];
if (Dep.getSUnit() == I) {
if (!DAG->isBackedge(SU, Dep)) {
int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
*MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
int End = earliestCycleInChain(Dep) + (II - 1);
*MinEnd = std::min(*MinEnd, End);
}
} else {
int LateStart = cycle - DAG->getLatency(SU, Dep) +
DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
*MinLateStart = std::min(*MinLateStart, LateStart);
}
}
// For instruction that requires multiple iterations, make sure that
// the dependent instruction is not scheduled past the definition.
SUnit *BE = multipleIterations(I, DAG);
if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
!SU->isPred(I))
*MinLateStart = std::min(*MinLateStart, cycle);
}
for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
if (SU->Succs[i].getSUnit() == I) {
const SDep &Dep = SU->Succs[i];
if (!DAG->isBackedge(SU, Dep)) {
int LateStart = cycle - DAG->getLatency(SU, Dep) +
DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
*MinLateStart = std::min(*MinLateStart, LateStart);
if (DAG->isLoopCarriedOrder(SU, Dep)) {
int Start = latestCycleInChain(Dep) + 1 - II;
*MaxStart = std::max(*MaxStart, Start);
}
} else {
int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
*MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
}
}
}
}
}
/// Order the instructions within a cycle so that the definitions occur
/// before the uses. Returns true if the instruction is added to the start
/// of the list, or false if added to the end.
bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
std::deque<SUnit *> &Insts) {
MachineInstr *MI = SU->getInstr();
bool OrderBeforeUse = false;
bool OrderAfterDef = false;
bool OrderBeforeDef = false;
unsigned MoveDef = 0;
unsigned MoveUse = 0;
int StageInst1 = stageScheduled(SU);
unsigned Pos = 0;
for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
++I, ++Pos) {
// Relative order of Phis does not matter.
if (MI->isPHI() && (*I)->getInstr()->isPHI())
continue;
for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
continue;
unsigned Reg = MO.getReg();
unsigned BasePos, OffsetPos;
if (ST.getInstrInfo()->getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
if (MI->getOperand(BasePos).getReg() == Reg)
if (unsigned NewReg = SSD->getInstrBaseReg(SU))
Reg = NewReg;
bool Reads, Writes;
std::tie(Reads, Writes) =
(*I)->getInstr()->readsWritesVirtualRegister(Reg);
if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
OrderBeforeUse = true;
MoveUse = Pos;
} else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
// Add the instruction after the scheduled instruction.
OrderAfterDef = true;
MoveDef = Pos;
} else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
OrderBeforeUse = true;
MoveUse = Pos;
} else {
OrderAfterDef = true;
MoveDef = Pos;
}
} else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
OrderBeforeUse = true;
MoveUse = Pos;
if (MoveUse != 0) {
OrderAfterDef = true;
MoveDef = Pos - 1;
}
} else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
// Add the instruction before the scheduled instruction.
OrderBeforeUse = true;
MoveUse = Pos;
} else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
OrderBeforeDef = true;
MoveUse = Pos;
}
}
// Check for order dependences between instructions. Make sure the source
// is ordered before the destination.
for (auto &S : SU->Succs)
if (S.getKind() == SDep::Order) {
if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
OrderBeforeUse = true;
MoveUse = Pos;
}
} else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
if (S.isAssignedRegDep()) {
OrderAfterDef = true;
MoveDef = Pos;
}
} else {
OrderBeforeUse = true;
MoveUse = Pos;
}
}
for (auto &P : SU->Preds)
if (P.getKind() == SDep::Order) {
if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
OrderAfterDef = true;
MoveDef = Pos;
}
} else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
if (P.isAssignedRegDep()) {
OrderBeforeUse = true;
MoveUse = Pos;
}
} else {
OrderAfterDef = true;
MoveDef = Pos;
}
}
}
// A circular dependence.
if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
OrderBeforeUse = false;
// OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
// to a loop-carried dependence.
if (OrderBeforeDef)
OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
// The uncommon case when the instruction order needs to be updated because
// there is both a use and def.
if (OrderBeforeUse && OrderAfterDef) {
SUnit *UseSU = Insts.at(MoveUse);
SUnit *DefSU = Insts.at(MoveDef);
if (MoveUse > MoveDef) {
Insts.erase(Insts.begin() + MoveUse);
Insts.erase(Insts.begin() + MoveDef);
} else {
Insts.erase(Insts.begin() + MoveDef);
Insts.erase(Insts.begin() + MoveUse);
}
if (orderDependence(SSD, UseSU, Insts)) {
Insts.push_front(SU);
orderDependence(SSD, DefSU, Insts);
return true;
}
Insts.pop_back();
Insts.push_back(SU);
Insts.push_back(UseSU);
orderDependence(SSD, DefSU, Insts);
return false;
}
// Put the new instruction first if there is a use in the list. Otherwise,
// put it at the end of the list.
if (OrderBeforeUse)
Insts.push_front(SU);
else
Insts.push_back(SU);
return OrderBeforeUse;
}
/// Return true if the scheduled Phi has a loop carried operand.
bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
if (!Phi.isPHI())
return false;
assert(Phi.isPHI() && "Expecing a Phi.");
SUnit *DefSU = SSD->getSUnit(&Phi);
unsigned DefCycle = cycleScheduled(DefSU);
int DefStage = stageScheduled(DefSU);
unsigned InitVal = 0;
unsigned LoopVal = 0;
getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
if (!UseSU)
return true;
if (UseSU->getInstr()->isPHI())
return true;
unsigned LoopCycle = cycleScheduled(UseSU);
int LoopStage = stageScheduled(UseSU);
return LoopCycle > DefCycle ||
(LoopCycle <= DefCycle && LoopStage <= DefStage);
}
/// Return true if the instruction is a definition that is loop carried
/// and defines the use on the next iteration.
/// v1 = phi(v2, v3)
/// (Def) v3 = op v1
/// (MO) = v1
/// If MO appears before Def, then then v1 and v3 may get assigned to the same
/// register.
bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
MachineInstr *Def, MachineOperand &MO) {
if (!MO.isReg())
return false;
if (Def->isPHI())
return false;
MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
return false;
if (!isLoopCarried(SSD, *Phi))
return false;
unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
MachineOperand &DMO = Def->getOperand(i);
if (!DMO.isReg() || !DMO.isDef())
continue;
if (DMO.getReg() == LoopReg)
return true;
}
return false;
}
// Check if the generated schedule is valid. This function checks if
// an instruction that uses a physical register is scheduled in a
// different stage than the definition. The pipeliner does not handle
// physical register values that may cross a basic block boundary.
bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
SUnit &SU = SSD->SUnits[i];
if (!SU.hasPhysRegDefs)
continue;
int StageDef = stageScheduled(&SU);
assert(StageDef != -1 && "Instruction should have been scheduled.");
for (auto &SI : SU.Succs)
if (SI.isAssignedRegDep())
if (TRI->isPhysicalRegister(SI.getReg()))
if (stageScheduled(SI.getSUnit()) != StageDef)
return false;
}
return true;
}
/// After the schedule has been formed, call this function to combine
/// the instructions from the different stages/cycles. That is, this
/// function creates a schedule that represents a single iteration.
void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
// Move all instructions to the first stage from later stages.
for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
++stage) {
std::deque<SUnit *> &cycleInstrs =
ScheduledInstrs[cycle + (stage * InitiationInterval)];
for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
E = cycleInstrs.rend();
I != E; ++I)
ScheduledInstrs[cycle].push_front(*I);
}
}
// Iterate over the definitions in each instruction, and compute the
// stage difference for each use. Keep the maximum value.
for (auto &I : InstrToCycle) {
int DefStage = stageScheduled(I.first);
MachineInstr *MI = I.first->getInstr();
for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg() || !Op.isDef())
continue;
unsigned Reg = Op.getReg();
unsigned MaxDiff = 0;
bool PhiIsSwapped = false;
for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
EI = MRI.use_end();
UI != EI; ++UI) {
MachineOperand &UseOp = *UI;
MachineInstr *UseMI = UseOp.getParent();
SUnit *SUnitUse = SSD->getSUnit(UseMI);
int UseStage = stageScheduled(SUnitUse);
unsigned Diff = 0;
if (UseStage != -1 && UseStage >= DefStage)
Diff = UseStage - DefStage;
if (MI->isPHI()) {
if (isLoopCarried(SSD, *MI))
++Diff;
else
PhiIsSwapped = true;
}
MaxDiff = std::max(Diff, MaxDiff);
}
RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
}
}
// Erase all the elements in the later stages. Only one iteration should
// remain in the scheduled list, and it contains all the instructions.
for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
ScheduledInstrs.erase(cycle);
// Change the registers in instruction as specified in the InstrChanges
// map. We need to use the new registers to create the correct order.
for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
SUnit *SU = &SSD->SUnits[i];
SSD->applyInstrChange(SU->getInstr(), *this, true);
}
// Reorder the instructions in each cycle to fix and improve the
// generated code.
for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
std::deque<SUnit *> newOrderZC;
// Put the zero-cost, pseudo instructions at the start of the cycle.
for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
SUnit *SU = cycleInstrs[i];
if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
orderDependence(SSD, SU, newOrderZC);
}
std::deque<SUnit *> newOrderI;
// Then, add the regular instructions back.
for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
SUnit *SU = cycleInstrs[i];
if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
orderDependence(SSD, SU, newOrderI);
}
// Replace the old order with the new order.
cycleInstrs.swap(newOrderZC);
cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
}
DEBUG(dump(););
}
/// Print the schedule information to the given output.
void SMSchedule::print(raw_ostream &os) const {
// Iterate over each cycle.
for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
// Iterate over each instruction in the cycle.
const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
for (SUnit *CI : cycleInstrs->second) {
os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
os << "(" << CI->NodeNum << ") ";
CI->getInstr()->print(os);
os << "\n";
}
}
}
/// Utility function used for debugging to print the schedule.
void SMSchedule::dump() const { print(dbgs()); }