//===- ScalarEvolutionAliasAnalysis.cpp - SCEV-based Alias Analysis -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the ScalarEvolutionAliasAnalysis pass, which implements a
// simple alias analysis implemented in terms of ScalarEvolution queries.
//
// This differs from traditional loop dependence analysis in that it tests
// for dependencies within a single iteration of a loop, rather than
// dependencies between different iterations.
//
// ScalarEvolution has a more complete understanding of pointer arithmetic
// than BasicAliasAnalysis' collection of ad-hoc analyses.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
using namespace llvm;
AliasResult SCEVAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are. This allows the code below to ignore this special
// case.
if (LocA.Size == 0 || LocB.Size == 0)
return NoAlias;
// This is SCEVAAResult. Get the SCEVs!
const SCEV *AS = SE.getSCEV(const_cast<Value *>(LocA.Ptr));
const SCEV *BS = SE.getSCEV(const_cast<Value *>(LocB.Ptr));
// If they evaluate to the same expression, it's a MustAlias.
if (AS == BS)
return MustAlias;
// If something is known about the difference between the two addresses,
// see if it's enough to prove a NoAlias.
if (SE.getEffectiveSCEVType(AS->getType()) ==
SE.getEffectiveSCEVType(BS->getType())) {
unsigned BitWidth = SE.getTypeSizeInBits(AS->getType());
APInt ASizeInt(BitWidth, LocA.Size);
APInt BSizeInt(BitWidth, LocB.Size);
// Compute the difference between the two pointers.
const SCEV *BA = SE.getMinusSCEV(BS, AS);
// Test whether the difference is known to be great enough that memory of
// the given sizes don't overlap. This assumes that ASizeInt and BSizeInt
// are non-zero, which is special-cased above.
if (ASizeInt.ule(SE.getUnsignedRange(BA).getUnsignedMin()) &&
(-BSizeInt).uge(SE.getUnsignedRange(BA).getUnsignedMax()))
return NoAlias;
// Folding the subtraction while preserving range information can be tricky
// (because of INT_MIN, etc.); if the prior test failed, swap AS and BS
// and try again to see if things fold better that way.
// Compute the difference between the two pointers.
const SCEV *AB = SE.getMinusSCEV(AS, BS);
// Test whether the difference is known to be great enough that memory of
// the given sizes don't overlap. This assumes that ASizeInt and BSizeInt
// are non-zero, which is special-cased above.
if (BSizeInt.ule(SE.getUnsignedRange(AB).getUnsignedMin()) &&
(-ASizeInt).uge(SE.getUnsignedRange(AB).getUnsignedMax()))
return NoAlias;
}
// If ScalarEvolution can find an underlying object, form a new query.
// The correctness of this depends on ScalarEvolution not recognizing
// inttoptr and ptrtoint operators.
Value *AO = GetBaseValue(AS);
Value *BO = GetBaseValue(BS);
if ((AO && AO != LocA.Ptr) || (BO && BO != LocB.Ptr))
if (alias(MemoryLocation(AO ? AO : LocA.Ptr,
AO ? +MemoryLocation::UnknownSize : LocA.Size,
AO ? AAMDNodes() : LocA.AATags),
MemoryLocation(BO ? BO : LocB.Ptr,
BO ? +MemoryLocation::UnknownSize : LocB.Size,
BO ? AAMDNodes() : LocB.AATags)) == NoAlias)
return NoAlias;
// Forward the query to the next analysis.
return AAResultBase::alias(LocA, LocB);
}
/// Given an expression, try to find a base value.
///
/// Returns null if none was found.
Value *SCEVAAResult::GetBaseValue(const SCEV *S) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
// In an addrec, assume that the base will be in the start, rather
// than the step.
return GetBaseValue(AR->getStart());
} else if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
// If there's a pointer operand, it'll be sorted at the end of the list.
const SCEV *Last = A->getOperand(A->getNumOperands() - 1);
if (Last->getType()->isPointerTy())
return GetBaseValue(Last);
} else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
// This is a leaf node.
return U->getValue();
}
// No Identified object found.
return nullptr;
}
char SCEVAA::PassID;
SCEVAAResult SCEVAA::run(Function &F, AnalysisManager<Function> &AM) {
return SCEVAAResult(AM.getResult<ScalarEvolutionAnalysis>(F));
}
char SCEVAAWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(SCEVAAWrapperPass, "scev-aa",
"ScalarEvolution-based Alias Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(SCEVAAWrapperPass, "scev-aa",
"ScalarEvolution-based Alias Analysis", false, true)
FunctionPass *llvm::createSCEVAAWrapperPass() {
return new SCEVAAWrapperPass();
}
SCEVAAWrapperPass::SCEVAAWrapperPass() : FunctionPass(ID) {
initializeSCEVAAWrapperPassPass(*PassRegistry::getPassRegistry());
}
bool SCEVAAWrapperPass::runOnFunction(Function &F) {
Result.reset(
new SCEVAAResult(getAnalysis<ScalarEvolutionWrapperPass>().getSE()));
return false;
}
void SCEVAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<ScalarEvolutionWrapperPass>();
}