/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "util/utf8/unicodetext.h"
#include <string.h>
#include <algorithm>
#include "util/strings/utf8.h"
namespace libtextclassifier2 {
// *************** Data representation **********
// Note: the copy constructor is undefined.
UnicodeText::Repr& UnicodeText::Repr::operator=(Repr&& src) {
if (ours_ && data_) delete[] data_;
data_ = src.data_;
size_ = src.size_;
capacity_ = src.capacity_;
ours_ = src.ours_;
src.ours_ = false;
return *this;
}
void UnicodeText::Repr::PointTo(const char* data, int size) {
if (ours_ && data_) delete[] data_; // If we owned the old buffer, free it.
data_ = const_cast<char*>(data);
size_ = size;
capacity_ = size;
ours_ = false;
}
void UnicodeText::Repr::Copy(const char* data, int size) {
resize(size);
memcpy(data_, data, size);
}
void UnicodeText::Repr::resize(int new_size) {
if (new_size == 0) {
clear();
} else {
if (!ours_ || new_size > capacity_) reserve(new_size);
// Clear the memory in the expanded part.
if (size_ < new_size) memset(data_ + size_, 0, new_size - size_);
size_ = new_size;
ours_ = true;
}
}
void UnicodeText::Repr::reserve(int new_capacity) {
// If there's already enough capacity, and we're an owner, do nothing.
if (capacity_ >= new_capacity && ours_) return;
// Otherwise, allocate a new buffer.
capacity_ = std::max(new_capacity, (3 * capacity_) / 2 + 20);
char* new_data = new char[capacity_];
// If there is an old buffer, copy it into the new buffer.
if (data_) {
memcpy(new_data, data_, size_);
if (ours_) delete[] data_; // If we owned the old buffer, free it.
}
data_ = new_data;
ours_ = true; // We own the new buffer.
// size_ is unchanged.
}
void UnicodeText::Repr::append(const char* bytes, int byte_length) {
reserve(size_ + byte_length);
memcpy(data_ + size_, bytes, byte_length);
size_ += byte_length;
}
void UnicodeText::Repr::clear() {
if (ours_) delete[] data_;
data_ = nullptr;
size_ = capacity_ = 0;
ours_ = true;
}
// *************** UnicodeText ******************
UnicodeText::UnicodeText() {}
UnicodeText::UnicodeText(const UnicodeText& src) { Copy(src); }
UnicodeText& UnicodeText::operator=(UnicodeText&& src) {
this->repr_ = std::move(src.repr_);
return *this;
}
UnicodeText& UnicodeText::Copy(const UnicodeText& src) {
repr_.Copy(src.repr_.data_, src.repr_.size_);
return *this;
}
UnicodeText& UnicodeText::PointToUTF8(const char* buffer, int byte_length) {
repr_.PointTo(buffer, byte_length);
return *this;
}
UnicodeText& UnicodeText::CopyUTF8(const char* buffer, int byte_length) {
repr_.Copy(buffer, byte_length);
return *this;
}
UnicodeText& UnicodeText::AppendUTF8(const char* utf8, int len) {
repr_.append(utf8, len);
return *this;
}
const char* UnicodeText::data() const { return repr_.data_; }
int UnicodeText::size_bytes() const { return repr_.size_; }
namespace {
enum {
RuneError = 0xFFFD, // Decoding error in UTF.
RuneMax = 0x10FFFF, // Maximum rune value.
};
int runetochar(const char32 rune, char* dest) {
// Convert to unsigned for range check.
uint32 c;
// 1 char 00-7F
c = rune;
if (c <= 0x7F) {
dest[0] = static_cast<char>(c);
return 1;
}
// 2 char 0080-07FF
if (c <= 0x07FF) {
dest[0] = 0xC0 | static_cast<char>(c >> 1 * 6);
dest[1] = 0x80 | (c & 0x3F);
return 2;
}
// Range check
if (c > RuneMax) {
c = RuneError;
}
// 3 char 0800-FFFF
if (c <= 0xFFFF) {
dest[0] = 0xE0 | static_cast<char>(c >> 2 * 6);
dest[1] = 0x80 | ((c >> 1 * 6) & 0x3F);
dest[2] = 0x80 | (c & 0x3F);
return 3;
}
// 4 char 10000-1FFFFF
dest[0] = 0xF0 | static_cast<char>(c >> 3 * 6);
dest[1] = 0x80 | ((c >> 2 * 6) & 0x3F);
dest[2] = 0x80 | ((c >> 1 * 6) & 0x3F);
dest[3] = 0x80 | (c & 0x3F);
return 4;
}
} // namespace
UnicodeText& UnicodeText::AppendCodepoint(char32 ch) {
char str[4];
int char_len = runetochar(ch, str);
repr_.append(str, char_len);
return *this;
}
void UnicodeText::clear() { repr_.clear(); }
int UnicodeText::size_codepoints() const {
return std::distance(begin(), end());
}
bool UnicodeText::empty() const { return size_bytes() == 0; }
bool UnicodeText::is_valid() const {
return IsValidUTF8(repr_.data_, repr_.size_);
}
bool UnicodeText::operator==(const UnicodeText& other) const {
if (repr_.size_ != other.repr_.size_) {
return false;
}
return memcmp(repr_.data_, other.repr_.data_, repr_.size_) == 0;
}
std::string UnicodeText::ToUTF8String() const {
return UTF8Substring(begin(), end());
}
std::string UnicodeText::UTF8Substring(const const_iterator& first,
const const_iterator& last) {
return std::string(first.it_, last.it_ - first.it_);
}
UnicodeText::~UnicodeText() {}
// ******************* UnicodeText::const_iterator *********************
// The implementation of const_iterator would be nicer if it
// inherited from boost::iterator_facade
// (http://boost.org/libs/iterator/doc/iterator_facade.html).
UnicodeText::const_iterator::const_iterator() : it_(0) {}
UnicodeText::const_iterator& UnicodeText::const_iterator::operator=(
const const_iterator& other) {
if (&other != this) it_ = other.it_;
return *this;
}
UnicodeText::const_iterator UnicodeText::begin() const {
return const_iterator(repr_.data_);
}
UnicodeText::const_iterator UnicodeText::end() const {
return const_iterator(repr_.data_ + repr_.size_);
}
bool operator<(const UnicodeText::const_iterator& lhs,
const UnicodeText::const_iterator& rhs) {
return lhs.it_ < rhs.it_;
}
char32 UnicodeText::const_iterator::operator*() const {
// (We could call chartorune here, but that does some
// error-checking, and we're guaranteed that our data is valid
// UTF-8. Also, we expect this routine to be called very often. So
// for speed, we do the calculation ourselves.)
// Convert from UTF-8
unsigned char byte1 = static_cast<unsigned char>(it_[0]);
if (byte1 < 0x80) return byte1;
unsigned char byte2 = static_cast<unsigned char>(it_[1]);
if (byte1 < 0xE0) return ((byte1 & 0x1F) << 6) | (byte2 & 0x3F);
unsigned char byte3 = static_cast<unsigned char>(it_[2]);
if (byte1 < 0xF0) {
return ((byte1 & 0x0F) << 12) | ((byte2 & 0x3F) << 6) | (byte3 & 0x3F);
}
unsigned char byte4 = static_cast<unsigned char>(it_[3]);
return ((byte1 & 0x07) << 18) | ((byte2 & 0x3F) << 12) |
((byte3 & 0x3F) << 6) | (byte4 & 0x3F);
}
UnicodeText::const_iterator& UnicodeText::const_iterator::operator++() {
it_ += GetNumBytesForNonZeroUTF8Char(it_);
return *this;
}
UnicodeText::const_iterator& UnicodeText::const_iterator::operator--() {
while (IsTrailByte(*--it_)) {
}
return *this;
}
UnicodeText UTF8ToUnicodeText(const char* utf8_buf, int len, bool do_copy) {
UnicodeText t;
if (do_copy) {
t.CopyUTF8(utf8_buf, len);
} else {
t.PointToUTF8(utf8_buf, len);
}
return t;
}
UnicodeText UTF8ToUnicodeText(const char* utf8_buf, bool do_copy) {
return UTF8ToUnicodeText(utf8_buf, strlen(utf8_buf), do_copy);
}
UnicodeText UTF8ToUnicodeText(const std::string& str, bool do_copy) {
return UTF8ToUnicodeText(str.data(), str.size(), do_copy);
}
UnicodeText UTF8ToUnicodeText(const std::string& str) {
return UTF8ToUnicodeText(str, /*do_copy=*/true);
}
} // namespace libtextclassifier2