/******************************************************************************
*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
#include <string.h>
#include "iv_datatypedef.h"
#include "iv.h"
#include "impeg2_buf_mgr.h"
#include "impeg2_disp_mgr.h"
#include "impeg2_defs.h"
#include "impeg2_platform_macros.h"
#include "impeg2_inter_pred.h"
#include "impeg2_idct.h"
#include "impeg2_globals.h"
#include "impeg2_mem_func.h"
#include "impeg2_format_conv.h"
#include "impeg2_macros.h"
#include "ivd.h"
#include "impeg2d.h"
#include "impeg2d_bitstream.h"
#include "impeg2d_structs.h"
#include "impeg2d_vld_tables.h"
#include "impeg2d_vld.h"
#include "impeg2d_pic_proc.h"
#include "impeg2d_debug.h"
/*******************************************************************************
* Function name : impeg2d_dec_vld_symbol
*
* Description : Performs decoding of VLD symbol. It performs decoding by
* processing 1 bit at a time
*
* Arguments :
* stream : Bitstream
* ai2_code_table : Table used for decoding
* maxLen : Maximum Length of the decoded symbol in bits
*
* Value Returned: Decoded symbol
*******************************************************************************/
WORD16 impeg2d_dec_vld_symbol(stream_t *ps_stream,const WORD16 ai2_code_table[][2], UWORD16 u2_max_len)
{
UWORD16 u2_data;
WORD16 u2_end = 0;
UWORD16 u2_org_max_len = u2_max_len;
UWORD16 u2_i_bit;
/* Get the maximum number of bits needed to decode a symbol */
u2_data = impeg2d_bit_stream_nxt(ps_stream,u2_max_len);
do
{
u2_max_len--;
/* Read one bit at a time from the variable to decode the huffman code */
u2_i_bit = (UWORD8)((u2_data >> u2_max_len) & 0x1);
/* Get the next node pointer or the symbol from the tree */
u2_end = ai2_code_table[u2_end][u2_i_bit];
}while(u2_end > 0);
/* Flush the appropriate number of bits from the ps_stream */
impeg2d_bit_stream_flush(ps_stream,(UWORD8)(u2_org_max_len - u2_max_len));
return(u2_end);
}
/*******************************************************************************
* Function name : impeg2d_fast_dec_vld_symbol
*
* Description : Performs decoding of VLD symbol. It performs decoding by
* processing n bits at a time
*
* Arguments :
* stream : Bitstream
* ai2_code_table : Code table containing huffman value
* indexTable : Index table containing index
* maxLen : Maximum Length of the decoded symbol in bits
*
* Value Returned: Decoded symbol
*******************************************************************************/
WORD16 impeg2d_fast_dec_vld_symbol(stream_t *ps_stream,
const WORD16 ai2_code_table[][2],
const UWORD16 au2_indexTable[][2],
UWORD16 u2_max_len)
{
UWORD16 u2_cur_code;
UWORD16 u2_num_bits;
UWORD16 u2_vld_offset;
UWORD16 u2_start_len;
WORD16 u2_value;
UWORD16 u2_len;
UWORD16 u2_huffCode;
u2_start_len = au2_indexTable[0][0];
u2_vld_offset = 0;
u2_huffCode = impeg2d_bit_stream_nxt(ps_stream,u2_max_len);
do
{
u2_cur_code = u2_huffCode >> (u2_max_len - u2_start_len);
u2_num_bits = ai2_code_table[u2_cur_code + u2_vld_offset][0];
if(u2_num_bits == 0)
{
u2_huffCode &= ((1 << (u2_max_len - u2_start_len)) - 1);
u2_max_len -= u2_start_len;
u2_start_len = au2_indexTable[ai2_code_table[u2_cur_code + u2_vld_offset][1]][0];
u2_vld_offset = au2_indexTable[ai2_code_table[u2_cur_code + u2_vld_offset][1]][1];
}
else
{
u2_value = ai2_code_table[u2_cur_code + u2_vld_offset][1];
u2_len = u2_num_bits;
}
}while(u2_num_bits == 0);
impeg2d_bit_stream_flush(ps_stream,u2_len);
return(u2_value);
}
/******************************************************************************
*
* Function Name : impeg2d_dec_ac_coeff_zero
*
* Description : Decodes using Table B.14
*
* Arguments : Pointer to VideoObjectLayerStructure
*
* Values Returned : Decoded value
*
* Revision History:
*
* 28 02 2002 AR Creation
*******************************************************************************/
UWORD16 impeg2d_dec_ac_coeff_zero(stream_t *ps_stream, UWORD16* pu2_sym_len, UWORD16* pu2_sym_val)
{
UWORD16 u2_offset,u2_decoded_value;
UWORD8 u1_shift;
UWORD32 u4_bits_read;
u4_bits_read = (UWORD16)impeg2d_bit_stream_nxt(ps_stream,MPEG2_AC_COEFF_MAX_LEN);
if ((UWORD16)u4_bits_read >= 0x0800)
{
u2_offset = (UWORD16)u4_bits_read >> 11;
}
else if ((UWORD16)u4_bits_read >= 0x40)
{
u2_offset = 31 + ((UWORD16)u4_bits_read >> 6);
}
else if ((UWORD16)u4_bits_read >= 0x20)
{
u2_offset = 64;
}
else
{
u2_offset = 63;
u4_bits_read = (UWORD16)u4_bits_read - 0x10;
}
/*-----------------------------------------------------------------------
* The table gOffset contains both the offset for the group to which the
* Vld code belongs in the Ac Coeff Table and the no of bits with which
* the BitsRead should be shifted
*-----------------------------------------------------------------------*/
u2_offset = gau2_impeg2d_offset_zero[u2_offset];
u1_shift = u2_offset & 0xF;
/*-----------------------------------------------------------------------
* Depending upon the vld code, we index exactly to that particular
* Vld codes value in the Ac Coeff Table.
* (Offset >> 4) gives the offset for the group in the AcCoeffTable.
* (BitsRead >> shift) gives the offset within its group
*-----------------------------------------------------------------------*/
u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift);
/*-----------------------------------------------------------------------
* DecodedValue has the Run, Level and the number of bits used by Vld code
*-----------------------------------------------------------------------*/
u2_decoded_value = gau2_impeg2d_dct_coeff_zero[u2_offset];
if(u2_decoded_value == END_OF_BLOCK)
{
*pu2_sym_len = 2;
*pu2_sym_val = EOB_CODE_VALUE;
}
else if(u2_decoded_value == ESCAPE_CODE)
{
*pu2_sym_len = u2_decoded_value & 0x1F;
*pu2_sym_val = ESC_CODE_VALUE;
}
else
{
*pu2_sym_len = u2_decoded_value & 0x1F;
*pu2_sym_val = u2_decoded_value >> 5;
}
return(u2_decoded_value);
}
/******************************************************************************
*
* Function Name : impeg2d_dec_ac_coeff_one
*
* Description : Decodes using Table B.15
*
* Arguments : Pointer to VideoObjectLayerStructure
*
* Values Returned : Decoded value
*
* Revision History:
*
* 28 02 2002 AR Creation
*******************************************************************************/
UWORD16 impeg2d_dec_ac_coeff_one(stream_t *ps_stream, UWORD16* pu2_sym_len, UWORD16* pu2_sym_val)
{
UWORD16 u2_offset, u2_decoded_value;
UWORD8 u1_shift;
UWORD32 u4_bits_read;
u4_bits_read = (UWORD16)impeg2d_bit_stream_nxt(ps_stream,MPEG2_AC_COEFF_MAX_LEN);
if ((UWORD16)u4_bits_read >= 0x8000)
{
/* If the MSB of the vld code is 1 */
if (((UWORD16)u4_bits_read >> 12) == 0xF)
u2_offset = ((UWORD16)u4_bits_read >> 8) & 0xF;
else
u2_offset = (UWORD16)u4_bits_read >> 11;
u2_offset += gau2_impeg2d_offset_one[0];
}
else if ((UWORD16)u4_bits_read >= 0x400)
{
u2_offset =(UWORD16) u4_bits_read >> 10;
u2_offset = gau2_impeg2d_offset_one[u2_offset];
u1_shift = u2_offset & 0xF;
u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift);
}
else if ((UWORD16)u4_bits_read >= 0x20)
{
u2_offset = ((UWORD16)u4_bits_read >> 5) + 31;
u2_offset = gau2_impeg2d_offset_one[u2_offset];
u1_shift = u2_offset & 0xF;
u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift);
}
else
{
u2_offset = gau2_impeg2d_offset_one[63] + ((UWORD16)u4_bits_read & 0xF);
}
/*-----------------------------------------------------------------------
* DecodedValue has the Run, Level and the number of bits used by Vld code
*-----------------------------------------------------------------------*/
u2_decoded_value = gau2_impeg2d_dct_coeff_one[u2_offset];
if(u2_decoded_value == END_OF_BLOCK)
{
*pu2_sym_len = 4;
*pu2_sym_val = EOB_CODE_VALUE;
}
else if(u2_decoded_value == ESCAPE_CODE)
{
*pu2_sym_len = u2_decoded_value & 0x1F;
*pu2_sym_val = ESC_CODE_VALUE;
}
else
{
*pu2_sym_len = u2_decoded_value & 0x1F;
*pu2_sym_val = u2_decoded_value >> 5;
}
return(u2_decoded_value);
}
/******************************************************************************
*
* Function Name : impeg2d_vld_inv_quant_mpeg1
*
* Description : Performs VLD operation for MPEG1/2
*
* Arguments :
* state : VLCD state parameter
* regs : Registers of VLCD
*
* Values Returned : None
******************************************************************************/
IMPEG2D_ERROR_CODES_T impeg2d_vld_inv_quant_mpeg1(
void *pv_dec, /* Decoder State */
WORD16 *pi2_out_addr, /*!< Address where decoded symbols will be stored */
const UWORD8 *pu1_scan, /*!< Scan table to be used */
UWORD16 u2_intra_flag, /*!< Intra Macroblock or not */
UWORD16 u2_colr_comp, /*!< 0 - Luma,1 - U comp, 2 - V comp */
UWORD16 u2_d_picture /*!< D Picture or not */
)
{
UWORD8 *pu1_weighting_matrix;
dec_state_t *ps_dec = (dec_state_t *) pv_dec;
IMPEG2D_ERROR_CODES_T e_error = (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE;
WORD16 pi2_coeffs[NUM_COEFFS];
UWORD8 pu1_pos[NUM_COEFFS];
WORD32 i4_num_coeffs;
/* Perform VLD on the stream to get the coefficients and their positions */
e_error = impeg2d_vld_decode(ps_dec, pi2_coeffs, pu1_scan, pu1_pos, u2_intra_flag,
u2_colr_comp, u2_d_picture, ps_dec->u2_intra_vlc_format,
ps_dec->u2_is_mpeg2, &i4_num_coeffs);
if ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE != e_error)
{
return e_error;
}
/* For YUV420 format,Select the weighting matrix according to Table 7.5 */
pu1_weighting_matrix = (u2_intra_flag == 1) ? ps_dec->au1_intra_quant_matrix:
ps_dec->au1_inter_quant_matrix;
IMPEG2D_IQNT_INP_STATISTICS(pi2_out_addr, ps_dec->u4_non_zero_cols, ps_dec->u4_non_zero_rows);
/* Inverse Quantize the Output of VLD */
PROFILE_DISABLE_INVQUANT_IF0
{
/* Clear output matrix */
PROFILE_DISABLE_MEMSET_RESBUF_IF0
if (1 != (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows))
{
ps_dec->pf_memset_16bit_8x8_linear_block (pi2_out_addr);
}
impeg2d_inv_quant_mpeg1(pi2_out_addr, pu1_weighting_matrix,
ps_dec->u1_quant_scale, u2_intra_flag,
i4_num_coeffs, pi2_coeffs, pu1_pos,
pu1_scan, &ps_dec->u2_def_dc_pred[u2_colr_comp],
ps_dec->u2_intra_dc_precision);
if (0 != pi2_out_addr[0])
{
/* The first coeff might've become non-zero due to intra_dc_decision
* value. So, check here after inverse quantization.
*/
ps_dec->u4_non_zero_cols |= 0x1;
ps_dec->u4_non_zero_rows |= 0x1;
}
}
return e_error;
}
/******************************************************************************
*
* Function Name : impeg2d_vld_inv_quant_mpeg2
*
* Description : Performs VLD operation for MPEG1/2
*
* Arguments :
* state : VLCD state parameter
* regs : Registers of VLCD
*
* Values Returned : None
******************************************************************************/
IMPEG2D_ERROR_CODES_T impeg2d_vld_inv_quant_mpeg2(
void *pv_dec, /* Decoder State */
WORD16 *pi2_out_addr, /*!< Address where decoded symbols will be stored */
const UWORD8 *pu1_scan, /*!< Scan table to be used */
UWORD16 u2_intra_flag, /*!< Intra Macroblock or not */
UWORD16 u2_colr_comp, /*!< 0 - Luma,1 - U comp, 2 - V comp */
UWORD16 u2_d_picture /*!< D Picture or not */
)
{
UWORD8 *pu1_weighting_matrix;
WORD32 u4_sum_is_even;
dec_state_t *ps_dec = (dec_state_t *)pv_dec;
IMPEG2D_ERROR_CODES_T e_error = (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE;
WORD16 pi2_coeffs[NUM_COEFFS];
UWORD8 pi4_pos[NUM_COEFFS];
WORD32 i4_num_coeffs;
/* Perform VLD on the stream to get the coefficients and their positions */
e_error = impeg2d_vld_decode(ps_dec, pi2_coeffs, pu1_scan, pi4_pos, u2_intra_flag,
u2_colr_comp, u2_d_picture, ps_dec->u2_intra_vlc_format,
ps_dec->u2_is_mpeg2, &i4_num_coeffs);
if ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE != e_error)
{
return e_error;
}
/* For YUV420 format,Select the weighting matrix according to Table 7.5 */
pu1_weighting_matrix = (u2_intra_flag == 1) ? ps_dec->au1_intra_quant_matrix:
ps_dec->au1_inter_quant_matrix;
/*mismatch control for mpeg2*/
/* Check if the block has only one non-zero coeff which is DC */
ps_dec->i4_last_value_one = 0;
IMPEG2D_IQNT_INP_STATISTICS(pi2_out_addr, ps_dec->u4_non_zero_cols, ps_dec->u4_non_zero_rows);
/* Inverse Quantize the Output of VLD */
PROFILE_DISABLE_INVQUANT_IF0
{
/* Clear output matrix */
PROFILE_DISABLE_MEMSET_RESBUF_IF0
if (1 != (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows))
{
ps_dec->pf_memset_16bit_8x8_linear_block (pi2_out_addr);
}
u4_sum_is_even = impeg2d_inv_quant_mpeg2(pi2_out_addr, pu1_weighting_matrix,
ps_dec->u1_quant_scale, u2_intra_flag,
i4_num_coeffs, pi2_coeffs,
pi4_pos, pu1_scan,
&ps_dec->u2_def_dc_pred[u2_colr_comp],
ps_dec->u2_intra_dc_precision);
if (0 != pi2_out_addr[0])
{
/* The first coeff might've become non-zero due to intra_dc_decision
* value. So, check here after inverse quantization.
*/
ps_dec->u4_non_zero_cols |= 0x1;
ps_dec->u4_non_zero_rows |= 0x1;
}
if (1 == (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows))
{
ps_dec->i4_last_value_one = 1 - (pi2_out_addr[0] & 1);
}
else
{
/*toggle last bit if sum is even ,else retain it as it is*/
pi2_out_addr[63] ^= (u4_sum_is_even & 1);
if (0 != pi2_out_addr[63])
{
ps_dec->u4_non_zero_cols |= 0x80;
ps_dec->u4_non_zero_rows |= 0x80;
}
}
}
return e_error;
}
/******************************************************************************
*
* Function Name : impeg2d_vld_decode
*
* Description : Performs VLD operation for MPEG1/2
*
* Arguments :
* state : VLCD state parameter
* regs : Registers of VLCD
*
* Values Returned : None
******************************************************************************/
IMPEG2D_ERROR_CODES_T impeg2d_vld_decode(
dec_state_t *ps_dec,
WORD16 *pi2_outAddr, /*!< Address where decoded symbols will be stored */
const UWORD8 *pu1_scan, /*!< Scan table to be used */
UWORD8 *pu1_pos, /*!< Scan table to be used */
UWORD16 u2_intra_flag, /*!< Intra Macroblock or not */
UWORD16 u2_chroma_flag, /*!< Chroma Block or not */
UWORD16 u2_d_picture, /*!< D Picture or not */
UWORD16 u2_intra_vlc_format, /*!< Intra VLC format */
UWORD16 u2_mpeg2, /*!< MPEG-2 or not */
WORD32 *pi4_num_coeffs /*!< Returns the number of coeffs in block */
)
{
UWORD32 u4_sym_len;
UWORD32 u4_decoded_value;
UWORD32 u4_level_first_byte;
WORD32 u4_level;
UWORD32 u4_run, u4_numCoeffs;
UWORD32 u4_buf;
UWORD32 u4_buf_nxt;
UWORD32 u4_offset;
UWORD32 *pu4_buf_aligned;
UWORD32 u4_bits;
stream_t *ps_stream = &ps_dec->s_bit_stream;
WORD32 u4_pos;
UWORD32 u4_nz_cols;
UWORD32 u4_nz_rows;
*pi4_num_coeffs = 0;
ps_dec->u4_non_zero_cols = 0;
ps_dec->u4_non_zero_rows = 0;
u4_nz_cols = ps_dec->u4_non_zero_cols;
u4_nz_rows = ps_dec->u4_non_zero_rows;
GET_TEMP_STREAM_DATA(u4_buf,u4_buf_nxt,u4_offset,pu4_buf_aligned,ps_stream)
/**************************************************************************/
/* Decode the DC coefficient in case of Intra block */
/**************************************************************************/
if(u2_intra_flag)
{
WORD32 dc_size;
WORD32 dc_diff;
WORD32 maxLen;
WORD32 idx;
maxLen = MPEG2_DCT_DC_SIZE_LEN;
idx = 0;
if(u2_chroma_flag != 0)
{
maxLen += 1;
idx++;
}
{
WORD16 end = 0;
UWORD32 maxLen_tmp = maxLen;
UWORD16 m_iBit;
/* Get the maximum number of bits needed to decode a symbol */
IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,maxLen)
do
{
maxLen_tmp--;
/* Read one bit at a time from the variable to decode the huffman code */
m_iBit = (UWORD8)((u4_bits >> maxLen_tmp) & 0x1);
/* Get the next node pointer or the symbol from the tree */
end = gai2_impeg2d_dct_dc_size[idx][end][m_iBit];
}while(end > 0);
dc_size = end + MPEG2_DCT_DC_SIZE_OFFSET;
/* Flush the appropriate number of bits from the stream */
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,(maxLen - maxLen_tmp),pu4_buf_aligned)
}
if (dc_size != 0)
{
UWORD32 u4_bits;
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned, dc_size)
dc_diff = u4_bits;
if ((dc_diff & (1 << (dc_size - 1))) == 0) //v Probably the prediction algo?
dc_diff -= (1 << dc_size) - 1;
}
else
{
dc_diff = 0;
}
pi2_outAddr[*pi4_num_coeffs] = dc_diff;
/* This indicates the position of the coefficient. Since this is the DC
* coefficient, we put the position as 0.
*/
pu1_pos[*pi4_num_coeffs] = pu1_scan[0];
(*pi4_num_coeffs)++;
if (0 != dc_diff)
{
u4_nz_cols |= 0x01;
u4_nz_rows |= 0x01;
}
u4_numCoeffs = 1;
}
/**************************************************************************/
/* Decoding of first AC coefficient in case of non Intra block */
/**************************************************************************/
else
{
/* First symbol can be 1s */
UWORD32 u4_bits;
IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,1)
if(u4_bits == 1)
{
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,1, pu4_buf_aligned)
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned, 1)
if(u4_bits == 1)
{
pi2_outAddr[*pi4_num_coeffs] = -1;
}
else
{
pi2_outAddr[*pi4_num_coeffs] = 1;
}
/* This indicates the position of the coefficient. Since this is the DC
* coefficient, we put the position as 0.
*/
pu1_pos[*pi4_num_coeffs] = pu1_scan[0];
(*pi4_num_coeffs)++;
u4_numCoeffs = 1;
u4_nz_cols |= 0x01;
u4_nz_rows |= 0x01;
}
else
{
u4_numCoeffs = 0;
}
}
if (1 == u2_d_picture)
{
PUT_TEMP_STREAM_DATA(u4_buf, u4_buf_nxt, u4_offset, pu4_buf_aligned, ps_stream)
ps_dec->u4_non_zero_cols = u4_nz_cols;
ps_dec->u4_non_zero_rows = u4_nz_rows;
return ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE);
}
if (1 == u2_intra_vlc_format && u2_intra_flag)
{
while(1)
{
//Putting the impeg2d_dec_ac_coeff_one function inline.
UWORD32 lead_zeros;
WORD16 DecodedValue;
u4_sym_len = 17;
IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,u4_sym_len)
/* There cannot be more than 11 leading zeros in the decoded
* symbol. The symbol is only 17 bits long, so we subtract 15.
*/
lead_zeros = CLZ(u4_bits) - 15;
if (lead_zeros > 11)
{
return IMPEG2D_MB_DATA_DECODE_ERR;
}
DecodedValue = gau2_impeg2d_tab_one_1_9[u4_bits >> 8];
u4_sym_len = (DecodedValue & 0xf);
u4_level = DecodedValue >> 9;
/* One table lookup */
if(0 != u4_level)
{
u4_run = ((DecodedValue >> 4) & 0x1f);
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
else
{
if (DecodedValue == END_OF_BLOCK_ONE)
{
u4_sym_len = 4;
break;
}
else
{
/*Second table lookup*/
lead_zeros = CLZ(u4_bits) - 20;/* -16 since we are dealing with WORD32 */
if (0 != lead_zeros)
{
u4_bits = (u4_bits >> (6 - lead_zeros)) & 0x001F;
/* Flush the number of bits */
if (1 == lead_zeros)
{
u4_sym_len = ((u4_bits & 0x18) >> 3) == 2 ? 11:10;
}
else
{
u4_sym_len = 11 + lead_zeros;
}
/* flushing */
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
/* Calculate the address */
u4_bits = ((lead_zeros - 1) << 5) + u4_bits;
DecodedValue = gau2_impeg2d_tab_one_10_16[u4_bits];
u4_run = BITS(DecodedValue, 8,4);
u4_level = ((WORD16) DecodedValue) >> 9;
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
/*********************************************************************/
/* MPEG2 Escape Code */
/*********************************************************************/
else if(u2_mpeg2 == 1)
{
u4_sym_len = 6;
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,18)
u4_decoded_value = u4_bits;
u4_run = (u4_decoded_value >> 12);
u4_level = (u4_decoded_value & 0x0FFF);
if (u4_level)
u4_level = (u4_level - ((u4_level & 0x0800) << 1));
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
/*********************************************************************/
/* MPEG1 Escape Code */
/*********************************************************************/
else
{
/*-----------------------------------------------------------
* MPEG-1 Stream
*
* <See D.9.3 of MPEG-2> Run-level escape syntax
* Run-level values that cannot be coded with a VLC are coded
* by the escape code '0000 01' followed by
* either a 14-bit FLC (127 <= level <= 127),
* or a 22-bit FLC (255 <= level <= 255).
* This is described in Annex B,B.5f of MPEG-1.standard
*-----------------------------------------------------------*/
/*-----------------------------------------------------------
* First 6 bits are the value of the Run. Next is First 8 bits
* of Level. These bits decide whether it is 14 bit FLC or
* 22-bit FLC.
*
* If( first 8 bits of Level == '1000000' or '00000000')
* then its is 22-bit FLC.
* else
* it is 14-bit FLC.
*-----------------------------------------------------------*/
u4_sym_len = 6;
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,14)
u4_decoded_value = u4_bits;
u4_run = (u4_decoded_value >> 8);
u4_level_first_byte = (u4_decoded_value & 0x0FF);
if(u4_level_first_byte & 0x7F)
{
/*-------------------------------------------------------
* First 8 bits of level are neither 1000000 nor 00000000
* Hence 14-bit FLC (Last 8 bits are used to get level)
*
* Level = (msb of Level_First_Byte is 1)?
* Level_First_Byte - 256 : Level_First_Byte
*-------------------------------------------------------*/
u4_level = (u4_level_first_byte -
((u4_level_first_byte & 0x80) << 1));
}
else
{
/*-------------------------------------------------------
* Next 8 bits are either 1000000 or 00000000
* Hence 22-bit FLC (Last 16 bits are used to get level)
*
* Level = (msb of Level_First_Byte is 1)?
* Level_Second_Byte - 256 : Level_Second_Byte
*-------------------------------------------------------*/
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,8)
u4_level = u4_bits;
u4_level = (u4_level - (u4_level_first_byte << 1));
}
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
}
}
u4_nz_cols |= 1 << (u4_pos & 0x7);
u4_nz_rows |= 1 << (u4_pos >> 0x3);
}
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,u4_sym_len)
}
else
{
// Inline
while(1)
{
UWORD32 lead_zeros;
UWORD16 DecodedValue;
u4_sym_len = 17;
IBITS_NXT(u4_buf, u4_buf_nxt, u4_offset, u4_bits, u4_sym_len)
/* There cannot be more than 11 leading zeros in the decoded
* symbol. The symbol is only 17 bits long, so we subtract 15.
*/
lead_zeros = CLZ(u4_bits) - 15;
if (lead_zeros > 11)
{
return IMPEG2D_MB_DATA_DECODE_ERR;
}
DecodedValue = gau2_impeg2d_tab_zero_1_9[u4_bits >> 8];
u4_sym_len = BITS(DecodedValue, 3, 0);
u4_level = ((WORD16) DecodedValue) >> 9;
if (0 != u4_level)
{
u4_run = BITS(DecodedValue, 8,4);
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
else
{
if(DecodedValue == END_OF_BLOCK_ZERO)
{
u4_sym_len = 2;
break;
}
else
{
lead_zeros = CLZ(u4_bits) - 20;/* -15 since we are dealing with WORD32 */
/*Second table lookup*/
if (0 != lead_zeros)
{
u4_bits = (u4_bits >> (6 - lead_zeros)) & 0x001F;
/* Flush the number of bits */
u4_sym_len = 11 + lead_zeros;
/* Calculate the address */
u4_bits = ((lead_zeros - 1) << 5) + u4_bits;
DecodedValue = gau2_impeg2d_tab_zero_10_16[u4_bits];
u4_run = BITS(DecodedValue, 8,4);
u4_level = ((WORD16) DecodedValue) >> 9;
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
if (1 == lead_zeros)
u4_sym_len--;
/* flushing */
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
/*Escape Sequence*/
else if(u2_mpeg2 == 1)
{
u4_sym_len = 6;
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,18)
u4_decoded_value = u4_bits;
u4_run = (u4_decoded_value >> 12);
u4_level = (u4_decoded_value & 0x0FFF);
if (u4_level)
u4_level = (u4_level - ((u4_level & 0x0800) << 1));
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
/*********************************************************************/
/* MPEG1 Escape Code */
/*********************************************************************/
else
{
/*-----------------------------------------------------------
* MPEG-1 Stream
*
* <See D.9.3 of MPEG-2> Run-level escape syntax
* Run-level values that cannot be coded with a VLC are coded
* by the escape code '0000 01' followed by
* either a 14-bit FLC (127 <= level <= 127),
* or a 22-bit FLC (255 <= level <= 255).
* This is described in Annex B,B.5f of MPEG-1.standard
*-----------------------------------------------------------*/
/*-----------------------------------------------------------
* First 6 bits are the value of the Run. Next is First 8 bits
* of Level. These bits decide whether it is 14 bit FLC or
* 22-bit FLC.
*
* If( first 8 bits of Level == '1000000' or '00000000')
* then its is 22-bit FLC.
* else
* it is 14-bit FLC.
*-----------------------------------------------------------*/
u4_sym_len = 6;
FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned)
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,14)
u4_decoded_value = u4_bits;
u4_run = (u4_decoded_value >> 8);
u4_level_first_byte = (u4_decoded_value & 0x0FF);
if(u4_level_first_byte & 0x7F)
{
/*-------------------------------------------------------
* First 8 bits of level are neither 1000000 nor 00000000
* Hence 14-bit FLC (Last 8 bits are used to get level)
*
* Level = (msb of Level_First_Byte is 1)?
* Level_First_Byte - 256 : Level_First_Byte
*-------------------------------------------------------*/
u4_level = (u4_level_first_byte -
((u4_level_first_byte & 0x80) << 1));
}
else
{
/*-------------------------------------------------------
* Next 8 bits are either 1000000 or 00000000
* Hence 22-bit FLC (Last 16 bits are used to get level)
*
* Level = (msb of Level_First_Byte is 1)?
* Level_Second_Byte - 256 : Level_Second_Byte
*-------------------------------------------------------*/
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,8)
u4_level = u4_bits;
u4_level = (u4_level - (u4_level_first_byte << 1));
}
u4_numCoeffs += u4_run;
if (u4_numCoeffs >= NUM_COEFFS)
{
return IMPEG2D_MB_TEX_DECODE_ERR;
}
u4_pos = pu1_scan[u4_numCoeffs++];
pu1_pos[*pi4_num_coeffs] = u4_pos;
pi2_outAddr[*pi4_num_coeffs] = u4_level;
(*pi4_num_coeffs)++;
}
}
}
u4_nz_cols |= 1 << (u4_pos & 0x7);
u4_nz_rows |= 1 << (u4_pos >> 0x3);
}
IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,u4_sym_len)
}
PUT_TEMP_STREAM_DATA(u4_buf, u4_buf_nxt, u4_offset, pu4_buf_aligned, ps_stream)
ps_dec->u4_non_zero_cols = u4_nz_cols;
ps_dec->u4_non_zero_rows = u4_nz_rows;
return (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE;
}
/*****************************************************************************/
/* */
/* Function Name : impeg2d_inv_quant_mpeg1 */
/* */
/* Description : Inverse quantizes the output of VLD */
/* */
/* Inputs : */
/* blk, - Block to be inverse quantized */
/* weighting_matrix - Matrix to be used in inverse quant */
/* intra_dc_precision- Precision reqd to scale intra DC value */
/* quant_scale - Quanization scale for inverse quant */
/* intra_flag - Intra or Not */
/* */
/* Globals : None */
/* */
/* Processing : Implements the inverse quantize equation */
/* */
/* Outputs : Inverse quantized values in the block */
/* */
/* Returns : None */
/* */
/* Issues : None */
/* */
/* Revision History: */
/* */
/* DD MM YYYY Author(s) Changes */
/* 05 09 2005 Harish M First Version */
/* */
/*****************************************************************************/
UWORD8 impeg2d_inv_quant_mpeg1(WORD16 *pi2_blk,
UWORD8 *pu1_weighting_matrix,
UWORD8 u1_quant_scale,
WORD32 u4_intra_flag,
WORD32 i4_num_coeffs,
WORD16 *pi2_coeffs,
UWORD8 *pu1_pos,
const UWORD8 *pu1_scan,
UWORD16 *pu2_def_dc_pred,
UWORD16 u2_intra_dc_precision)
{
UWORD16 i4_pos;
WORD32 i4_iter;
/* Inverse Quantize the predicted DC value for intra MB*/
if(u4_intra_flag == 1)
{
/**************************************************************************/
/* Decode the DC coefficient in case of Intra block and also update */
/* DC predictor value of the corresponding color component */
/**************************************************************************/
{
pi2_coeffs[0] += *pu2_def_dc_pred;
*pu2_def_dc_pred = pi2_coeffs[0];
pi2_coeffs[0] <<= (3 - u2_intra_dc_precision);
pi2_coeffs[0] = CLIP_S12(pi2_coeffs[0]);
}
pi2_blk[pu1_scan[0]] = pi2_coeffs[0];
}
/************************************************************************/
/* Inverse quantization of other DCT coefficients */
/************************************************************************/
for(i4_iter = u4_intra_flag; i4_iter < i4_num_coeffs; i4_iter++)
{
WORD16 sign;
WORD32 temp, temp1;
/* Position is the inverse scan of the index stored */
i4_pos = pu1_pos[i4_iter];
pi2_blk[i4_pos] = pi2_coeffs[i4_iter];
sign = SIGN(pi2_blk[i4_pos]);
temp = ABS(pi2_blk[i4_pos] << 1);
/* pi2_coeffs has only non-zero elements. So no need to check
* if the coeff is non-zero.
*/
temp = temp + (1 * !u4_intra_flag);
temp = temp * pu1_weighting_matrix[i4_pos] * u1_quant_scale;
temp = temp >> 5;
temp1 = temp | 1;
temp1 = (temp1 > temp) ? (temp1 - temp) : (temp - temp1);
temp = temp - temp1;
if(temp < 0)
{
temp = 0;
}
temp = temp * sign;
temp = CLIP_S12(temp);
pi2_blk[i4_pos] = temp;
}
/*return value is used in the case of mpeg2 for mismatch control*/
return (0);
} /* End of inv_quant() */
/*****************************************************************************/
/* */
/* Function Name : impeg2d_inv_quant_mpeg2 */
/* */
/* Description : Inverse quantizes the output of VLD */
/* */
/* Inputs : */
/* blk, - Block to be inverse quantized */
/* weighting_matrix - Matrix to be used in inverse quant */
/* intra_dc_precision- Precision reqd to scale intra DC value */
/* quant_scale - Quanization scale for inverse quant */
/* intra_flag - Intra or Not */
/* */
/* Globals : None */
/* */
/* Processing : Implements the inverse quantize equation */
/* */
/* Outputs : Inverse quantized values in the block */
/* */
/* Returns : None */
/* */
/* Issues : None */
/* */
/* Revision History: */
/* */
/* DD MM YYYY Author(s) Changes */
/* 05 09 2005 Harish M First Version */
/* */
/*****************************************************************************/
UWORD8 impeg2d_inv_quant_mpeg2(WORD16 *pi2_blk,
UWORD8 *pu1_weighting_matrix,
UWORD8 u1_quant_scale,
WORD32 u4_intra_flag,
WORD32 i4_num_coeffs,
WORD16 *pi2_coeffs,
UWORD8 *pu1_pos,
const UWORD8 *pu1_scan,
UWORD16 *pu2_def_dc_pred,
UWORD16 u2_intra_dc_precision)
{
WORD32 i4_pos;
/* Used for Mismatch control */
UWORD32 sum;
WORD32 i4_iter;
sum = 0;
/* Inverse Quantize the predicted DC value for intra MB*/
if(u4_intra_flag == 1)
{
/**************************************************************************/
/* Decode the DC coefficient in case of Intra block and also update */
/* DC predictor value of the corresponding color component */
/**************************************************************************/
{
pi2_coeffs[0] += *pu2_def_dc_pred;
*pu2_def_dc_pred = pi2_coeffs[0];
pi2_coeffs[0] <<= (3 - u2_intra_dc_precision);
pi2_coeffs[0] = CLIP_S12(pi2_coeffs[0]);
}
pi2_blk[pu1_scan[0]] = pi2_coeffs[0];
sum = pi2_blk[0];
}
/************************************************************************/
/* Inverse quantization of other DCT coefficients */
/************************************************************************/
for(i4_iter = u4_intra_flag; i4_iter < i4_num_coeffs; i4_iter++)
{
WORD16 sign;
WORD32 temp;
/* Position is the inverse scan of the index stored */
i4_pos = pu1_pos[i4_iter];
pi2_blk[i4_pos] = pi2_coeffs[i4_iter];
sign = SIGN(pi2_blk[i4_pos]);
temp = ABS(pi2_blk[i4_pos] << 1);
temp = temp + (1 * !u4_intra_flag);
temp = temp * pu1_weighting_matrix[i4_pos] * u1_quant_scale;
temp = temp >> 5;
temp = temp * sign;
temp = CLIP_S12(temp);
pi2_blk[i4_pos] = temp;
sum += temp;
}
return (sum ^ 1);
} /* End of inv_quant() */