普通文本  |  1086行  |  39.22 KB

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/tracked_objects.h"

#include <ctype.h>
#include <limits.h>
#include <stdlib.h>

#include "base/atomicops.h"
#include "base/base_switches.h"
#include "base/command_line.h"
#include "base/compiler_specific.h"
#include "base/debug/leak_annotations.h"
#include "base/logging.h"
#include "base/metrics/histogram_macros.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "base/process/process_handle.h"
#include "base/third_party/valgrind/memcheck.h"
#include "base/threading/worker_pool.h"
#include "base/tracking_info.h"
#include "build/build_config.h"

using base::TimeDelta;

namespace base {
class TimeDelta;
}

namespace tracked_objects {

namespace {

constexpr char kWorkerThreadSanitizedName[] = "WorkerThread-*";

// When ThreadData is first initialized, should we start in an ACTIVE state to
// record all of the startup-time tasks, or should we start up DEACTIVATED, so
// that we only record after parsing the command line flag --enable-tracking.
// Note that the flag may force either state, so this really controls only the
// period of time up until that flag is parsed.  If there is no flag seen, then
// this state may prevail for much or all of the process lifetime.
const ThreadData::Status kInitialStartupState = ThreadData::PROFILING_ACTIVE;

// Possible states of the profiler timing enabledness.
enum {
  UNDEFINED_TIMING,
  ENABLED_TIMING,
  DISABLED_TIMING,
};

// State of the profiler timing enabledness.
base::subtle::Atomic32 g_profiler_timing_enabled = UNDEFINED_TIMING;

// Returns whether profiler timing is enabled.  The default is true, but this
// may be overridden by a command-line flag.  Some platforms may
// programmatically set this command-line flag to the "off" value if it's not
// specified.
// This in turn can be overridden by explicitly calling
// ThreadData::EnableProfilerTiming, say, based on a field trial.
inline bool IsProfilerTimingEnabled() {
  // Reading |g_profiler_timing_enabled| is done without barrier because
  // multiple initialization is not an issue while the barrier can be relatively
  // costly given that this method is sometimes called in a tight loop.
  base::subtle::Atomic32 current_timing_enabled =
      base::subtle::NoBarrier_Load(&g_profiler_timing_enabled);
  if (current_timing_enabled == UNDEFINED_TIMING) {
    if (!base::CommandLine::InitializedForCurrentProcess())
      return true;
    current_timing_enabled =
        (base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
             switches::kProfilerTiming) ==
         switches::kProfilerTimingDisabledValue)
            ? DISABLED_TIMING
            : ENABLED_TIMING;
    base::subtle::NoBarrier_Store(&g_profiler_timing_enabled,
                                  current_timing_enabled);
  }
  return current_timing_enabled == ENABLED_TIMING;
}

// Sanitize a thread name by replacing trailing sequence of digits with "*".
// Examples:
// 1. "BrowserBlockingWorker1/23857" => "BrowserBlockingWorker1/*"
// 2. "Chrome_IOThread" => "Chrome_IOThread"
std::string SanitizeThreadName(const std::string& thread_name) {
  size_t i = thread_name.length();

  while (i > 0 && isdigit(thread_name[i - 1]))
    --i;

  if (i == thread_name.length())
    return thread_name;

  return thread_name.substr(0, i) + '*';
}

}  // namespace

//------------------------------------------------------------------------------
// DeathData tallies durations when a death takes place.

DeathData::DeathData()
    : count_(0),
      sample_probability_count_(0),
      run_duration_sum_(0),
      queue_duration_sum_(0),
      run_duration_max_(0),
      queue_duration_max_(0),
      alloc_ops_(0),
      free_ops_(0),
      allocated_bytes_(0),
      freed_bytes_(0),
      alloc_overhead_bytes_(0),
      max_allocated_bytes_(0),
      run_duration_sample_(0),
      queue_duration_sample_(0),
      last_phase_snapshot_(nullptr) {}

DeathData::DeathData(const DeathData& other)
    : count_(other.count_),
      sample_probability_count_(other.sample_probability_count_),
      run_duration_sum_(other.run_duration_sum_),
      queue_duration_sum_(other.queue_duration_sum_),
      run_duration_max_(other.run_duration_max_),
      queue_duration_max_(other.queue_duration_max_),
      alloc_ops_(other.alloc_ops_),
      free_ops_(other.free_ops_),
      allocated_bytes_(other.allocated_bytes_),
      freed_bytes_(other.freed_bytes_),
      alloc_overhead_bytes_(other.alloc_overhead_bytes_),
      max_allocated_bytes_(other.max_allocated_bytes_),
      run_duration_sample_(other.run_duration_sample_),
      queue_duration_sample_(other.queue_duration_sample_),
      last_phase_snapshot_(nullptr) {
  // This constructor will be used by std::map when adding new DeathData values
  // to the map.  At that point, last_phase_snapshot_ is still NULL, so we don't
  // need to worry about ownership transfer.
  DCHECK(other.last_phase_snapshot_ == nullptr);
}

DeathData::~DeathData() {
  while (last_phase_snapshot_) {
    const DeathDataPhaseSnapshot* snapshot = last_phase_snapshot_;
    last_phase_snapshot_ = snapshot->prev;
    delete snapshot;
  }
}

// TODO(jar): I need to see if this macro to optimize branching is worth using.
//
// This macro has no branching, so it is surely fast, and is equivalent to:
//             if (assign_it)
//               target = source;
// We use a macro rather than a template to force this to inline.
// Related code for calculating max is discussed on the web.
#define CONDITIONAL_ASSIGN(assign_it, target, source) \
  ((target) ^= ((target) ^ (source)) & -static_cast<int32_t>(assign_it))

void DeathData::RecordDurations(const int32_t queue_duration,
                                const int32_t run_duration,
                                const uint32_t random_number) {
  // We'll just clamp at INT_MAX, but we should note this in the UI as such.
  if (count_ < INT_MAX)
    base::subtle::NoBarrier_Store(&count_, count_ + 1);

  int sample_probability_count =
      base::subtle::NoBarrier_Load(&sample_probability_count_);
  if (sample_probability_count < INT_MAX)
    ++sample_probability_count;
  base::subtle::NoBarrier_Store(&sample_probability_count_,
                                sample_probability_count);

  base::subtle::NoBarrier_Store(&queue_duration_sum_,
                                queue_duration_sum_ + queue_duration);
  base::subtle::NoBarrier_Store(&run_duration_sum_,
                                run_duration_sum_ + run_duration);

  if (queue_duration_max() < queue_duration)
    base::subtle::NoBarrier_Store(&queue_duration_max_, queue_duration);
  if (run_duration_max() < run_duration)
    base::subtle::NoBarrier_Store(&run_duration_max_, run_duration);

  // Take a uniformly distributed sample over all durations ever supplied during
  // the current profiling phase.
  // The probability that we (instead) use this new sample is
  // 1/sample_probability_count_. This results in a completely uniform selection
  // of the sample (at least when we don't clamp sample_probability_count_...
  // but that should be inconsequentially likely).  We ignore the fact that we
  // correlated our selection of a sample to the run and queue times (i.e., we
  // used them to generate random_number).
  CHECK_GT(sample_probability_count, 0);
  if (0 == (random_number % sample_probability_count)) {
    base::subtle::NoBarrier_Store(&queue_duration_sample_, queue_duration);
    base::subtle::NoBarrier_Store(&run_duration_sample_, run_duration);
  }
}

void DeathData::RecordAllocations(const uint32_t alloc_ops,
                                  const uint32_t free_ops,
                                  const uint32_t allocated_bytes,
                                  const uint32_t freed_bytes,
                                  const uint32_t alloc_overhead_bytes,
                                  const uint32_t max_allocated_bytes) {
  // Use saturating arithmetic.
  SaturatingMemberAdd(alloc_ops, &alloc_ops_);
  SaturatingMemberAdd(free_ops, &free_ops_);
  SaturatingMemberAdd(allocated_bytes, &allocated_bytes_);
  SaturatingMemberAdd(freed_bytes, &freed_bytes_);
  SaturatingMemberAdd(alloc_overhead_bytes, &alloc_overhead_bytes_);

  int32_t max = base::saturated_cast<int32_t>(max_allocated_bytes);
  if (max > max_allocated_bytes_)
    base::subtle::NoBarrier_Store(&max_allocated_bytes_, max);
}

void DeathData::OnProfilingPhaseCompleted(int profiling_phase) {
  // Snapshotting and storing current state.
  last_phase_snapshot_ =
      new DeathDataPhaseSnapshot(profiling_phase, *this, last_phase_snapshot_);

  // Not touching fields for which a delta can be computed by comparing with a
  // snapshot from the previous phase. Resetting other fields.  Sample values
  // will be reset upon next death recording because sample_probability_count_
  // is set to 0.
  // We avoid resetting to 0 in favor of deltas whenever possible.  The reason
  // is that for incrementable fields, resetting to 0 from the snapshot thread
  // potentially in parallel with incrementing in the death thread may result in
  // significant data corruption that has a potential to grow with time.  Not
  // resetting incrementable fields and using deltas will cause any
  // off-by-little corruptions to be likely fixed at the next snapshot.
  // The max values are not incrementable, and cannot be deduced using deltas
  // for a given phase. Hence, we have to reset them to 0.  But the potential
  // damage is limited to getting the previous phase's max to apply for the next
  // phase, and the error doesn't have a potential to keep growing with new
  // resets.
  // sample_probability_count_ is incrementable, but must be reset to 0 at the
  // phase end, so that we start a new uniformly randomized sample selection
  // after the reset. These fields are updated using atomics. However, race
  // conditions are possible since these are updated individually and not
  // together atomically, resulting in the values being mutually inconsistent.
  // The damage is limited to selecting a wrong sample, which is not something
  // that can cause accumulating or cascading effects.
  // If there were no inconsistencies caused by race conditions, we never send a
  // sample for the previous phase in the next phase's snapshot because
  // ThreadData::SnapshotExecutedTasks doesn't send deltas with 0 count.
  base::subtle::NoBarrier_Store(&sample_probability_count_, 0);
  base::subtle::NoBarrier_Store(&run_duration_max_, 0);
  base::subtle::NoBarrier_Store(&queue_duration_max_, 0);
}

void DeathData::SaturatingMemberAdd(const uint32_t addend,
                                    base::subtle::Atomic32* sum) {
  // Bail quick if no work or already saturated.
  if (addend == 0U || *sum == INT_MAX)
    return;

  base::CheckedNumeric<int32_t> new_sum = *sum;
  new_sum += addend;
  base::subtle::NoBarrier_Store(sum, new_sum.ValueOrDefault(INT_MAX));
}

//------------------------------------------------------------------------------
DeathDataSnapshot::DeathDataSnapshot()
    : count(-1),
      run_duration_sum(-1),
      run_duration_max(-1),
      run_duration_sample(-1),
      queue_duration_sum(-1),
      queue_duration_max(-1),
      queue_duration_sample(-1),
      alloc_ops(-1),
      free_ops(-1),
      allocated_bytes(-1),
      freed_bytes(-1),
      alloc_overhead_bytes(-1),
      max_allocated_bytes(-1) {}

DeathDataSnapshot::DeathDataSnapshot(int count,
                                     int32_t run_duration_sum,
                                     int32_t run_duration_max,
                                     int32_t run_duration_sample,
                                     int32_t queue_duration_sum,
                                     int32_t queue_duration_max,
                                     int32_t queue_duration_sample,
                                     int32_t alloc_ops,
                                     int32_t free_ops,
                                     int32_t allocated_bytes,
                                     int32_t freed_bytes,
                                     int32_t alloc_overhead_bytes,
                                     int32_t max_allocated_bytes)
    : count(count),
      run_duration_sum(run_duration_sum),
      run_duration_max(run_duration_max),
      run_duration_sample(run_duration_sample),
      queue_duration_sum(queue_duration_sum),
      queue_duration_max(queue_duration_max),
      queue_duration_sample(queue_duration_sample),
      alloc_ops(alloc_ops),
      free_ops(free_ops),
      allocated_bytes(allocated_bytes),
      freed_bytes(freed_bytes),
      alloc_overhead_bytes(alloc_overhead_bytes),
      max_allocated_bytes(max_allocated_bytes) {}

DeathDataSnapshot::DeathDataSnapshot(const DeathData& death_data)
    : count(death_data.count()),
      run_duration_sum(death_data.run_duration_sum()),
      run_duration_max(death_data.run_duration_max()),
      run_duration_sample(death_data.run_duration_sample()),
      queue_duration_sum(death_data.queue_duration_sum()),
      queue_duration_max(death_data.queue_duration_max()),
      queue_duration_sample(death_data.queue_duration_sample()),
      alloc_ops(death_data.alloc_ops()),
      free_ops(death_data.free_ops()),
      allocated_bytes(death_data.allocated_bytes()),
      freed_bytes(death_data.freed_bytes()),
      alloc_overhead_bytes(death_data.alloc_overhead_bytes()),
      max_allocated_bytes(death_data.max_allocated_bytes()) {}

DeathDataSnapshot::DeathDataSnapshot(const DeathDataSnapshot& death_data) =
    default;

DeathDataSnapshot::~DeathDataSnapshot() {
}

DeathDataSnapshot DeathDataSnapshot::Delta(
    const DeathDataSnapshot& older) const {
  return DeathDataSnapshot(
      count - older.count, run_duration_sum - older.run_duration_sum,
      run_duration_max, run_duration_sample,
      queue_duration_sum - older.queue_duration_sum, queue_duration_max,
      queue_duration_sample, alloc_ops - older.alloc_ops,
      free_ops - older.free_ops, allocated_bytes - older.allocated_bytes,
      freed_bytes - older.freed_bytes,
      alloc_overhead_bytes - older.alloc_overhead_bytes, max_allocated_bytes);
}

//------------------------------------------------------------------------------
BirthOnThread::BirthOnThread(const Location& location,
                             const ThreadData& current)
    : location_(location),
      birth_thread_(&current) {
}

//------------------------------------------------------------------------------
BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
}

BirthOnThreadSnapshot::BirthOnThreadSnapshot(const BirthOnThread& birth)
    : location(birth.location()),
      sanitized_thread_name(birth.birth_thread()->sanitized_thread_name()) {}

BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
}

//------------------------------------------------------------------------------
Births::Births(const Location& location, const ThreadData& current)
    : BirthOnThread(location, current),
      birth_count_(1) { }

int Births::birth_count() const { return birth_count_; }

void Births::RecordBirth() { ++birth_count_; }

//------------------------------------------------------------------------------
// ThreadData maintains the central data for all births and deaths on a single
// thread.

// TODO(jar): We should pull all these static vars together, into a struct, and
// optimize layout so that we benefit from locality of reference during accesses
// to them.

// static
ThreadData::NowFunction* ThreadData::now_function_for_testing_ = NULL;

// A TLS slot which points to the ThreadData instance for the current thread.
// We do a fake initialization here (zeroing out data), and then the real
// in-place construction happens when we call tls_index_.Initialize().
// static
base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;

// static
int ThreadData::cleanup_count_ = 0;

// static
int ThreadData::incarnation_counter_ = 0;

// static
ThreadData* ThreadData::all_thread_data_list_head_ = NULL;

// static
ThreadData* ThreadData::first_retired_thread_data_ = NULL;

// static
base::LazyInstance<base::Lock>::Leaky
    ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;

// static
base::subtle::Atomic32 ThreadData::status_ = ThreadData::UNINITIALIZED;

ThreadData::ThreadData(const std::string& sanitized_thread_name)
    : next_(NULL),
      next_retired_thread_data_(NULL),
      sanitized_thread_name_(sanitized_thread_name),
      incarnation_count_for_pool_(-1),
      current_stopwatch_(NULL) {
  DCHECK(sanitized_thread_name_.empty() ||
         !isdigit(sanitized_thread_name_.back()));
  PushToHeadOfList();  // Which sets real incarnation_count_for_pool_.
}

ThreadData::~ThreadData() {
}

void ThreadData::PushToHeadOfList() {
  // Toss in a hint of randomness (atop the uniniitalized value).
  (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
                                                 sizeof(random_number_));
  MSAN_UNPOISON(&random_number_, sizeof(random_number_));
  random_number_ += static_cast<uint32_t>(this - static_cast<ThreadData*>(0));
  random_number_ ^= (Now() - TrackedTime()).InMilliseconds();

  DCHECK(!next_);
  base::AutoLock lock(*list_lock_.Pointer());
  incarnation_count_for_pool_ = incarnation_counter_;
  next_ = all_thread_data_list_head_;
  all_thread_data_list_head_ = this;
}

// static
ThreadData* ThreadData::first() {
  base::AutoLock lock(*list_lock_.Pointer());
  return all_thread_data_list_head_;
}

ThreadData* ThreadData::next() const { return next_; }

// static
void ThreadData::InitializeThreadContext(const std::string& thread_name) {
  if (base::WorkerPool::RunsTasksOnCurrentThread())
    return;
  DCHECK_NE(thread_name, kWorkerThreadSanitizedName);
  EnsureTlsInitialization();
  ThreadData* current_thread_data =
      reinterpret_cast<ThreadData*>(tls_index_.Get());
  if (current_thread_data)
    return;  // Browser tests instigate this.
  current_thread_data =
      GetRetiredOrCreateThreadData(SanitizeThreadName(thread_name));
  tls_index_.Set(current_thread_data);
}

// static
ThreadData* ThreadData::Get() {
  if (!tls_index_.initialized())
    return NULL;  // For unittests only.
  ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
  if (registered)
    return registered;

  // We must be a worker thread, since we didn't pre-register.
  ThreadData* worker_thread_data =
      GetRetiredOrCreateThreadData(kWorkerThreadSanitizedName);
  tls_index_.Set(worker_thread_data);
  return worker_thread_data;
}

// static
void ThreadData::OnThreadTermination(void* thread_data) {
  DCHECK(thread_data);  // TLS should *never* call us with a NULL.
  // We must NOT do any allocations during this callback.  There is a chance
  // that the allocator is no longer active on this thread.
  reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
}

void ThreadData::OnThreadTerminationCleanup() {
  // We must NOT do any allocations during this callback. There is a chance that
  // the allocator is no longer active on this thread.

  // The list_lock_ was created when we registered the callback, so it won't be
  // allocated here despite the lazy reference.
  base::AutoLock lock(*list_lock_.Pointer());
  if (incarnation_counter_ != incarnation_count_for_pool_)
    return;  // ThreadData was constructed in an earlier unit test.
  ++cleanup_count_;

  // Add this ThreadData to a retired list so that it can be reused by a thread
  // with the same name sanitized name in the future.
  // |next_retired_thread_data_| is expected to be nullptr for a ThreadData
  // associated with an active thread.
  DCHECK(!next_retired_thread_data_);
  next_retired_thread_data_ = first_retired_thread_data_;
  first_retired_thread_data_ = this;
}

// static
void ThreadData::Snapshot(int current_profiling_phase,
                          ProcessDataSnapshot* process_data_snapshot) {
  // Get an unchanging copy of a ThreadData list.
  ThreadData* my_list = ThreadData::first();

  // Gather data serially.
  // This hackish approach *can* get some slightly corrupt tallies, as we are
  // grabbing values without the protection of a lock, but it has the advantage
  // of working even with threads that don't have message loops.  If a user
  // sees any strangeness, they can always just run their stats gathering a
  // second time.
  BirthCountMap birth_counts;
  for (ThreadData* thread_data = my_list; thread_data;
       thread_data = thread_data->next()) {
    thread_data->SnapshotExecutedTasks(current_profiling_phase,
                                       &process_data_snapshot->phased_snapshots,
                                       &birth_counts);
  }

  // Add births that are still active -- i.e. objects that have tallied a birth,
  // but have not yet tallied a matching death, and hence must be either
  // running, queued up, or being held in limbo for future posting.
  auto* current_phase_tasks =
      &process_data_snapshot->phased_snapshots[current_profiling_phase].tasks;
  for (const auto& birth_count : birth_counts) {
    if (birth_count.second > 0) {
      current_phase_tasks->push_back(
          TaskSnapshot(BirthOnThreadSnapshot(*birth_count.first),
                       DeathDataSnapshot(birth_count.second, 0, 0, 0, 0, 0, 0,
                                         0, 0, 0, 0, 0, 0),
                       "Still_Alive"));
    }
  }
}

// static
void ThreadData::OnProfilingPhaseCompleted(int profiling_phase) {
  // Get an unchanging copy of a ThreadData list.
  ThreadData* my_list = ThreadData::first();

  // Add snapshots for all instances of death data in all threads serially.
  // This hackish approach *can* get some slightly corrupt tallies, as we are
  // grabbing values without the protection of a lock, but it has the advantage
  // of working even with threads that don't have message loops.  Any corruption
  // shouldn't cause "cascading damage" to anything else (in later phases).
  for (ThreadData* thread_data = my_list; thread_data;
       thread_data = thread_data->next()) {
    thread_data->OnProfilingPhaseCompletedOnThread(profiling_phase);
  }
}

Births* ThreadData::TallyABirth(const Location& location) {
  BirthMap::iterator it = birth_map_.find(location);
  Births* child;
  if (it != birth_map_.end()) {
    child =  it->second;
    child->RecordBirth();
  } else {
    child = new Births(location, *this);  // Leak this.
    // Lock since the map may get relocated now, and other threads sometimes
    // snapshot it (but they lock before copying it).
    base::AutoLock lock(map_lock_);
    birth_map_[location] = child;
  }

  return child;
}

void ThreadData::TallyADeath(const Births& births,
                             int32_t queue_duration,
                             const TaskStopwatch& stopwatch) {
  int32_t run_duration = stopwatch.RunDurationMs();

  // Stir in some randomness, plus add constant in case durations are zero.
  const uint32_t kSomePrimeNumber = 2147483647;
  random_number_ += queue_duration + run_duration + kSomePrimeNumber;
  // An address is going to have some randomness to it as well ;-).
  random_number_ ^=
      static_cast<uint32_t>(&births - reinterpret_cast<Births*>(0));

  DeathMap::iterator it = death_map_.find(&births);
  DeathData* death_data;
  if (it != death_map_.end()) {
    death_data = &it->second;
  } else {
    base::AutoLock lock(map_lock_);  // Lock as the map may get relocated now.
    death_data = &death_map_[&births];
  }  // Release lock ASAP.
  death_data->RecordDurations(queue_duration, run_duration, random_number_);

#if BUILDFLAG(ENABLE_MEMORY_TASK_PROFILER)
  if (stopwatch.heap_tracking_enabled()) {
    base::debug::ThreadHeapUsage heap_usage = stopwatch.heap_usage().usage();
    // Saturate the 64 bit counts on conversion to 32 bit storage.
    death_data->RecordAllocations(
        base::saturated_cast<int32_t>(heap_usage.alloc_ops),
        base::saturated_cast<int32_t>(heap_usage.free_ops),
        base::saturated_cast<int32_t>(heap_usage.alloc_bytes),
        base::saturated_cast<int32_t>(heap_usage.free_bytes),
        base::saturated_cast<int32_t>(heap_usage.alloc_overhead_bytes),
        base::saturated_cast<int32_t>(heap_usage.max_allocated_bytes));
  }
#endif
}

// static
Births* ThreadData::TallyABirthIfActive(const Location& location) {
  if (!TrackingStatus())
    return NULL;
  ThreadData* current_thread_data = Get();
  if (!current_thread_data)
    return NULL;
  return current_thread_data->TallyABirth(location);
}

// static
void ThreadData::TallyRunOnNamedThreadIfTracking(
    const base::TrackingInfo& completed_task,
    const TaskStopwatch& stopwatch) {
  // Even if we have been DEACTIVATED, we will process any pending births so
  // that our data structures (which counted the outstanding births) remain
  // consistent.
  const Births* births = completed_task.birth_tally;
  if (!births)
    return;
  ThreadData* current_thread_data = stopwatch.GetThreadData();
  if (!current_thread_data)
    return;

  // Watch out for a race where status_ is changing, and hence one or both
  // of start_of_run or end_of_run is zero.  In that case, we didn't bother to
  // get a time value since we "weren't tracking" and we were trying to be
  // efficient by not calling for a genuine time value.  For simplicity, we'll
  // use a default zero duration when we can't calculate a true value.
  TrackedTime start_of_run = stopwatch.StartTime();
  int32_t queue_duration = 0;
  if (!start_of_run.is_null()) {
    queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
        .InMilliseconds();
  }
  current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
}

// static
void ThreadData::TallyRunOnWorkerThreadIfTracking(
    const Births* births,
    const TrackedTime& time_posted,
    const TaskStopwatch& stopwatch) {
  // Even if we have been DEACTIVATED, we will process any pending births so
  // that our data structures (which counted the outstanding births) remain
  // consistent.
  if (!births)
    return;

  // TODO(jar): Support the option to coalesce all worker-thread activity under
  // one ThreadData instance that uses locks to protect *all* access.  This will
  // reduce memory (making it provably bounded), but run incrementally slower
  // (since we'll use locks on TallyABirth and TallyADeath).  The good news is
  // that the locks on TallyADeath will be *after* the worker thread has run,
  // and hence nothing will be waiting for the completion (...  besides some
  // other thread that might like to run).  Also, the worker threads tasks are
  // generally longer, and hence the cost of the lock may perchance be amortized
  // over the long task's lifetime.
  ThreadData* current_thread_data = stopwatch.GetThreadData();
  if (!current_thread_data)
    return;

  TrackedTime start_of_run = stopwatch.StartTime();
  int32_t queue_duration = 0;
  if (!start_of_run.is_null()) {
    queue_duration = (start_of_run - time_posted).InMilliseconds();
  }
  current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
}

// static
void ThreadData::TallyRunInAScopedRegionIfTracking(
    const Births* births,
    const TaskStopwatch& stopwatch) {
  // Even if we have been DEACTIVATED, we will process any pending births so
  // that our data structures (which counted the outstanding births) remain
  // consistent.
  if (!births)
    return;

  ThreadData* current_thread_data = stopwatch.GetThreadData();
  if (!current_thread_data)
    return;

  int32_t queue_duration = 0;
  current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
}

void ThreadData::SnapshotExecutedTasks(
    int current_profiling_phase,
    PhasedProcessDataSnapshotMap* phased_snapshots,
    BirthCountMap* birth_counts) {
  // Get copy of data, so that the data will not change during the iterations
  // and processing.
  BirthMap birth_map;
  DeathsSnapshot deaths;
  SnapshotMaps(current_profiling_phase, &birth_map, &deaths);

  for (const auto& birth : birth_map) {
    (*birth_counts)[birth.second] += birth.second->birth_count();
  }

  for (const auto& death : deaths) {
    (*birth_counts)[death.first] -= death.first->birth_count();

    // For the current death data, walk through all its snapshots, starting from
    // the current one, then from the previous profiling phase etc., and for
    // each snapshot calculate the delta between the snapshot and the previous
    // phase, if any.  Store the deltas in the result.
    for (const DeathDataPhaseSnapshot* phase = &death.second; phase;
         phase = phase->prev) {
      const DeathDataSnapshot& death_data =
          phase->prev ? phase->death_data.Delta(phase->prev->death_data)
                      : phase->death_data;

      if (death_data.count > 0) {
        (*phased_snapshots)[phase->profiling_phase].tasks.push_back(
            TaskSnapshot(BirthOnThreadSnapshot(*death.first), death_data,
                         sanitized_thread_name()));
      }
    }
  }
}

// This may be called from another thread.
void ThreadData::SnapshotMaps(int profiling_phase,
                              BirthMap* birth_map,
                              DeathsSnapshot* deaths) {
  base::AutoLock lock(map_lock_);

  for (const auto& birth : birth_map_)
    (*birth_map)[birth.first] = birth.second;

  for (const auto& death : death_map_) {
    deaths->push_back(std::make_pair(
        death.first,
        DeathDataPhaseSnapshot(profiling_phase, death.second,
                               death.second.last_phase_snapshot())));
  }
}

void ThreadData::OnProfilingPhaseCompletedOnThread(int profiling_phase) {
  base::AutoLock lock(map_lock_);

  for (auto& death : death_map_) {
    death.second.OnProfilingPhaseCompleted(profiling_phase);
  }
}

void ThreadData::EnsureTlsInitialization() {
  if (base::subtle::Acquire_Load(&status_) >= DEACTIVATED)
    return;  // Someone else did the initialization.
  // Due to racy lazy initialization in tests, we'll need to recheck status_
  // after we acquire the lock.

  // Ensure that we don't double initialize tls.  We are called when single
  // threaded in the product, but some tests may be racy and lazy about our
  // initialization.
  base::AutoLock lock(*list_lock_.Pointer());
  if (base::subtle::Acquire_Load(&status_) >= DEACTIVATED)
    return;  // Someone raced in here and beat us.

  // Perform the "real" TLS initialization now, and leave it intact through
  // process termination.
  if (!tls_index_.initialized()) {  // Testing may have initialized this.
    DCHECK_EQ(base::subtle::NoBarrier_Load(&status_), UNINITIALIZED);
    tls_index_.Initialize(&ThreadData::OnThreadTermination);
    DCHECK(tls_index_.initialized());
  } else {
    // TLS was initialzed for us earlier.
    DCHECK_EQ(base::subtle::NoBarrier_Load(&status_), DORMANT_DURING_TESTS);
  }

  // Incarnation counter is only significant to testing, as it otherwise will
  // never again change in this process.
  ++incarnation_counter_;

  // The lock is not critical for setting status_, but it doesn't hurt.  It also
  // ensures that if we have a racy initialization, that we'll bail as soon as
  // we get the lock earlier in this method.
  base::subtle::Release_Store(&status_, kInitialStartupState);
  DCHECK(base::subtle::NoBarrier_Load(&status_) != UNINITIALIZED);
}

// static
void ThreadData::InitializeAndSetTrackingStatus(Status status) {
  DCHECK_GE(status, DEACTIVATED);
  DCHECK_LE(status, PROFILING_ACTIVE);

  EnsureTlsInitialization();  // No-op if already initialized.

  if (status > DEACTIVATED)
    status = PROFILING_ACTIVE;

  base::subtle::Release_Store(&status_, status);
}

// static
ThreadData::Status ThreadData::status() {
  return static_cast<ThreadData::Status>(base::subtle::Acquire_Load(&status_));
}

// static
bool ThreadData::TrackingStatus() {
  return base::subtle::Acquire_Load(&status_) > DEACTIVATED;
}

// static
void ThreadData::EnableProfilerTiming() {
  base::subtle::NoBarrier_Store(&g_profiler_timing_enabled, ENABLED_TIMING);
}

// static
TrackedTime ThreadData::Now() {
  if (now_function_for_testing_)
    return TrackedTime::FromMilliseconds((*now_function_for_testing_)());
  if (IsProfilerTimingEnabled() && TrackingStatus())
    return TrackedTime::Now();
  return TrackedTime();  // Super fast when disabled, or not compiled.
}

// static
void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
  base::AutoLock lock(*list_lock_.Pointer());

  // TODO(jar): until this is working on XP, don't run the real test.
#if 0
  // Verify that we've at least shutdown/cleanup the major namesd threads.  The
  // caller should tell us how many thread shutdowns should have taken place by
  // now.
  CHECK_GT(cleanup_count_, major_threads_shutdown_count);
#endif
}

// static
void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
  // This is only called from test code, where we need to cleanup so that
  // additional tests can be run.
  // We must be single threaded... but be careful anyway.
  InitializeAndSetTrackingStatus(DEACTIVATED);

  ThreadData* thread_data_list;
  {
    base::AutoLock lock(*list_lock_.Pointer());
    thread_data_list = all_thread_data_list_head_;
    all_thread_data_list_head_ = NULL;
    ++incarnation_counter_;
    // To be clean, break apart the retired worker list (though we leak them).
    while (first_retired_thread_data_) {
      ThreadData* thread_data = first_retired_thread_data_;
      first_retired_thread_data_ = thread_data->next_retired_thread_data_;
      thread_data->next_retired_thread_data_ = nullptr;
    }
  }

  // Put most global static back in pristine shape.
  cleanup_count_ = 0;
  tls_index_.Set(NULL);
  // Almost UNINITIALIZED.
  base::subtle::Release_Store(&status_, DORMANT_DURING_TESTS);

  // To avoid any chance of racing in unit tests, which is the only place we
  // call this function, we may sometimes leak all the data structures we
  // recovered, as they may still be in use on threads from prior tests!
  if (leak) {
    ThreadData* thread_data = thread_data_list;
    while (thread_data) {
      ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
      thread_data = thread_data->next();
    }
    return;
  }

  // When we want to cleanup (on a single thread), here is what we do.

  // Do actual recursive delete in all ThreadData instances.
  while (thread_data_list) {
    ThreadData* next_thread_data = thread_data_list;
    thread_data_list = thread_data_list->next();

    for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
         next_thread_data->birth_map_.end() != it; ++it)
      delete it->second;  // Delete the Birth Records.
    delete next_thread_data;  // Includes all Death Records.
  }
}

// static
ThreadData* ThreadData::GetRetiredOrCreateThreadData(
    const std::string& sanitized_thread_name) {
  SCOPED_UMA_HISTOGRAM_TIMER("TrackedObjects.GetRetiredOrCreateThreadData");

  {
    base::AutoLock lock(*list_lock_.Pointer());
    ThreadData** pcursor = &first_retired_thread_data_;
    ThreadData* cursor = first_retired_thread_data_;

    // Assuming that there aren't more than a few tens of retired ThreadData
    // instances, this lookup should be quick compared to the thread creation
    // time. Retired ThreadData instances cannot be stored in a map because
    // insertions are done from OnThreadTerminationCleanup() where allocations
    // are not allowed.
    //
    // Note: Test processes may have more than a few tens of retired ThreadData
    // instances.
    while (cursor) {
      if (cursor->sanitized_thread_name() == sanitized_thread_name) {
        DCHECK_EQ(*pcursor, cursor);
        *pcursor = cursor->next_retired_thread_data_;
        cursor->next_retired_thread_data_ = nullptr;
        return cursor;
      }
      pcursor = &cursor->next_retired_thread_data_;
      cursor = cursor->next_retired_thread_data_;
    }
  }

  return new ThreadData(sanitized_thread_name);
}

//------------------------------------------------------------------------------
TaskStopwatch::TaskStopwatch()
    : wallclock_duration_ms_(0),
      current_thread_data_(NULL),
      excluded_duration_ms_(0),
      parent_(NULL) {
#if DCHECK_IS_ON()
  state_ = CREATED;
  child_ = NULL;
#endif
#if BUILDFLAG(ENABLE_MEMORY_TASK_PROFILER)
  heap_tracking_enabled_ =
      base::debug::ThreadHeapUsageTracker::IsHeapTrackingEnabled();
#endif
}

TaskStopwatch::~TaskStopwatch() {
#if DCHECK_IS_ON()
  DCHECK(state_ != RUNNING);
  DCHECK(child_ == NULL);
#endif
}

void TaskStopwatch::Start() {
#if DCHECK_IS_ON()
  DCHECK(state_ == CREATED);
  state_ = RUNNING;
#endif

  start_time_ = ThreadData::Now();
#if BUILDFLAG(ENABLE_MEMORY_TASK_PROFILER)
  if (heap_tracking_enabled_)
    heap_usage_.Start();
#endif

  current_thread_data_ = ThreadData::Get();
  if (!current_thread_data_)
    return;

  parent_ = current_thread_data_->current_stopwatch_;
#if DCHECK_IS_ON()
  if (parent_) {
    DCHECK(parent_->state_ == RUNNING);
    DCHECK(parent_->child_ == NULL);
    parent_->child_ = this;
  }
#endif
  current_thread_data_->current_stopwatch_ = this;
}

void TaskStopwatch::Stop() {
  const TrackedTime end_time = ThreadData::Now();
#if DCHECK_IS_ON()
  DCHECK(state_ == RUNNING);
  state_ = STOPPED;
  DCHECK(child_ == NULL);
#endif
#if BUILDFLAG(ENABLE_MEMORY_TASK_PROFILER)
  if (heap_tracking_enabled_)
    heap_usage_.Stop(true);
#endif

  if (!start_time_.is_null() && !end_time.is_null()) {
    wallclock_duration_ms_ = (end_time - start_time_).InMilliseconds();
  }

  if (!current_thread_data_)
    return;

  DCHECK(current_thread_data_->current_stopwatch_ == this);
  current_thread_data_->current_stopwatch_ = parent_;
  if (!parent_)
    return;

#if DCHECK_IS_ON()
  DCHECK(parent_->state_ == RUNNING);
  DCHECK(parent_->child_ == this);
  parent_->child_ = NULL;
#endif
  parent_->excluded_duration_ms_ += wallclock_duration_ms_;
  parent_ = NULL;
}

TrackedTime TaskStopwatch::StartTime() const {
#if DCHECK_IS_ON()
  DCHECK(state_ != CREATED);
#endif

  return start_time_;
}

int32_t TaskStopwatch::RunDurationMs() const {
#if DCHECK_IS_ON()
  DCHECK(state_ == STOPPED);
#endif

  return wallclock_duration_ms_ - excluded_duration_ms_;
}

ThreadData* TaskStopwatch::GetThreadData() const {
#if DCHECK_IS_ON()
  DCHECK(state_ != CREATED);
#endif

  return current_thread_data_;
}

//------------------------------------------------------------------------------
// DeathDataPhaseSnapshot

DeathDataPhaseSnapshot::DeathDataPhaseSnapshot(
    int profiling_phase,
    const DeathData& death,
    const DeathDataPhaseSnapshot* prev)
    : profiling_phase(profiling_phase), death_data(death), prev(prev) {}

//------------------------------------------------------------------------------
// TaskSnapshot

TaskSnapshot::TaskSnapshot() {
}

TaskSnapshot::TaskSnapshot(const BirthOnThreadSnapshot& birth,
                           const DeathDataSnapshot& death_data,
                           const std::string& death_sanitized_thread_name)
    : birth(birth),
      death_data(death_data),
      death_sanitized_thread_name(death_sanitized_thread_name) {}

TaskSnapshot::~TaskSnapshot() {
}

//------------------------------------------------------------------------------
// ProcessDataPhaseSnapshot

ProcessDataPhaseSnapshot::ProcessDataPhaseSnapshot() {
}

ProcessDataPhaseSnapshot::ProcessDataPhaseSnapshot(
    const ProcessDataPhaseSnapshot& other) = default;

ProcessDataPhaseSnapshot::~ProcessDataPhaseSnapshot() {
}

//------------------------------------------------------------------------------
// ProcessDataPhaseSnapshot

ProcessDataSnapshot::ProcessDataSnapshot()
#if !defined(OS_NACL)
    : process_id(base::GetCurrentProcId()) {
#else
    : process_id(base::kNullProcessId) {
#endif
}

ProcessDataSnapshot::ProcessDataSnapshot(const ProcessDataSnapshot& other) =
    default;

ProcessDataSnapshot::~ProcessDataSnapshot() {
}

}  // namespace tracked_objects