// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Derived from google3/util/gtl/stl_util.h
#ifndef BASE_STL_UTIL_H_
#define BASE_STL_UTIL_H_
#include <algorithm>
#include <deque>
#include <forward_list>
#include <functional>
#include <iterator>
#include <list>
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "base/logging.h"
namespace base {
namespace internal {
// Calls erase on iterators of matching elements.
template <typename Container, typename Predicate>
void IterateAndEraseIf(Container& container, Predicate pred) {
for (auto it = container.begin(); it != container.end();) {
if (pred(*it))
it = container.erase(it);
else
++it;
}
}
} // namespace internal
// Clears internal memory of an STL object.
// STL clear()/reserve(0) does not always free internal memory allocated
// This function uses swap/destructor to ensure the internal memory is freed.
template<class T>
void STLClearObject(T* obj) {
T tmp;
tmp.swap(*obj);
// Sometimes "T tmp" allocates objects with memory (arena implementation?).
// Hence using additional reserve(0) even if it doesn't always work.
obj->reserve(0);
}
// Counts the number of instances of val in a container.
template <typename Container, typename T>
typename std::iterator_traits<
typename Container::const_iterator>::difference_type
STLCount(const Container& container, const T& val) {
return std::count(container.begin(), container.end(), val);
}
// Return a mutable char* pointing to a string's internal buffer,
// which may not be null-terminated. Writing through this pointer will
// modify the string.
//
// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
// next call to a string method that invalidates iterators.
//
// As of 2006-04, there is no standard-blessed way of getting a
// mutable reference to a string's internal buffer. However, issue 530
// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
// proposes this as the method. According to Matt Austern, this should
// already work on all current implementations.
inline char* string_as_array(std::string* str) {
// DO NOT USE const_cast<char*>(str->data())
return str->empty() ? NULL : &*str->begin();
}
// Test to see if a set, map, hash_set or hash_map contains a particular key.
// Returns true if the key is in the collection.
template <typename Collection, typename Key>
bool ContainsKey(const Collection& collection, const Key& key) {
return collection.find(key) != collection.end();
}
// Test to see if a collection like a vector contains a particular value.
// Returns true if the value is in the collection.
template <typename Collection, typename Value>
bool ContainsValue(const Collection& collection, const Value& value) {
return std::find(collection.begin(), collection.end(), value) !=
collection.end();
}
// Returns true if the container is sorted.
template <typename Container>
bool STLIsSorted(const Container& cont) {
// Note: Use reverse iterator on container to ensure we only require
// value_type to implement operator<.
return std::adjacent_find(cont.rbegin(), cont.rend(),
std::less<typename Container::value_type>())
== cont.rend();
}
// Returns a new ResultType containing the difference of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetDifference(const Arg1& a1, const Arg2& a2) {
DCHECK(STLIsSorted(a1));
DCHECK(STLIsSorted(a2));
ResultType difference;
std::set_difference(a1.begin(), a1.end(),
a2.begin(), a2.end(),
std::inserter(difference, difference.end()));
return difference;
}
// Returns a new ResultType containing the union of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetUnion(const Arg1& a1, const Arg2& a2) {
DCHECK(STLIsSorted(a1));
DCHECK(STLIsSorted(a2));
ResultType result;
std::set_union(a1.begin(), a1.end(),
a2.begin(), a2.end(),
std::inserter(result, result.end()));
return result;
}
// Returns a new ResultType containing the intersection of two sorted
// containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetIntersection(const Arg1& a1, const Arg2& a2) {
DCHECK(STLIsSorted(a1));
DCHECK(STLIsSorted(a2));
ResultType result;
std::set_intersection(a1.begin(), a1.end(),
a2.begin(), a2.end(),
std::inserter(result, result.end()));
return result;
}
// Returns true if the sorted container |a1| contains all elements of the sorted
// container |a2|.
template <typename Arg1, typename Arg2>
bool STLIncludes(const Arg1& a1, const Arg2& a2) {
DCHECK(STLIsSorted(a1));
DCHECK(STLIsSorted(a2));
return std::includes(a1.begin(), a1.end(),
a2.begin(), a2.end());
}
// Erase/EraseIf are based on library fundamentals ts v2 erase/erase_if
// http://en.cppreference.com/w/cpp/experimental/lib_extensions_2
// They provide a generic way to erase elements from a container.
// The functions here implement these for the standard containers until those
// functions are available in the C++ standard.
// For Chromium containers overloads should be defined in their own headers
// (like standard containers).
// Note: there is no std::erase for standard associative containers so we don't
// have it either.
template <typename CharT, typename Traits, typename Allocator, typename Value>
void Erase(std::basic_string<CharT, Traits, Allocator>& container,
const Value& value) {
container.erase(std::remove(container.begin(), container.end(), value),
container.end());
}
template <typename CharT, typename Traits, typename Allocator, class Predicate>
void EraseIf(std::basic_string<CharT, Traits, Allocator>& container,
Predicate pred) {
container.erase(std::remove_if(container.begin(), container.end(), pred),
container.end());
}
template <class T, class Allocator, class Value>
void Erase(std::deque<T, Allocator>& container, const Value& value) {
container.erase(std::remove(container.begin(), container.end(), value),
container.end());
}
template <class T, class Allocator, class Predicate>
void EraseIf(std::deque<T, Allocator>& container, Predicate pred) {
container.erase(std::remove_if(container.begin(), container.end(), pred),
container.end());
}
template <class T, class Allocator, class Value>
void Erase(std::vector<T, Allocator>& container, const Value& value) {
container.erase(std::remove(container.begin(), container.end(), value),
container.end());
}
template <class T, class Allocator, class Predicate>
void EraseIf(std::vector<T, Allocator>& container, Predicate pred) {
container.erase(std::remove_if(container.begin(), container.end(), pred),
container.end());
}
template <class T, class Allocator, class Value>
void Erase(std::forward_list<T, Allocator>& container, const Value& value) {
// Unlike std::forward_list::remove, this function template accepts
// heterogeneous types and does not force a conversion to the container's
// value type before invoking the == operator.
container.remove_if([&](const T& cur) { return cur == value; });
}
template <class T, class Allocator, class Predicate>
void EraseIf(std::forward_list<T, Allocator>& container, Predicate pred) {
container.remove_if(pred);
}
template <class T, class Allocator, class Value>
void Erase(std::list<T, Allocator>& container, const Value& value) {
// Unlike std::list::remove, this function template accepts heterogeneous
// types and does not force a conversion to the container's value type before
// invoking the == operator.
container.remove_if([&](const T& cur) { return cur == value; });
}
template <class T, class Allocator, class Predicate>
void EraseIf(std::list<T, Allocator>& container, Predicate pred) {
container.remove_if(pred);
}
template <class Key, class T, class Compare, class Allocator, class Predicate>
void EraseIf(std::map<Key, T, Compare, Allocator>& container, Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key, class T, class Compare, class Allocator, class Predicate>
void EraseIf(std::multimap<Key, T, Compare, Allocator>& container,
Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key, class Compare, class Allocator, class Predicate>
void EraseIf(std::set<Key, Compare, Allocator>& container, Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key, class Compare, class Allocator, class Predicate>
void EraseIf(std::multiset<Key, Compare, Allocator>& container,
Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key,
class T,
class Hash,
class KeyEqual,
class Allocator,
class Predicate>
void EraseIf(std::unordered_map<Key, T, Hash, KeyEqual, Allocator>& container,
Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key,
class T,
class Hash,
class KeyEqual,
class Allocator,
class Predicate>
void EraseIf(
std::unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& container,
Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key,
class Hash,
class KeyEqual,
class Allocator,
class Predicate>
void EraseIf(std::unordered_set<Key, Hash, KeyEqual, Allocator>& container,
Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
template <class Key,
class Hash,
class KeyEqual,
class Allocator,
class Predicate>
void EraseIf(std::unordered_multiset<Key, Hash, KeyEqual, Allocator>& container,
Predicate pred) {
internal::IterateAndEraseIf(container, pred);
}
} // namespace base
#endif // BASE_STL_UTIL_H_