// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_
#define BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_
#include <limits>
namespace base {
inline int32_t SaturatedAddition(int32_t a, int32_t b) {
int32_t result;
asm("qadd %[output],%[first],%[second]"
: [output] "=r"(result)
: [first] "r"(a), [second] "r"(b));
return result;
}
inline int32_t SaturatedSubtraction(int32_t a, int32_t b) {
int32_t result;
asm("qsub %[output],%[first],%[second]"
: [output] "=r"(result)
: [first] "r"(a), [second] "r"(b));
return result;
}
inline int32_t SaturatedNegative(int32_t a) {
return SaturatedSubtraction(0, a);
}
inline int32_t SaturatedAbsolute(int32_t a) {
if (a >= 0)
return a;
return SaturatedNegative(a);
}
inline int GetMaxSaturatedSetResultForTesting(int fractional_shift) {
// For ARM Asm version the set function maxes out to the biggest
// possible integer part with the fractional part zero'd out.
// e.g. 0x7fffffc0.
return std::numeric_limits<int>::max() & ~((1 << fractional_shift) - 1);
}
inline int GetMinSaturatedSetResultForTesting(int fractional_shift) {
return std::numeric_limits<int>::min();
}
template <int fractional_shift>
inline int SaturatedSet(int value) {
// Figure out how many bits are left for storing the integer part of
// the fixed point number, and saturate our input to that
enum { Saturate = 32 - fractional_shift };
int result;
// The following ARM code will Saturate the passed value to the number of
// bits used for the whole part of the fixed point representation, then
// shift it up into place. This will result in the low <FractionShift> bits
// all being 0's. When the value saturates this gives a different result
// to from the C++ case; in the C++ code a saturated value has all the low
// bits set to 1 (for a +ve number at least). This cannot be done rapidly
// in ARM ... we live with the difference, for the sake of speed.
asm("ssat %[output],%[saturate],%[value]\n\t"
"lsl %[output],%[shift]"
: [output] "=r"(result)
: [value] "r"(value), [saturate] "n"(Saturate),
[shift] "n"(fractional_shift));
return result;
}
template <int fractional_shift>
inline int SaturatedSet(unsigned value) {
// Here we are being passed an unsigned value to saturate,
// even though the result is returned as a signed integer. The ARM
// instruction for unsigned saturation therefore needs to be given one
// less bit (i.e. the sign bit) for the saturation to work correctly; hence
// the '31' below.
enum { Saturate = 31 - fractional_shift };
// The following ARM code will Saturate the passed value to the number of
// bits used for the whole part of the fixed point representation, then
// shift it up into place. This will result in the low <FractionShift> bits
// all being 0's. When the value saturates this gives a different result
// to from the C++ case; in the C++ code a saturated value has all the low
// bits set to 1. This cannot be done rapidly in ARM, so we live with the
// difference, for the sake of speed.
int result;
asm("usat %[output],%[saturate],%[value]\n\t"
"lsl %[output],%[shift]"
: [output] "=r"(result)
: [value] "r"(value), [saturate] "n"(Saturate),
[shift] "n"(fractional_shift));
return result;
}
} // namespace base
#endif // BASE_NUMERICS_SATURATED_ARITHMETIC_ARM_H_