// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_HASH_H_
#define BASE_HASH_H_
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <string>
#include <utility>
#include "base/base_export.h"
#include "base/logging.h"
namespace base {
// WARNING: This hash function should not be used for any cryptographic purpose.
BASE_EXPORT uint32_t SuperFastHash(const char* data, size_t length);
// Computes a hash of a memory buffer |data| of a given |length|.
// WARNING: This hash function should not be used for any cryptographic purpose.
inline uint32_t Hash(const char* data, size_t length) {
return SuperFastHash(data, length);
}
// Computes a hash of a string |str|.
// WARNING: This hash function should not be used for any cryptographic purpose.
inline uint32_t Hash(const std::string& str) {
return Hash(str.data(), str.size());
}
// Implement hashing for pairs of at-most 32 bit integer values.
// When size_t is 32 bits, we turn the 64-bit hash code into 32 bits by using
// multiply-add hashing. This algorithm, as described in
// Theorem 4.3.3 of the thesis "Über die Komplexität der Multiplikation in
// eingeschränkten Branchingprogrammmodellen" by Woelfel, is:
//
// h32(x32, y32) = (h64(x32, y32) * rand_odd64 + rand16 * 2^16) % 2^64 / 2^32
//
// Contact danakj@chromium.org for any questions.
inline size_t HashInts32(uint32_t value1, uint32_t value2) {
uint64_t value1_64 = value1;
uint64_t hash64 = (value1_64 << 32) | value2;
if (sizeof(size_t) >= sizeof(uint64_t))
return static_cast<size_t>(hash64);
uint64_t odd_random = 481046412LL << 32 | 1025306955LL;
uint32_t shift_random = 10121U << 16;
hash64 = hash64 * odd_random + shift_random;
size_t high_bits =
static_cast<size_t>(hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t))));
return high_bits;
}
// Implement hashing for pairs of up-to 64-bit integer values.
// We use the compound integer hash method to produce a 64-bit hash code, by
// breaking the two 64-bit inputs into 4 32-bit values:
// http://opendatastructures.org/versions/edition-0.1d/ods-java/node33.html#SECTION00832000000000000000
// Then we reduce our result to 32 bits if required, similar to above.
inline size_t HashInts64(uint64_t value1, uint64_t value2) {
uint32_t short_random1 = 842304669U;
uint32_t short_random2 = 619063811U;
uint32_t short_random3 = 937041849U;
uint32_t short_random4 = 3309708029U;
uint32_t value1a = static_cast<uint32_t>(value1 & 0xffffffff);
uint32_t value1b = static_cast<uint32_t>((value1 >> 32) & 0xffffffff);
uint32_t value2a = static_cast<uint32_t>(value2 & 0xffffffff);
uint32_t value2b = static_cast<uint32_t>((value2 >> 32) & 0xffffffff);
uint64_t product1 = static_cast<uint64_t>(value1a) * short_random1;
uint64_t product2 = static_cast<uint64_t>(value1b) * short_random2;
uint64_t product3 = static_cast<uint64_t>(value2a) * short_random3;
uint64_t product4 = static_cast<uint64_t>(value2b) * short_random4;
uint64_t hash64 = product1 + product2 + product3 + product4;
if (sizeof(size_t) >= sizeof(uint64_t))
return static_cast<size_t>(hash64);
uint64_t odd_random = 1578233944LL << 32 | 194370989LL;
uint32_t shift_random = 20591U << 16;
hash64 = hash64 * odd_random + shift_random;
size_t high_bits =
static_cast<size_t>(hash64 >> (8 * (sizeof(uint64_t) - sizeof(size_t))));
return high_bits;
}
template <typename T1, typename T2>
inline size_t HashInts(T1 value1, T2 value2) {
// This condition is expected to be compile-time evaluated and optimised away
// in release builds.
if (sizeof(T1) > sizeof(uint32_t) || (sizeof(T2) > sizeof(uint32_t)))
return HashInts64(value1, value2);
return HashInts32(value1, value2);
}
// A templated hasher for pairs of integer types.
template <typename T>
struct IntPairHash;
template <typename Type1, typename Type2>
struct IntPairHash<std::pair<Type1, Type2>> {
size_t operator()(std::pair<Type1, Type2> value) const {
return HashInts(value.first, value.second);
}
};
} // namespace base
#endif // BASE_HASH_H_